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Abstract. A set of fundamental matrices relating pairs of cameras in
some configuration can be represented as edges of a “viewing graph”.
Whether or not these fundamental matrices are generically sufficient
to recover the global camera configuration depends on the structure of
this graph. We study characterizations of “solvable” viewing graphs, and
present several new results that can be applied to determine which pairs
of views may be used to recover all camera parameters. We also discuss
strategies for verifying the solvability of a graph computationally.
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1 Introduction

Multi-view geometry has been studied by photogrammeters since the 1950s [1]
and by computer vision researchers since the 1980s [2]. Still, most results to
date are concerned with using multi-view tensors to characterize feature cor-
respondences in 2, 3, or 4 views, and determine the corresponding projection
matrices [3–6]. Although correspondences have also been characterized for arbi-
trary numbers of views [7–9], very little theoretical work has been devoted to
understanding the geometric constraints imposed on configurations of n > 4
cameras by these tensors, including fundamental matrices [3], which are prob-
ably by far the most used in practice. Apart from a few works such as [10,11],
understanding how many and which fundamental matrices can be used to recover
globally consistent camera parameters is a largely unexplored problem.

We address this topic in this paper. Following [10], we associate sets of fun-
damental matrices with edges of a “viewing graph”, and present a series of new
results for determining whether a graph is “solvable”, i.e., whether it represents
fundamental matrices that determine a unique camera configuration. We also
describe effective strategies for verifying solvability, and include some computa-
tional experiments using these methods. Our focus here is clearly of a theoretical
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nature, but understanding how subsets of fundamental matrices constrain the
reconstruction process is clearly important in practice as well. Moreover, we will
point out that one of our main results (Theorem 3) is constructive, and could
potentially find applications in reconstruction algorithms (e.g., it could be incor-
porated in large-scale systems such as [12], that incrementally build up networks
of cameras to estimate their parameters).
Previous work. The first investigation of viewing graphs and their solvability
can be found in [10]. In that work, Levi and Werman characterize all solvable
viewing graphs with at most six vertices, and discuss a few larger solvable exam-
ples. Although they provide some useful necessary conditions (see our Proposi-
tion 2 and Example 2), they do not address the problem of solvability in general.
In [11], Rudi et al. also consider viewing graphs, studying mainly whether a con-
figuration can be recovered from a set of fundamental matrices using a linear
system. They also present some “composition rules” for merging solvable graphs
into larger ones. Trager et al. [13] provide a sufficient condition for solvability
using 2n − 3 fundamental matrices, and point to a possible connection with
“Laman graphs” and graph rigidity theory. Indeed, Özyesil and Singer [14] show
that if one uses essential matrices instead of fundamental ones then solvability
can be characterized in terms of so-called “parallel-rigidity” for graphs. Their
analysis however does not carry over to the more general setting of uncalibrated
cameras. Finally, the viewing graph has also been considered in more practical
work: for example, in [15,16], it is used to enforce triple-wise consistency among
fundamental matrices before estimating camera parameters.

Main contributions.

• We show that the minimum number of fundamental matrices that can be used
to recover a configuration of n cameras is always �(11n−15)/7� (Theorem 1).

• We present several criteria for deciding whether or not a viewing graph is
solvable. After revisiting some results from [10,11] (Sect. 3.1), we describe a
new necessary condition for solvability that is based on the number of edges
and vertices of subgraphs (Theorem 2), as well as a sufficient condition based
on “moves” for adding new edges to a graph (Theorem 3).

• We describe an algebraic formulation for solvability that in principle can
always be used to determine whether any viewing graph is solvable. Although
this method is computationally challenging for larger graphs, we also intro-
duce a much more practical linear test, that can be used to verify whether a
viewing graph identifies a finite number of camera configurations (Sect. 4).

• Using an implementation of all the proposed methods, we analyze solvability
for all minimal viewing graphs with at most 9 vertices. We also discuss some
relevant examples (Sect. 5).

2 Background

To make our presentation mostly self-contained, we recall some basic theoretical
facts that are used in the rest of the paper.
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Notation. We write P
n = P(Rn+1) for the n-dimensional real projective space.

We use bold font for vectors and matrices, and normal font for projective objects.
For example, a point in P

3 will be written as p = [p] where p is a vector in R
4 and

p is the equivalence class associated with p. Similarly, a projective transformation
represented by a matrix M will be written as M = [M]. We use GL(n,R) for
the group of n × n invertible real matrices.

2.1 Camera Configurations and Epipolar Geometry

A projective camera P = [P] is represented by 3 × 4 matrix P of full rank,
defined up to scale. The matrix P describes a linear projection P

3 \ {c} → P
2

where c = [c] is the pinhole of the camera, associated with the null-space of P.
The matrix group GL(4,R) acts on the set of cameras by multiplication on

the right, and represents the group of projective transformations of P
3, or of

changes of homogeneous coordinates. We will use the fact that the group of
matrices in GL(4,R) that fix a camera P = [P] with pinhole c = [c] is given by

Stab(P) = {αI4 + cvT |α ∈ R \ {0},v ∈ R
4} ∩ GL(4,R). (1)

Here Stab(P ) stands for “stabilizer”. Indeed, all the solutions for M in PM =
αP are described by (1). Note that Stab(P ) only depends on the pinhole of P .
The following important fact follows directly from the form of Stab(P ).

Lemma 1. Given two cameras P1, P2 with distinct pinholes, we have that

Stab(P1) ∩ Stab(P2) = {αI4, |α ∈ R \ {0}}. (2)

In other words, the identity is the only projective transformation that fixes both
P1 and P2.

Two sets of cameras (P1, . . . , Pn) and (P ′
1, . . . , P

′
n) with Pi = [Pi], P ′

i = [P′
i]

are projectively equivalent if there exists a single projective transformation T
such that Pi = P ′

iT (so if T = [T] with T in GL(4,R), then Pi = αiP′
iT

for non-zero constants αi). The set of configurations of n cameras is the set of
n-tuples of cameras up to projective equivalence. For any n ≥ 2, the space of
camera configurations can be viewed as a manifold of dimension 11n − 15.

Given two cameras P1 = [P1], P2 = [P2], the associated fundamental matrix
F (P1, P2) = [F] can be defined as the 3 × 3 matrix (up to scale) with entries

fil = (−1)i+l det(PT
1jP

T
1kP

T
2mPT

2n), (3)

where Par denotes the r-th row of Pa, and (i, j, k) and (l,m, n) are triples of
distinct indices. The fundamental matrix can be used to characterize pairs of
corresponding points in the two images, since u1 = [u1] and u2 = [u2] are pro-
jections of the same 3D point if and only if uT

1 Fu2 = 0. For our purposes, the
most important property of the fundamental matrix is that it is invariant under
projective transformations, and that F (P1, P2) uniquely identifies the configu-
ration of P1 and P2 [17, Theorem 9.10].
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Finally, viewed as a subset of P8, the (closure of the) set of all fundamental
matrices forms a hypersurface defined by det(F) = 0. If F (P1, P2) = [F], the left
and right null-space of F represent the two epipoles e12 = P1c2 and e21 = P2c1,
which are the images of each pinhole viewed from the other camera. An epipole
accounts for two of seven degrees of freedom of a fundamental matrix. In fact,
the information encoded in the fundamental matrix can be seen as the pair of
epipoles e12, e21, together with a projective transformation P

1 → P
1 (known as

“epipolar line homography” [17]) between lines containing e12 in the first image
and the lines containing e21 in the second image. In particular, the knowledge of
two epipoles together with three point correspondences completely determines a
fundamental matrix.

3 The Viewing Graph

The viewing graph is a graph in which vertices correspond to cameras, and edges
represent fundamental matrices between them. More precisely, if G = (VG, EG)
is an undirected graph with n vertices, and P1, . . . , Pn are projective cameras,
we write

FG(P1, . . . , Pn) = {Fij = F (Pi, Pj) | (i, j) ∈ EG}, (4)

for the set of fundamental matrices defined by the edges of G. We say that the
the set FG(P1, . . . , Pn) is solvable if FG(P1, . . . , Pn) = FG(P ′

1, . . . , P
′
n) implies

that (P1, . . . , Pn) and (P ′
1, . . . , P

′
n) are in the same projective configuration. In

other words, a set of fundamental matrices is solvable if and only if it uniquely
determines a projective configuration of cameras.

Proposition 1. The solvability of FG(P1, . . . , Pn) only depends on the graph G
and on the pinholes c1, . . . , cn of P1, . . . , Pn.

Proof. The statement expresses the fact that changes of image coordinates are
only a relabeling of a camera configuration and the associated fundamental
matrices. More precisely, if S1, . . . , Sn are arbitrary projective transformations
of P2, then (P1, . . . , Pn) and (P ′

1, . . . , P
′
n) are in the same configuration if and

only if the same is true for (S1P1, . . . , SnPn) and (S1P
′
1, . . . , SnP ′

n). This implies
that FG(P1, . . . , Pn) is solvable if and only FG(S1P1, . . . , SnPn) is. �	

Example 1. If G is a complete graph with n ≥ 3 vertices, then FG(P1, . . . , Pn) is
solvable if and only if the pinholes of the cameras P1, . . . , Pn are not all aligned.
Indeed, if the pinholes are aligned, then the fundamental matrices between all
pairs of cameras are not sufficient to completely determine the configuration:
replacing any Pi = [Pi] with P ′

i = [Pi(I4 + cjvT )], where cj = [cj ] is the
pinhole of another camera and vT is arbitrary, yields a new set of cameras
which belongs to a different configuration but has the same set of fundamental
matrices. Conversely, it is known (see for example [9,13]) that the complete set of
fundamental matrices determines a unique camera configuration whenever there
are at least three non-aligned pinholes. ♦
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In the rest of the paper we will only consider generic configurations of
cameras/pinholes (so a complete graph will always be solvable). This covers
most cases of practical interest, although in the future degenerate configurations
(including some collinear or coplanar pinholes) could be studied as well.

Definition 1. A viewing graph G is said to be solvable if FG(P1, . . . , Pn) is
solvable for generic cameras P1, . . . , Pn.

In other words, solvable viewing graphs describe sets of fundamental matrices
that are generically sufficient to recover a camera configuration. Despite its clear
significance, the problem of characterizing which viewing graphs are solvable has
not been studied much, and only partial answers are available in the literature
(mainly in [10,11]). It is quite easy to produce examples of graphs that are
solvable, but it is much more challenging, given a graph, to determine whether it
is solvable or not. The following observation provides another useful formulation
of solvability (note that the “if” part requires the genericity assumption, as
shown in Example 1).

Lemma 2. A viewing graph G is solvable if and only if, for generic cameras
P1, . . . , Pn, the fundamental matrices FG(P1, . . . , Pn) = {F (Pi, Pj) | (i, j) ∈ EG}
uniquely determine the remaining fundamental matrices {F (Pi, Pj) | (i, j) �∈
EG}.

This viewpoint also suggests the idea that, given any graph G, we can
define a “solvable closure” G, as the graph obtained from G by adding edges
corresponding to fundamental matrices that can be deduced generically from
FG(P1, . . . , Pn). Hence, a graph is solvable if and only if its closure is a complete
graph. We will return to this point in Sect. 3.4.

3.1 Simple Criteria

We begin by recalling two necessary conditions for solvability that were shown
in [10]. These provide simple criteria to show that a viewing graph is not solvable.

Proposition 2. [10] If a viewing graph with n > 3 vertices is solvable, then:
(1) All vertices have degree at least 2. (2) No two adjacent vertices have degree
2.

We extend this result with the following necessary condition (which implies
the first point in the previous statement).

Proposition 3. Any solvable graph is 2-connected, i.e., it has the property that
after removing any vertex the graph remains connected.

Proof. Assume that a vertex i disconnects the graph G into two components
G1, G2, and let P1, . . . , Pn be a set of n generic cameras, whose pairwise fun-
damental matrices are represented by the edges of G. If ci = [ci] is the pinhole
of the camera Pi associated with i, then we consider two distinct projective
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transformations of the form T1 = [I4 + α1civT
1 ] and T2 = [I4 + α2civT

2 ]. These
transformations fix the camera Pi. If we apply T1 to all cameras in G1 and T2

to all cameras in G2, while leaving Pi fixed, we obtain a different camera con-
figuration that gives rise to the same set of fundamental matrices as P1, . . . , Pn

for all edges in G. �	
We also recall a result from [11] which will be used in the next section.

Proposition 4. [11] If G1 and G2 are solvable viewing graphs, then the graph
G obtained by identifying two vertices from G1 and with two from G2 is solvable.

Note that if both pairs of vertices in the previous statement are connected by
edges in G1 and G2, then these two edges will automatically be identified in G.

3.2 How Many Fundamental Matrices?

We now ask ourselves what is the minimal number of edges that a graph
must have to be solvable (or, equivalently, how many fundamental matrices are
required to recover a camera configuration). Since a single epipolar relation pro-
vides at most 7 constraints in the (11n−15)-dimensional space camera configura-
tion, we deduce that any solvable graph must have at least e(n) = �(11n−15)/7)�
edges. This fact was previously observed in [11, Theorem 2]. However, compared
to [11], we show here that this bound is tight, i.e., that there always exists a solv-
able graph with e = e(n) edges. Concretely, this means that, for n generic views,
there is always a way of recovering the corresponding camera configuration using
e(n) fundamental matrices.

Theorem 1. The minimum number of edges of a solvable viewing graph with
n ≥ 2 views is

e(n) =
⌈

11n − 15
7

⌉
.

Proof. For n ≤ 9, examples of solvable viewing graphs with e(n) edges are
illustrated Fig. 1. The solvability of these graphs will be shown in Sect. 3.4 (all
but one of these also appear in [10]). In particular, let G0 be a solvable viewing
graph with 9 vertices and 12 edges. Using Proposition 4, we deduce that, starting
from a solvable viewing graph G with n vertices and e edges, we can always
construct a solvable graph G′ with n + 7 vertices and e + 11 edges. The graph
G′ is simply obtained by merging G and G0 as in Proposition 4, using two pairs
of vertices both connected by edges.

Now, for any n > 9, we consider the unique integers q, r such that n = 7q + r
and 2 ≤ r ≤ 8. It is easy to see that

e(n) =
⌈

11n − 15
7

⌉
= 11q +

⌈
11r − 15

7

⌉
.

To obtain a solvable viewing graph with n vertices and e(n) edges, we start
from a solvable graph with r vertices and e(r) edges, and repeat the gluing
construction described above q times. The resulting graph is solvable and has
the desired number of vertices and edges. �	
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Remark 1. It is worth pointing out that, in order to recover projection matrices
for n views, it is quite common to use 2n − 3 fundamental matrices (see for
example [18, Sect. 4.4]). In fact, as shown in [13, Proposition 7], a large class of
solvable viewing graphs can be defined, starting for example from a 3-cycle, by
adding vertices of degree two, one at the time: this always gives a total of 2n−3
edges. For this type of viewing graphs it is possible to recover projection matrices
incrementally, using a pair of fundamental matrices for each camera. In fact, it
is probably quite often erroneously believed that 2n − 3 is the minimal number
of fundamental matrices that are required for multi-view reconstruction. Part of
the confusion may arise from the fact that the “joint image” [8,13,19], which
characterizes multi-view point correspondences in (P2)n, has dimension three
(or codimension 2n − 3). This means means that we expect 2n − 3 conditions to
be necessary to cut out generically the set of image correspondences among n
views. On the other hand, according to Theorem 1, fewer constraints are actually
sufficient to determine camera geometry.1

Some values of e(n) are listed in Table 1 (here d(n) represents the minimal
number of constraints on the fundamental matrices, and will be discussed in the
next section). Note that e(n) < 2n − 3 for all n ≥ 5.

Table 1. The relation between n, e(n), and d(n)

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

e(n) 1 3 5 6 8 9 11 12 14 16 17 19 20 22 23

d(n) 0 3 6 2 5 1 4 0 3 6 2 5 1 4 0

Fig. 1. Examples of minimal solvable viewing graphs for n ≤ 9 views (see Sect. 3.4)

1 This implies however that fewer than 2n− 3 conditions can in fact determine a joint
image in (P2)n, at least “indirectly” through the camera configuration. Mathemati-
cally, this is an interesting phenomenon that could be investigated in the future.
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3.3 Constraints on Fundamental Matrices

Closely related to the solvability of viewing graphs is the problem of describing
compatibility of fundamental matrices. Indeed, given a solvable graph G, it is
not true in general that any set of fundamental matrices can be assigned to the
edges of G, since fundamental matrices must satisfy some feasibility constraints
in order to correspond to an actual camera configuration. For example, it is
well known that the fundamental matrices F12, F23, F31 relating three pairs of
cameras with non-aligned pinholes are compatible if and only if

eT
13F12e23 = eT

21F23e31 = eT
32F31e12 = 0, (5)

where eij = [eij ] is the epipole in image i relative to the camera j [17, Theorem
15.6]. In most practical situations fundamental matrices are estimated separately,
so these constraints need to be taken into account [15]. However, it is sometimes
incorrectly stated that compatibility for any set of fundamental matrices only
arises from triples and equations of the form (5) [11, Theorem 1], [15, Definition
1]. While it is true that for a complete set of

(
n
2

)
fundamental matrices triple-wise

compatibility is sufficient to guarantee global compatibility, for smaller sets of
fundamental matrices other types of constraints will be necessary. For example,
there are many solvable viewing graphs with no three-cycles (e.g., the graph in
Fig. 1 with n = 5), however the fundamental matrices cannot be unconstrained
if 7e(n) > 11n − 15, which always true unless e = 2 modulo 9 (cf. Table 1).

More formally, we can consider the set X of compatible fundamental matrices
between all pairs of n views, so that X ⊂ (P8)N where N =

(
n
2

)
. Since each

compatible N -tuple is associated with a camera configuration, we see that X has
dimension 11n−15. Given a viewing graph G with n views, we write XG ⊂ (P8)e

for the projection of X onto the factors in (P8)N corresponding to the edges of G.
The set XG thus represents compatible fundamental matrices for pairs of views
associated with the edges of G. The following result follows from dimensionality
arguments (see the supplementary material for a complete proof).

Proposition 5. If G is solvable with n vertices, XG has dimension 11n − 15.

If XG has dimension 11n−15, then the fundamental matrices assigned to the
edges of G must satisfy d(n, e) = 7e − 11n + 15 constraints2. This also means
that the minimum number of constraints on the fundamental matrices associated
with a solvable graph is d(n) = d(n, e(n)) (see Table 1).

We now use Proposition 5 to deduce a new necessary condition for solvability.

Theorem 2. Let G be a solvable graph with n vertices and e edges. Then for
any subgraph G′ of G with n′ vertices and e′ edges we must have

d(n′, e′) ≤ d(n, e), (6)

2 This is the codimension of XG in He where H ⊂ P
8 is the determinant hypersurface.
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where d(n, e) = 7e− 11n+15. More generally, if G1, . . . , Gk are subgraphs of G,
each with ni vertices and ei edges, with the property that the edge sets EGi

⊂ EG

are pairwise disjoint, then we must have

k∑
i=1

d(ni, ei) ≤ d(n, e). (7)

Proof. Using the same notation as above, we note that that XG′ is a projection
of XG onto e′ factors of (P8)e: this implies dimXG′ + 7(e − e′) ≥ dim XG, or
7e′ −dim XG′ ≤ 7e−dim XG. Since dimXG′ ≤ 11n′ −15 and dim XG = 11n−15
(because G is solvable), we obtain

7e′ − 11n′ + 15 ≤ 7e′ − dim XG′ ≤ 7e − dim XG = 7e − 11n + 15.

For the second statement, we consider the graph G′ = (
⋃

i VGi
,
⋃

i EGi
). Since

the edges of Gi are disjoint, we have

dim XG′ ≤
k∑

i=1

dim XGi
≤

k∑
i=1

(11ni − 15),

and e′ =
∑k

i ei. The result follows again from 7e′ − dim XG′ ≤ 7e − dim XG. �	

Example 2. In [10], Levi and Werman observe that all viewing graphs of the form
shown in Fig. 2 are not solvable. This can be easily deduced from Theorem 2.
Indeed, for a graph G of this form, the subgraphs G1, G2, G3, G4 have disjoint
edges, however we have (using the same notation as in the proof of Theorem 2)

4∑
i=1

d(ni, ei) = d(n, e) − 4 × 11 + 3 × 15 > d(n, e).

According to Theorem 2 this means that G is not solvable. ♦

G1

G2

G3

G4

Fig. 2. A viewing graph of this form (where G1, G2, G3, G4 represent arbitrary sub-
graphs) is not solvable
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3.4 Constructive Approach for Verifying Solvability

Until now we have mainly discussed necessary conditions for solvability, which
can be used to show that a given graph is not solvable. We next introduce a
general strategy for proving that a graph is solvable. This method is not always
guaranteed to work, but in practice it gives sufficient conditions for most of the
graphs we tested (cf. Sect. 5).

Recall from the beginning of this section that we introduced the “viewing
closure” G of G as the graph obtained by adding to G all edges corresponding to
fundamental matrices that can be deduced from FG(P1, . . . , Pn). Our approach
consists of a series of “moves” which describe valid ways to add new edges to a
viewing graph. For this it is convenient to introduce a new type of edge in the
graph, which keeps track of the fact that partial information about a fundamental
matrix is available. More precisely:

– A solid (undirected) edge between vertices i and j means that the fundamental
matrix between the views i and j is fixed (as before).

– A directed dashed edge (for short, a dashed arrow) between vertices i and j
means that the i-th epipole in the image j is fixed.

As these definitions suggest, a solid edge also counts as a dashed double-
arrow, but the converse is not true. We next introduce three basic “moves”
(cf. Fig. 3).

(I) If there are solid edges defining a four-cycle with one diagonal, draw the
other diagonal.

(II) If there are dashed arrows 1 → 2, 1 → 3, and solid edges 2 − 4 and 3 − 4,
draw a dashed arrow 1 → 4.

(III) If there are double dashed arrows 1 ↔ 2, together with three pairs of
dashed arrows i → 1, i → 2 for i = 3, 4, 5, make the arrow between 1 and
2 a solid (undirected) edge.

Fig. 3. Three moves (left: I, center: II, right: III) that can be used to prove solvability

Theorem 3. Let G be a viewing graph. If applying the three moves described
above iteratively to G we obtain a complete graph, then G is solvable.

Proof. For each of the three moves we need to show that the new edges con-
tain information about the unknown fundamental matrices that can actually be
deduced from FG(P1, . . . , Pn).
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Move I: The second diagonal of the square is deducible from the other edges
because the square with one diagonal is a solvable graph (this is a simple
consequence of Proposition 4).

Move II : Assume that e21 = P2c1 and e32 = P3c2 are fixed epipoles in images
2 and 3, and that the fundamental matrices F24 = F (P2, P4), F34 = F (P3, P4)
are also fixed. If c1, c2, c4 are not aligned, we can use F24 to “transfer” the
point e21, and obtain a line l41 in image 4 that contains epipole e41. Simi-
larly, if c1, c3, c4 are not aligned, we obtain another line m41 using the same
procedure with F34 and e31. If the pinholes c1, c2, c3, c4 are not all coplanar,
the lines l41 and m41 will be distinct, and their point of intersection will be
e41. This implies that we can draw a dashed arrow from 1 to 4.

Move III : Assume that the epipoles e21 and e12 are fixed, and that the images
of three other pinholes c3, c4, c5 are fixed in both images 1 and 2. If the
planes c1, c2, ci for i = 3, 4, 5 are distinct, then the images of c3, c4, c5 give
three correspondences that fix the epipolar line homography. This completely
determines F12, and we can draw a solid edge between 1 and 2. �	

In practice, the three moves can be applied cyclically until no new edges can
be added (it is also easy to argue the order is irrelevant, because we are simply
annotating information that is always deducible from the graph). Finally, we note
that all three moves are constructive and linear, meaning they actually provide
a practical strategy for computing all fundamental matrices: it is enough to
transfer epipoles appropriately, and use them to impose linear conditions on the
unknown fundamental matrices.

Example 3. Using Theorem 3, we can show that all graphs from Fig. 1 are solv-
able. Figure 4 illustrates this explicitly for two cases (n = 6 and n = 8). ♦

II (2x) III (2x) I (6x)

II (6x) III (3x) I (9x)

Fig. 4. Two applications of Theorem 3 to prove that viewing graphs are solvable

4 Algebraic Tests for Solvability and Finite Solvability

Given a viewing graph G, it is possible to write down a set of algebraic conditions
that will in principle always determine whether G is solvable. One way to do
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this is by characterizing the set of projective transformations of P
3 that can

be applied to all cameras without affecting any of the fundamental matrices
represented by the edges of the viewing graph. More precisely, since every pair
of vertices connected by an edge represents a projectively rigid pair of cameras,
we assign a matrix gλ in GL(4,R) to each edge λ of the graph (so gλ describes
a projective transformation applied to a pair of cameras). We then impose that
matrices on adjacent edges act compatibly on the shared vertex/camera. If the
edges λ and λ′ share a vertex i, then from (1) we see that this compatibility can
be written as

gλg−1
λ′ = αI4 + civT , (8)

where α is an arbitrary (nonzero) constant and v is an arbitrary vector. Thus,
if G is a viewing graph with e edges and c1, . . . , cn are a set of pinholes, we
consider the set of all compatible assignments of matrices:

TG(c1, . . . , cn) = {(gλ, λ ∈ EG) | (8) holds for all adjacent edges in G} ⊂ GL(4,R)e.

If G is solvable, then for general c1, . . . , cn the set TG(c1, . . . , cn) will consist of
e-tuples of matrices that are all scalar multiples of each other. This in fact means
that the only way to act on all cameras without affecting the fixed fundamental
matrices is to apply a single projective transformation.

By substituting random pinholes in (8), we can use these equations for
TG(c1, . . . , cn) as an algebraic test for verifying whether a viewing graph is
solvable. This approach however is computationally very challenging, since it
requires solving a non-linear algebraic system with a large number of variables.
On the other hand, if we are only interested in the dimension of TG(c1, . . . , cn),
then we can use a much simpler strategy: noting that TG(c1, . . . , cn) may be
viewed as an algebraic group (it is a subgroup of GL(4,R)e), it is sufficient to
compute the dimension of its tangent space at any point, and in particular at
the identity (i.e., the product of identity matrices).3 An explicit representation
of the tangent space of TG(c1, . . . , cn) is provided by the following result (see the
supplementary material for a proof).

Proposition 6. The tangent space of TG(c1, . . . , cn) at the identity can be rep-
resented as the space of e-tuple of matrices (hλ, λ ∈ EG) where each hλ is in
R

4×4 (not necessary invertible), and with compatibility conditions of the form

hλ − hλ′ = αI4 + civT , (9)

where α ∈ R \ {0} and v ∈ R
4 are arbitrary, and λ and λ′ share the vertex i.

When the pinholes have been fixed, the compatibility constraints (9) can
be expressed as linear equations in the entries of the matrices hλ. These equa-
tions are obtained by eliminating the variables α and v from (9). The resulting

3 Here we actually need that TG(c1, . . . , cn) is smooth: this follows from a technical
result, which states that an algebraic group (more properly a “group scheme”) over
a field of characteristic zero is always smooth [20, Sect. 11].
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conditions in terms of hλ,hλ′ , ci are rather simple, and listed explicitly in the
supplementary material. Using this approach, the dimension of TG(c1, . . . , cn) is
easy to determine: it is enough to fix the pinholes randomly, and compute the
dimension of the induced linear system.

When TG(c1, . . . , cn) has dimension d = 15+e (which accounts for the group
of projective transformations, and scale factors for each matrix gλ), we deduce
that there are at most a finite number of projectively inequivalent ways in which
we can act on all the cameras without affecting the fixed fundamental matri-
ces. In other words, the fundamental matrices associated with the edges of G
determine at most a finite set of camera configurations (rather than a single
configuration, which is our definition for solvability). When this happens, we
say that G is finite solvable. On the other hand, we were not able to find an
example of a finite solvable graph that is provably not solvable, nor to find a
proof that “finite solvability” implies “solvability”. To our knowledge, whether a
set of fundamental matrices can characterize a finite number of configurations,
but more than a single one, is a question that has never been addressed.

Open Question. Is it possible for a viewing graph to be finite solvable without
being solvable?

Our experiments show that this behavior does not occur for a small number
of vertices, but we see no reason why this should be true for larger graphs. This
is certainly an important issue that we hope to investigate in the future.

5 Experiments and Examples

We have implemented and tested all of the discussed criteria and methods using
the free mathematical software SageMath [21].4 We then analyzed solvability
for all minimal viewing graphs with n ≤ 9 vertices and e(n) = �(11n − 15)/7�
edges. The results are summarized in Table 2. For every pair (n, e(n)), we list the
number of all non-isomorphic connected graphs of that size (“connected”), the
number of graphs that satisfy the necessary condition from Theorem 2 (“candi-
dates”), the number of those that satisfy the sufficient condition from Theorem 3
(“solvable with moves”), and the number of graphs that are finite solvable (“finite
solvable”), using the linear method from Sect. 4. We see that Theorems 2 and 3
allow us to recover all minimal solvable graphs for n ≤ 7, since candidate graphs
are always solvable with moves. On the other hand, for n = 8, and particularly
for the unconstrained case n = 9, there are some graphs that we could not
classify with those methods (although finite solvability was easy to verify in all
cases). For the undecided graphs, we were sometimes able to prove solvability
with the general algebraic method from Sect. 4, or using other arguments. The
following examples present a few interesting cases.

Example 4. The graph shown in Fig. 5 (left) is one of the five cases with n = 8,
e = 11 that are “candidates” but are not “solvable with moves”. However, we
4 Our code is available at https://github.com/mtrager/viewing-graphs.

https://github.com/mtrager/viewing-graphs


348 M. Trager et al.

Table 2. Solvability of minimal viewing graphs using our methods

(n, e(n)) (3,3) (4,5) (5,6) (6,8) (7,9) (8,11) (9,12)

Connected 1 1 5 22 107 814 4495

Candidates 1 1 1 4 3 36 28

Solvable with moves 1 1 1 4 3 31 5

Finite solvable 1 1 1 4 3 36 27

can show that this graph is actually solvable by arguing that the image of the
pinhole 1 in the view 7 is fixed, even if this is not a consequence of the moves of
Theorem 3 (this is represented by the gray dashed arrow in the figure). To prove
this fact, one needs to keep track of more information, and record also when an
epipole is constrained to a line (rather than only when an epipole is fixed, which
is the purpose of dashed edges).5 After drawing the dashed arrow from 1 to 7,
solvability can be shown using the moves from Theorem 3. ♦

Example 5. The graph shown in Fig. 5 (center) is the only viewing graph with
n = 9 and e = 12 that is “candidate” but is not “finite solvable”. The fact
that it is not finite solvable can also deduced without computations. Indeed,
any finite solvable viewing graph of this size cannot impose any constraints on
the fundamental matrices associated with its edges (this is because d(9, 12) =
7×12−11×9+15 = 0). However, the image of the pinhole 7 in the view 2 is over-
constrained, because we can draw a dashed arrow 7 → 2 using move II for two
distinct four-cycles ((7, 1, 2, 5) and (7, 3, 2, 5)). This implies that the fundamental
matrices associated with the edges of the graph cannot be arbitrary. ♦

1 2

34

5 6

7

8

1 2 3

456

7

89

Fig. 5. The graphs described in Examples 4, 5 and 6

Example 6. The graph shown in Fig. 5 (right) is not “solvable with moves”, how-
ever one can show that it is solvable: indeed, the general algebraic compatibility
equations from Sect. 4 are in this case simple and can be solved explicitly (see
5 This information can be taken into account by defining a new type of edge together

with additional moves. We did not do this in Theorem 3 because this type of edge
is never necessary for smaller graphs.
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the supplementary material for the computations). The fundamental matrices
associated with the edges of the graph are unconstrained, so 12 arbitrary fun-
damental matrices determine a unique configuration of 9 cameras. ♦

6 Conclusions

We have studied the problem of solvability of viewing graphs, presenting a series
of new theoretical results that can be applied to determine whether a graph is
solvable. We have also pointed out some open questions (particularly, the relation
between finite solvability and solvability, discussed in Sect. 4), and we hope that
this paper can lead to further work on these issues.

Our main focus here was to understand whether the camera-estimation prob-
lem is well-posed, and we did not directly address the task of determining the
configuration computationally. Properly recovering a global camera configura-
tion that is consistent with local measurements is challenging, and is arguably
the main obstacle for any structure-from-motion algorithm. For this reason, we
believe that a complete understanding of the algebraic constraints that charac-
terize the compatibility of fundamental matrices would be very useful. This is an
issue that has not been considered much in classical multi-view geometry, and
is very closely related to the topic of this paper. We plan to investigate it next.
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9. Heyden, A., Åström, K.: Algebraic properties of multilinear constraints. Math.
Methods Appl. Sci. 20(13), 1135–1162 (1997)



350 M. Trager et al.

10. Levi, N., Werman, M.: The viewing graph. In: Proceedings of the 2003 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp.
I-I. IEEE (2003)

11. Rudi, A., Pizzoli, M., Pirri, F.: Linear solvability in the viewing graph. In: Kimmel,
R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6494, pp. 369–381.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19318-7 29

12. Snavely, N., Seitz, S., Szeliski, R.: Photo tourism: exploring image collections in
3D. In: SIGGRAPH (2006)

13. Trager, M., Hebert, M., Ponce, J.: The joint image handbook. In: Proceedings of
the IEEE International Conference on Computer Vision, pp. 909–917 (2015)

14. Ozyesil, O., Singer, A.: Robust camera location estimation by convex program-
ming. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2674–2683 (2015)

15. Sweeney, C., Sattler, T., Hollerer, T., Turk, M., Pollefeys, M.: Optimizing the
viewing graph for structure-from-motion. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 801–809 (2015)

16. Sinha, S.N., Pollefeys, M.: Camera network calibration and synchronization from
Silhouettes in archived video. Int. J. Comput. Vis. 87(3), 266–283 (2010)

17. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge
University Press, Cambridge (2003)

18. Heyden, A.: Tensorial properties of multiple view constraints. Math. Methods Appl.
Sci. 23(2), 169–202 (2000)

19. Aholt, C., Sturmfels, B., Thomas, R.: A Hilbert scheme in computer vision. Can.
J. Math. 65(5), 961–988 (2013)

20. Mumford, D.: Abelian Varieties. Studies in Mathematics. Hindustan Book Agency,
Gurgaon (2008)

21. Developers, T.S.: SageMath, the sage mathematics software system (Version 8.0.0)
(2017). http://www.sagemath.org

https://doi.org/10.1007/978-3-642-19318-7_29
http://www.sagemath.org

	On the Solvability of Viewing Graphs
	1 Introduction
	2 Background
	2.1 Camera Configurations and Epipolar Geometry

	3 The Viewing Graph
	3.1 Simple Criteria
	3.2 How Many Fundamental Matrices?
	3.3 Constraints on Fundamental Matrices
	3.4 Constructive Approach for Verifying Solvability

	4 Algebraic Tests for Solvability and Finite Solvability
	5 Experiments and Examples
	6 Conclusions
	References




