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Abstract. Noise is an inherent issue of low-light image capture, which
is worsened on mobile devices due to their narrow apertures and small
sensors. One strategy for mitigating noise in low-light situations is to
increase the shutter time, allowing each photosite to integrate more light
and decrease noise variance. However, there are two downsides of long
exposures: (a) bright regions can exceed the sensor range, and (b) camera
and scene motion will cause blur. Another way of gathering more light is
to capture multiple short (thus noisy) frames in a burst and intelligently
integrate the content, thus avoiding the above downsides. In this paper,
we use the burst-capture strategy and implement the intelligent integra-
tion via a recurrent fully convolutional deep neural net (CNN). We build
our novel, multi-frame architecture to be a simple addition to any single
frame denoising model. The resulting architecture denoises all frames in
a sequence of arbitrary length. We show that it achieves state of the
art denoising results on our burst dataset, improving on the best pub-
lished multi-frame techniques, such as VBM4D and FlexISP. Finally, we
explore other applications of multi-frame image enhancement and show
that our CNN architecture generalizes well to image super-resolution.

1 Introduction

Noise reduction is one of the most important problems to solve in the design
of an imaging pipeline. The most straight-forward solution is to collect as much
light as possible when taking a photograph. This can be addressed in camera
hardware through the use of a large aperture lens, sensors with large photosites,
and high quality A/D conversion. However, relative to larger standalone cameras,
e.g. a DSLR, modern smartphone cameras have compromised on each of these
hardware elements. This makes noise much more of a problem in smartphone
capture.

Another way to collect more light is to use a longer shutter time, allowing
each photosite on the sensor to integrate light over a longer period of time. This
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Fig. 1. Denoising on a real raw burst from [19]. Our method is able to perform
high levels of denoising on low-light bursts while maintaining details.

is commonly done by placing the camera on a tripod. The tripod is necessary as
any motion of the camera will cause the collected light to blur across multiple
photosites. This technique is limited though. First, any moving objects in the
scene and residual camera motion will cause blur in the resulting photo. Second,
the shutter time can only be set for as long as the brightest objects in the scene
do not saturate the electron collecting capacity of a photosite. This means that
for high dynamic range scenes, the darkest regions of the image may still exhibit
significant noise while the brightest ones might staturate.

In our method we also collect light over a longer period of time, by capturing
a burst of photos. Burst photography addresses many of the issues above (a) it
is available on inexpensive hardware, (b) it can capture moving subjects, and (c)
it is less likely to suffer from blown-out highlights. In using a burst we make the
design choice of leveraging a computational process to integrate light instead of
a hardware process, such as in [19,29]. In other words, we turn to computational
photography.

Our computational process runs in several steps. First, the burst is stabilized
by finding a homography for each frame that geometrically registers it to a
common reference. Second, we employ a fully convolutional deep neural network
(CNN) to denoise each frame individually. Third, we extend the CNN with a
parallel recurrent network that integrates the information of all frames in the
burst.

The paper presents our work as follows. In Sect. 2 we review previous single-
frame and multi-frame denoising techniques. We also look at super-resolution,
which can leverage multi-frame information. In Sect. 3 we describe our recur-
rent network in detail and discuss training. In order to compare against pre-
vious work, the network is trained on simulated Gaussian noise. We also show
that our solution works well when trained on Poisson distributed noise which
is typical of a real-world imaging pipeline [18]. In Sect. 4, we show significant
increase in reconstruction quality on burst sequences in comparison to state of
the art single-frame denoising and performance on par or better than recent
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state of the art multi-frame denoising methods. In addition we demonstrate that
burst capture coupled with our recurrent network architecture generalizes well
to super-resolution.

In summary our main contributions are:

– We introduce a recurrent architecture which is a simple yet effective extension
to single-frame denoising models,

– Demonstrate that bursts provide a large improvement over the best deep
learning based single-frame denoising techniques,

– Show that our model achieves performance on par with or better than recent
state of the art multi-frame denoising methods, and

– Demonstrate that our recurrent architecture generalizes well by applying it
to super-resolution.

2 Related Work

This work addresses a variety of inverse problems, all of which can be formulated
as consisting of (1) a target “restored” image, (2) a temporally-ordered set or
“burst” of images, each of which is a corrupted observation of the target image,
and (3) a function mapping the burst of images to the restored target. Such
tasks include denoising and super-resolution. Our goal is to craft this function,
either through domain knowledge or through a data-driven approach, to solve
these multi-image restoration problems.

Denoising

Data-driven single-image denoising research dates back to work that leverages
block-level statistics within a single image. One of the earliest works of this
nature is Non-Local Means [3], a method for taking a weighted average of blocks
within an image based on similarity to a reference block. Dabov, et al. [9]
extend this concept of block-level filtering with a novel 3D filtering formulation.
This algorithm, BM3D, is the de facto method by which all other single-image
methods are compared to today.

Learning-based methods have proliferated in the last few years. These meth-
ods often make use of neural networks that are purely feed-forward [1,4,15,
25,43,48,49], recurrent [44], or a hybrid of the two [7]. Methods such as Field
of Experts [38] have been shown to be successful in modeling natural image
statistics for tasks such as denoising and inpainting with contrastive divergence.
Moreover, related tasks such as demosaicing and denoising have shown to bene-
fit from joint formulations when posed in a learning framework [15]. The recent
work of [5] applied a recurrent architecture in the context of denoising ray-traced
sequenced, and finally [6] used a simple fully connected RNN for video denois-
ing which, while failing to beat VBM4D [32,33], proved the feasibility of using
RNNs for video denoising.
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Multi-image variants of denoising methods exist and often focus on the best
ways to align and combine images. Tico [40] returns to a block-based paradigm,
but this time, blocks “within” and “across” images in a burst can be used to pro-
duce a denoised estimate. VBM3D [8] and VBM4D [32,33] provide extensions on
top of the existing BM3D framework. Liu, et al. [29] showed how similar denois-
ing performance in terms of PSNR could be obtained in one tenth the time of
VBM3D and one one-hundredth the time of VBM4D using a novel “homography
flow” alignment scheme along with a “consistent pixel” compositing operator.
Systems such as FlexISP [22] and ProxImaL [21] offer end-to-end formulations of
the entire image processing pipeline, including demosaicing, alignment, deblur-
ring, etc., which can be solved jointly through efficient optimization.

We in turn also make use of a deep model and base our CNN architecture
on current state of the art single-frame methods [27,36,48].

Super-Resolution

Super-resolution is the task of taking one or more images of a fixed resolution
as input and producing a fused or hallucinated image of higher resolution as
output.

Nasrollahi, et al. [35] offers a comprehensive survey of single-image super-
resolution methods and Yang, et al. [45] offers a benchmark and evaluation
of several methods. Glasner, et al. [16] show that single images can be super-
resolved without any need of an external database or prior by exploiting block-
level statistics “within” the single image. Other methods make use of sparse
image statistics [46]. Borman, et al. offers a survey of multi-image methods [2].
Farsiu, et al. [13] offers a fast and robust method for solving the multi-image
super-resolution problem. More recently convolutional networks have shown very
good results in single image super-resolution with the works of Dong et al. [11]
and the state of the art Ledig et al. [27].

Our single-frame architecture takes inspiration by recent deep super-
resolution models such as [27].

2.1 Neural Architectures

It is worthwhile taking note that while image restoration approaches have often
been learning-based in recent years, there’s also great diversity in how those
learning problems are modeled. In particular, neural network-based approaches
have experienced a gradual progression in architectural sophistication over time.

In the work of Dong, et al. [10], a single, feed-forward CNN is used to super-
resolve an input image. This is a natural design as it leveraged what was then
new advancements in discriminatively-trained neural networks designed for clas-
sification and applied them to a regression task. The next step in architecture
evolution was to use Recurrent Neural Networks, or RNNs, in place of the convo-
lutional layers of the previous design. The use of one or more RNNs in a network
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design can both be used to increase the effective depth and thus receptive field
in a single-image network [44] or to integrate observations across many frames
in a multi-image network. Our work makes use of this latter principle.

While the introduction of RNNs led to network architectures with more effec-
tive depth and thus a larger receptive field with more context, the success of skip
connections in classification networks [20] and segmentation networks [37,39]
motivated their use in restoration networks. The work of Remez, et al. [36]
illustrates this principle by computing additive noise predictions from each level
of the network, which then sum to form the final noise prediction.

We also make use of this concept, but rather than use skip connections
directly, we extract activations from each level of our network which are then fed
into corresponding RNNs for integration across all frames of a burst sequence.

3 Method

In this section we first identify a number of interesting goals we would like
a multi-frame architecture to meet and then describe our method and how it
achieves such goals.

3.1 Goals

Our goal is to derive a method which, given a sequence of noisy images pro-
duces a denoised sequence. We identified desirable properties, that a multi-frame
denoising technique should satisfy:

1. Work for single-frame denoising. A corollary to the first criterion is that
our method should be competitive for the single-frame case.

2. Generalize to any number of frames. A single model should produce
competitive results for any number of frames that it is given.

3. Denoise the entire sequence. Rather than simply denoise a single reference
frame, as is the goal in most prior work, we aim to denoise the entire sequence,
putting our goal closer to video denoising.

4. Be robust to motion. Most real-world burst capture scenarios will exhibit
both camera and scene motion.

5. Be temporally coherent. Denoising the entire sequence requires that we
do not introduce flickering in the result.

6. Generalize to a variety of image restoration tasks. As discussed in
Sect. 2, tasks such as super-resolution can benefit from multi-frame methods,
albeit, trained on different data.

In the remainder of this section we will first describe a single-frame denoising
model that produces competitive results with current state of the art models.
Then we will discuss how we extend this model to accommodate an arbitrary
number of frames for multi-frame denoising and how it meets each of our goals.
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3.2 Single Frame Denoising

We treat image denoising as a structured prediction problem, where the network
is tasked with regressing a pixel-aligned denoised image Ĩs = fs(N, θs) from noisy
image N , given the model parameters θs. Following [50] we train the network by
minimizing the L1 distance between the predicted output and the ground-truth
target image, I.

ESFD = |I − fs(N, θs)| (1)

To be competitive in the single-frame denoising scenario, and to meet our 1st

goal, we take inspiration from the state of the art to derive an initial network
architecture. Several existing architectures [27,36,48] consist of the same base
design: a fully convolutional architecture consisting of L layers with C channels
each.

We follow suit and choose this simple architecture to be our single frame
denoising (SFD) baseline, with L = 8, C = 64, 3×3 convolutions and ReLU [31]
activation functions, except on the last layer.

3.3 Multi-frame Denoising

Following goals 1-3, our model should be competitive in the single-frame case
while being able to denoise the entire input sequence. In other words, using a
set of noisy images as input, forming the sequence {N t}, we want to regress
a denoised version of each noisy frame, Ĩtm = f t

m({N t}, θm), given the model
parameters θm. Formally, our complete training objective is:

E =
F∑

t

Et
SFD + Et

MFD

=
F∑

t

|It − fs(N t, θs)| + |It − f t
m({N t}, θm)|

(2)

A natural approach, which is already popular in the natural language and
audio processing literature [47], is to process temporal data with recurrent neu-
ral network (RNN) modules [23]. RNNs operate on sequences and maintain an
internal state which is combined with the input at each time step. As can be seen
in Fig. 2, our model makes use of recurrent connections to aggregate activations
produced by our SFD network for each frame. This satisfies our first goal as it
allows for an arbitrary input sequence length.

Unlike [5,42] which use a single-track network design, we use a two track
network architecture with the top track dedicated to SFD and the bottom track
dedicated to fusing those results into a final prediction for MFD. This two
track design decouples decoupling per-frame feature extraction from multi-frame
aggregation, enabling the possibility for pre-training a network rapidly using only
single-frame data. In practice, we found that this pre-training not only acceler-
ates the learning process, but also produces significantly better results in terms
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Fig. 2. Global recurrent architecture (left). Our model takes as input F noisy
frames N t and predicts F clean frames Ĩt

m. Local recurrent architecture (right).
The top part of our model is a single-frame denoiser (SFD, in light blue): it takes
as input a noisy image N t and regresses a clean image Ĩt

s, its features St
i are fed to

the multi-frame denoiser (MFD, in darker blue) which also makes use of recurrent
connections from the previous state (dotted lines) to output a clean image Ĩt

m.

of PSNR than when we train the entire MFD from scratch. The core intuition is
that by first learning good features for SFD, we put the network in a good state
for learning how to aggregate those features across observations.

It is also important to note that the RNNs are connected in such a way as to
permit the aggregation of features in several different ways. Temporal connec-
tions within the RNNs help aggregate information “across” frames, but lateral
connections “within” the MFD track permit the aggregation of information at
different physical scales and at different levels of abstraction.

4 Implementation and Results

We evaluate our method with the goals from Sect. 3 in mind, and examine: single-
image denoising (goal 1), multi-frame denoising (goals 2–5), and multi-frame
super-resolution (goal 6). In Sect. 4.5 we compare different single-frame denoising
approaches, showing that quality is plateauing despite the use of deep models
and that our simple single-frame denoiser is competitive with state-of-the-art. In
Sect. 4.6 we show that our method significantly outperforms the reference state
of the art video denoising method VBM4D [32]. Finally in Sect. 4.7 we compare
our method to the state of the art burst denoising methods HDR+ [19], FlexISP
[22] and ProximaL [21] on the FlexISP dataset.

4.1 Data

We trained all the networks in our evaluation using a dataset consisting of Apple
Live Photos. Live Photos are burst sequences captured by Apple iPhone 6S and
above1. This dataset is very representative as it captures what mobile phone

1 https://support.apple.com/en-us/HT207310.

https://support.apple.com/en-us/HT207310
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users often photograph, and exhibits a wide range of scenes and motions. Approx-
imately 73k public sequences were scraped from a social media website with a
resolution of 360×480. We apply a burst stabilizer to each sequence, resulting in
approximately 54.5k sequences successfully stabilized. In Sect. 4.2 we describe
our stabilization procedure in more detail. 50k sequences were used for training
with an additional 3.5k reserved for validation and 1k reserved for testing.

4.2 Stabilization

We implemented burst sequence stabilization using OpenCV2. In particular,
we use a Lucas-Kanade tracker [30] to find correspondences between successive
frames and then a rotation-only motion model and a static focal length guess to
arrive at a homography for each frame. We warp all frames of a sequence back
into a reference frame’s pose then crop and scale the sequence to maintain the
original size and aspect ratio, but with the region of interest contained entirely
within the valid regions of the warp. The stabilized sequences still exhibit some
residual motion, either through moving objects or people, or through camera
motion which cannot be represented by a homography. This residual motion
forces the network to adapt to non static scenes. Stabilization and training on
any residual motion makes our system robust to motion, achieving our 4th goal.
As we show in supplementary material, stabilization improves the final results,
but is not a requirement.

4.3 Training Details

We implemented the neural network from Sect. 3 using the Caffe2 framework3.
Each model was trained using 4 Tesla M40 GPUs. As described in Sect. 3, train-
ing took place in two stages. First a single-frame model was trained. This model
used a batch size of 128 and was trained for 500 epochs in approximately 5
hours. Using this single-frame model as initialization for the multi-frame (8-
frame) model, we continue training with a batch size of 32 to accommodate the
increased size of the multi-frame model. This second stage was trained for 125
epochs in approximately 20 h.

We used Adam [26] with a learning rate of 10−4 which decays to zero following
a square root law. We trained on 64 × 64 crops with random flips. Finally, we
train the multi-frame model using back-propagation through time [41].

4.4 Noise Modelling

In order to make comparison possible with previous methods, such as VBM4D,
we first evaluate our architecture using additive white Gaussian noise with σ =
15, 25, 50 and 75. Additionally, to train a denoiser for real burst sequences, we
implement a simulated camera processing pipeline. First real world sensor noise
2 https://opencv.org/.
3 https://caffe2.ai/.

https://opencv.org/
https://caffe2.ai/
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is generated following [14]. Separate models are trained using Poisson noise,
labelled a in [14], with intensity ranging from 0.001 to 0.01. We simulate a
Bayer mosaic on a linearized version of our training data and add the Poisson
noise to this. Next we reconstruct an RGB image using bilinear interpolation
followed by conversion to sRGB and clipping. In both Gaussian and Poisson
cases we add synthetic noise before stabilization. While it is possible to obtain a
single ”blind” model by training on multiple noise levels at once [49], it typically
results in a small loss in accuracy. We thus follow the protocol established by
[36,48] and train a separate model for each noise level, without loss of generality.

Table 1. Single frame additive white Gaussian noise denoising comparison
on BSD68 (PSNR). Our baseline SFD models match BM3D at 8 layers and get close
to both DnCNN and DenoiseNet at 20 layers.

σ = 15 σ = 25 σ = 50 σ = 75

BM3D 31.10 28.57 25.62 24.20

TNRD 31.41 28.91 25.95 -

DenoiseNet [36] 31.44 29.04 26.06 24.61

DnCNN [48] 31.73 29.23 26.23 -

Ours single-frame 8L 31.15 28.63 25.65 24.11

Ours single-frame 20L 31.29 28.82 26.02 24.43

4.5 Single Frame Denoising

Here, we compare our baseline single frame denoiser with current state of the
art methods on additive white Gaussian noise. This shows that single-frame
denoising has reached a point of diminishing returns, where significant model
complexity is needed improve quality by more than ∼0.2 dB.

We compare our own SFD, which is composed of 8 layers, with two 20 layer
networks: DenoiseNet (2017) [36] and DnCNN (2017) [48]. For the sake of com-
parison, we also include a 20 layer version of our SFD. All models were trained
for 2000 epochs on 8000 images from the PASCAL VOC2010 [12] using the train-
ing split from [36]. We also compare with traditional approaches, such as BM3D
(2009) [9] and TNRD (2015) [7].

All models were tested on BSD68 [38], a set of 68 natural images from the
Berkeley Segmentation Dataset [34]. In Table 1, we can see diminishing returns
in single frame denoising PSNR over the years despite the use of deep neural
networks, which confirms what Levin, et al. describe in [28]. We can see that our
simpler SFD 20 layers model only slightly underperforms both DenoiseNet and
DnCNN by ∼0.2 dB. However, as we show in the following section, the PSNR
gains brought by multi-frame processing vastly outshine fractional single frame
PSNR improvements.
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Fig. 3. Effect of pre-training on multi-frame denoising with Gaussian noise
σ = 50. Each color corresponds to the average PSNR of the frames in a sequence: 1st

(red), 2nd (blue), 3rd (purple) 4th (grey), 5th (yellow) and 6th (pink). As we can see the
pre-trained model shows a constant lead of 0.5dB over the model trained from scratch,
and reaches a stable state much quicker.

4.6 Burst Denoising

We evaluate our method on a held-out test set of Live Photos with synthetic
additive white Gaussian noise added. In Table 3, we compare our architecture
with single frame models as well as the multi-frame method VBM4D [32,33]. We
show qualitative results with σ = 50 in Fig. 5.

Table 2. Ablation study on the Live Photos test sequences with additive
white Gaussian Noise of σ = 50. All models were trained on 8 frame sequences.
C2F, C4F and C8F represent Concat models which were trained on respectively 2,
4, and 8 concatenated frames as input. Ours nostab was trained and tested on the
unstabilized sequences.

C2F C4F C8F Ours 4L Ours 8L Ours 12L Ours 16L Ours 20L Ours
nostab

PSNR 30.89 31.83 32.15 33.01 33.62 33.80 33.35 33.48 32.60

Ablation Study. We now evaluate our architecture choices, where we compare
our full model, with 8 layers and trained on sequences of 8 frames with other
variants.

Concat. We first compare our method with a naive multi-frame denoising app-
roach, dubbed Concat, where the input consists of n concatenated frames to
a single pass denoiser. We evaluated this architecture with L = 20 as well as
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n = 2, 4 and 8. As we can see in Table 2 this model performs significantly worse
than our model.

Number of Layers. We also evaluate the impact of the depth of the network
by experimenting with N = 4, 8, 12, 16 and 20. As can be seen in Fig. 2, the 16
and 20 layers network fail to surpass both the 8 and 12 layers after 125 epochs
of training, likely because training becomes unstable with increased depth and
parameter count [20]. While the 12 layers network shows a marginal 0.18 dB
increase over the 8 layer model, we decided to go with the latter as we did not
think that the modest increase in PSNR was worth the 50% increase in both
memory and computation time.

Fig. 4. (a) Impact of the length F of training sequences at test time. We test
3 models which were trained with F = 2, 4 and 8 on 16 frames-long test sequences. (b)
Effect of frame ordering at test time. We can see the burn-in period on the first
pass (red) as well as on the repeat pass. Feeding the sequence forward, then backward,
mostly alleviates this problem.

Length of Training Sequences. Perhaps the most surprising result we encoun-
tered during training our recurrent model, was the importance of the number
of frames in the training sequences. In Fig. 4a, we show that models trained on
sequences of both 2 and 4 frames fail to generalize beyond their training length
sequence. Only models trained with 8 frames were able to generalize to longer
sequences at test time, and as we can see still denoise beyond 8 frames.

Pre-training. One of the main advantages of using a two-track network is that
we can first train the SFD track independently. As just mentioned, a sequence
length of 8 is required to ensure generalization to longer sequences, which makes
the training of the full model much slower than training the single-frame pass.
As we show in Fig. 3, pre-training makes training the MFD significantly faster.

Frame Ordering. Due to its recurrent nature, our network exhibits a period
of burn-in, where the first frames are being denoised to a lesser extent than the
later ones. In order to denoise an entire sequence to a high quality level, we
explored different options for frame ordering. As we show in Fig. 4b, by feeding
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the sequence twice to the network, we are able to achieve a comparable denoising
quality on all frames thus obtaining a higher average PSNR. We propose two
variants, either repeat the sequence in the same order or reverse it the second
time (named forward-backward). As we show in Fig. 4b, the forward-backward
schedule does not suffer from burn-in and remains temporally coherenent, meet-
ing our 5th goal. We use forward-backward for all our experiments.

Fig. 5. Multi-frame Gaussian denoising on stabilized Live Photo test data
with σ = 50. We can see that our MFD produces a significantly sharper image than
both our SFD and VBM4D.

4.7 Existing Datasets

Here we evaluate our method on existing datasets, showing generization and
allowing us to compare with other state-of-the-art denoising approaches. In
Figs. 1 and 7 we demonstrate that our method is capable of denoising real
sequences. This evaluation was performed on real noisy bursts from HDR+ [19].
Please see our supplementary material for more results.

In Fig. 6 we show the results of our method on the FlexISP dataset, compar-
ing it with FlexISP, HDR+ and ProximaL on the FlexISP. The dataset consists
of 4 noisy sequences: 2 synthetic (flickr doll and kodak fence) and 2 real
ones (darkpaintcans and livingroom). The synthetic sequences were gener-
ated by randomly warping the input images and introducing: (for flickr doll)
additive and multiplicative white Gaussian noise with σ = 25.5, and (for kodak
fence) additive with Gaussian noise of σ = 12 while simulating a Bayer filter.
We trained a model for each synthetic scene, by replicating by replicating the
corresponding noise conditions on our Live Photos dataset. To match the eval-
uation of previous work, we used only the first 8 frames from each sequence for
denoising.

Table 3 shows that our method matches FlexISP on flickr doll and
achieves a significant advantage of 0.5 dB over FlexISP kodak fence. Interest-
ingly, our method reaches a higher PSNR than FlexISP, despite showing some
slight demosiacing artifacts on the fence (see in Fig. 6). This is likely due to the
absence of high frequency demosaicing artifacts in our training data and would
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Fig. 6. Denoising results on two real and two synthetic bursts on the FlexISP
dataset [22]. From top to bottom: darkpaintcans, livingroom, flickr doll and
kodak fence. Our recurrent model is able to match the quality of FlexISP on flickr
doll and beats it by 0.5 dB on kodak fence.

Table 3. Multi-frame denoising comparison on Live Photo sequences (left)
and the FlexISP sequences (right). Average PSNR for all frames on 1000 test 16-
frames sequences with additive white Gaussian noise. Multi-frame denoising com-
parison on the FlexISP images (right). Best results are in bold. The thick line
separates single frame methods and multi-frame ones.
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Fig. 7. Denoising results on two real bursts on the HDR+ dataset [19]. Our
method produces a high level of denoising while keeping sharp details and maintaining
information in highlights.

probably be fixed by generating training data following the same protocol as the
test data.

Unfortunately, it is difficult to compare a thoroughly with ProximaL, as the
publicly implementation does not have code for their experiments. We attempted
to reimplement burst denoising using their publicly available framework, but
were unable to produce stable results. As ProximaL only shows denoising results
on flickr doll, this limits us to a less comprehensive comparison on only one
scene, where our method falls short.

Like HDR+, we do not report quantitative results on the real scenes
(darkpaintcans and livingroom), as we were unable to correct for a color
shift between the ground truth long exposure images and the noisy bursts. How-
ever, Fig. 6 shows that our method is able to recover a lot of details while
removing the noise on these bursts.

4.8 Super Resolution

To illustrate that our approach generalizes to tasks beyond denoising, and to
meet our 6th goal, we trained our model to perform 4× super-resolution, while
keeping the rest of the training procedure identical to that of the denoising
pipeline. That is, instead of using a burst of noisy images as input, we provide
our network with a burst of low-resolution images and task it to provide us with
a sharp high-resolution output. To keep the architecture the same, we do not
feed low-resolution images as input to the network, but instead remove high-
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Fig. 8. Multi-frame 4× super-resolution on stabilized Live Photo test data.
While our single frame model achieves a good upsampling, the increase in sharpness
from our multi-frame approach brings a significant quality improvement.

frequency details by first downsampling each input patch 4× and then resize
them back to their original size with bilinear interpolation. Figure 8 shows how
our multi-frame model is able to recover high-frequency details, such as the crisp
contours of the lion and the railing on top of the pillar.

5 Limitations

Our single-frame architecture, based on [27,36,48], makes use of full resolution
convolutions. They are however both memory and computationally expensive,
and have a small receptive field for a given network depth. Using multiscale
architectures, such as a U-Nets [37], could help alleviate both issues, by reducing
the computational and memory load, while increasing the receptive field. While
not necessary, we trained our network on pre-stabilized sequences, we observed
a drop in accuracy on unstabilized sequences, as can be seen in Table 2, as well
as instability on longer sequences. It would be interesting to train the network to
stabilize the sequence by warping inside the network such as in [17,24]. Finally
the low resolution of our training data prevents the model from recoving high
frequency details; a higher resolution dataset would likely fix this issue.

6 Conclusion

We have presented a novel deep neural architecture to process burst of images.
We improve on a simple single frame architecture by making use of recurrent
connections and show that while single-frame models are reaching performance
limits, our recurrent architecture vastly outperforms such models for multi-frame
data. We carefully designed our method to align with the goals we stated in
Sect. 3.1. As a result, our approach achieves state-of-the-art performance in our
Live Photos dataset, and matches or beats existing multi-frame denoisers on
challenging existing real-noise datasets.
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