
Deep Clustering for Unsupervised
Learning of Visual Features

Mathilde Caron(B), Piotr Bojanowski, Armand Joulin, and Matthijs Douze

Facebook AI Research, Paris, France
{mathilde,bojanowski,ajoulin,matthijs}@fb.com

Abstract. Clustering is a class of unsupervised learning methods that
has been extensively applied and studied in computer vision. Little work
has been done to adapt it to the end-to-end training of visual features
on large-scale datasets. In this work, we present DeepCluster, a cluster-
ing method that jointly learns the parameters of a neural network and
the cluster assignments of the resulting features. DeepCluster iteratively
groups the features with a standard clustering algorithm, k-means, and
uses the subsequent assignments as supervision to update the weights
of the network. We apply DeepCluster to the unsupervised training
of convolutional neural networks on large datasets like ImageNet and
YFCC100M. The resulting model outperforms the current state of the
art by a significant margin on all the standard benchmarks.
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1 Introduction

Pre-trained convolutional neural networks, or convnets, have become the build-
ing blocks in most computer vision applications [8,9,50,65]. They produce excel-
lent general-purpose features that can be used to improve the generalization of
models learned on a limited amount of data [53]. The existence of ImageNet [12],
a large fully-supervised dataset, has been fueling advances in pre-training of
convnets. However, Stock and Cisse [57] have recently presented empirical evi-
dence that the performance of state-of-the-art classifiers on ImageNet is largely
underestimated, and little error is left unresolved. This explains in part why the
performance has been saturating despite the numerous novel architectures pro-
posed in recent years [9,21,23]. As a matter of fact, ImageNet is relatively small
by today’s standards; it “only” contains a million images that cover the specific
domain of object classification. A natural way to move forward is to build a big-
ger and more diverse dataset, potentially consisting of billions of images. This,
in turn, would require a tremendous amount of manual annotations, despite
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the expert knowledge in crowdsourcing accumulated by the community over the
years [30]. Replacing labels by raw metadata leads to biases in the visual rep-
resentations with unpredictable consequences [41]. This calls for methods that
can be trained on internet-scale datasets with no supervision.

Fig. 1. Illustration of the proposed method: we iteratively cluster deep features and
use the cluster assignments as pseudo-labels to learn the parameters of the convnet

Unsupervised learning has been widely studied in the Machine Learning
community [19], and algorithms for clustering, dimensionality reduction or den-
sity estimation are regularly used in computer vision applications [27,54,60].
For example, the “bag of features” model uses clustering on handcrafted local
descriptors to produce good image-level features [11]. A key reason for their suc-
cess is that they can be applied on any specific domain or dataset, like satellite
or medical images, or on images captured with a new modality, like depth, where
annotations are not always available in quantity. Several works have shown that
it was possible to adapt unsupervised methods based on density estimation or
dimensionality reduction to deep models [20,29], leading to promising all-purpose
visual features [5,15]. Despite the primeval success of clustering approaches in
image classification, very few works [3,66,68] have been proposed to adapt them
to the end-to-end training of convnets, and never at scale. An issue is that clus-
tering methods have been primarily designed for linear models on top of fixed
features, and they scarcely work if the features have to be learned simultaneously.
For example, learning a convnet with k-means would lead to a trivial solution
where the features are zeroed, and the clusters are collapsed into a single entity.

In this work, we propose a novel clustering approach for the large scale end-
to-end training of convnets. We show that it is possible to obtain useful general-
purpose visual features with a clustering framework. Our approach, summarized
in Fig. 1, consists in alternating between clustering of the image descriptors and
updating the weights of the convnet by predicting the cluster assignments. For
simplicity, we focus our study on k-means, but other clustering approaches can
be used, like Power Iteration Clustering (PIC) [36]. The overall pipeline is suf-
ficiently close to the standard supervised training of a convnet to reuse many
common tricks [24]. Unlike self-supervised methods [13,42,45], clustering has the
advantage of requiring little domain knowledge and no specific signal from the
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inputs [63,71]. Despite its simplicity, our approach achieves significantly higher
performance than previously published unsupervised methods on both ImageNet
classification and transfer tasks.

Finally, we probe the robustness of our framework by modifying the exper-
imental protocol, in particular the training set and the convnet architecture.
The resulting set of experiments extends the discussion initiated by Doersch et
al . [13] on the impact of these choices on the performance of unsupervised meth-
ods. We demonstrate that our approach is robust to a change of architecture.
Replacing an AlexNet by a VGG [55] significantly improves the quality of the
features and their subsequent transfer performance. More importantly, we dis-
cuss the use of ImageNet as a training set for unsupervised models. While it
helps understanding the impact of the labels on the performance of a network,
ImageNet has a particular image distribution inherited from its use for a fine-
grained image classification challenge: it is composed of well-balanced classes and
contains a wide variety of dog breeds for example. We consider, as an alternative,
random Flickr images from the YFCC100M dataset of Thomee et al . [58]. We
show that our approach maintains state-of-the-art performance when trained on
this uncured data distribution. Finally, current benchmarks focus on the capa-
bility of unsupervised convnets to capture class-level information. We propose
to also evaluate them on image retrieval benchmarks to measure their capability
to capture instance-level information.

In this paper, we make the following contributions: (i) a novel unsupervised
method for the end-to-end learning of convnets that works with any standard
clustering algorithm, like k-means, and requires minimal additional steps; (ii)
state-of-the-art performance on many standard transfer tasks used in unsuper-
vised learning; (iii) performance above the previous state of the art when trained
on an uncured image distribution; (iv) a discussion about the current evaluation
protocol in unsupervised feature learning.

2 Related Work

Unsupervised Learning of Features. Several approaches related to our work
learn deep models with no supervision. Coates and Ng [10] also use k-means to
pre-train convnets, but learn each layer sequentially in a bottom-up fashion,
while we do it in an end-to-end fashion. Other clustering losses [3,16,35,66,68]
have been considered to jointly learn convnet features and image clusters but
they have never been tested on a scale to allow a thorough study on modern
convnet architectures. Of particular interest, Yang et al . [68] iteratively learn
convnet features and clusters with a recurrent framework. Their model offers
promising performance on small datasets but may be challenging to scale to the
number of images required for convnets to be competitive. Closer to our work,
Bojanowski and Joulin [5] learn visual features on a large dataset with a loss that
attempts to preserve the information flowing through the network [37]. Their
approach discriminates between images in a similar way as examplar SVM [39],
while we are simply clustering them.
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Self-supervised Learning. A popular form of unsupervised learning, called
“self-supervised learning” [52], uses pretext tasks to replace the labels annotated
by humans by “pseudo-labels” directly computed from the raw input data. For
example, Doersch et al . [13] use the prediction of the relative position of patches
in an image as a pretext task, while Noroozi and Favaro [42] train a network to
spatially rearrange shuffled patches. Another use of spatial cues is the work of
Pathak et al . [46] where missing pixels are guessed based on their surrounding.
Paulin et al . [47] learn patch level Convolutional Kernel Network [38] using an
image retrieval setting. Others leverage the temporal signal available in videos
by predicting the camera transformation between consecutive frames [1], exploit-
ing the temporal coherence of tracked patches [63] or segmenting video based
on motion [45]. Appart from spatial and temporal coherence, many other sig-
nals have been explored: image colorization [33,71], cross-channel prediction [72],
sound [44] or instance counting [43]. More recently, several strategies for com-
bining multiple cues have been proposed [14,64]. Contrary to our work, these
approaches are domain dependent, requiring expert knowledge to carefully design
a pretext task that may lead to transferable features.

Generative Models. Recently, unsupervised learning has been making a lot
of progress on image generation. Typically, a parametrized mapping is learned
between a predefined random noise and the images, with either an autoen-
coder [4,22,29,40,62], a generative adversarial network (GAN) [20] or more
directly with a reconstruction loss [6]. Of particular interest, the discrimina-
tor of a GAN can produce visual features, but their performance are relatively
disappointing [15]. Donahue et al . [15] and Dumoulin et al . [17] have shown
that adding an encoder to a GAN produces visual features that are much more
competitive.

3 Method

After a short introduction to the supervised learning of convnets, we describe
our unsupervised approach as well as the specificities of its optimization.

3.1 Preliminaries

Modern approaches to computer vision, based on statistical learning, require
good image featurization. In this context, convnets are a popular choice for
mapping raw images to a vector space of fixed dimensionality. When trained on
enough data, they constantly achieve the best performance on standard classi-
fication benchmarks [21,32]. We denote by fθ the convnet mapping, where θ is
the set of corresponding parameters. We refer to the vector obtained by apply-
ing this mapping to an image as feature or representation. Given a training set
X = {x1, x2, . . . , xN} of N images, we want to find a parameter θ∗ such that
the mapping fθ∗ produces good general-purpose features.
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These parameters are traditionally learned with supervision, i.e. each image
xn is associated with a label yn in {0, 1}k. This label represents the image’s
membership to one of k possible predefined classes. A parametrized classifier gW

predicts the correct labels on top of the features fθ(xn). The parameters W of
the classifier and the parameter θ of the mapping are then jointly learned by
optimizing the following problem:

min
θ,W

1
N

N∑

n=1

� (gW (fθ(xn)) , yn) , (1)

where � is the multinomial logistic loss, also known as the negative log-softmax
function. This cost function is minimized using mini-batch stochastic gradient
descent [7] and backpropagation to compute the gradient [34].

3.2 Unsupervised Learning by Clustering

When θ is sampled from a Gaussian distribution, without any learning, fθ does
not produce good features. However the performance of such random features on
standard transfer tasks, is far above the chance level. For example, a multilayer
perceptron classifier on top of the last convolutional layer of a random AlexNet
achieves 12% in accuracy on ImageNet while the chance is at 0.1% [42]. The
good performance of random convnets is intimately tied to their convolutional
structure which gives a strong prior on the input signal. The idea of this work is
to exploit this weak signal to bootstrap the discriminative power of a convnet.
We cluster the output of the convnet and use the subsequent cluster assignments
as “pseudo-labels” to optimize Eq. (1). This deep clustering (DeepCluster) app-
roach iteratively learns the features and groups them.

Clustering has been widely studied and many approaches have been devel-
oped for a variety of circumstances. In the absence of points of comparisons,
we focus on a standard clustering algorithm, k-means. Preliminary results with
other clustering algorithms indicates that this choice is not crucial. k-means
takes a set of vectors as input, in our case the features fθ(xn) produced by the
convnet, and clusters them into k distinct groups based on a geometric crite-
rion. More precisely, it jointly learns a d × k centroid matrix C and the cluster
assignments yn of each image n by solving the following problem:

min
C∈Rd×k

1
N

N∑

n=1

min
yn∈{0,1}k

‖fθ(xn) − Cyn‖22 such that y�
n 1k = 1. (2)

Solving this problem provides a set of optimal assignments (y∗
n)n≤N and a cen-

troid matrix C∗. These assignments are then used as pseudo-labels; we make no
use of the centroid matrix.

Overall, DeepCluster alternates between clustering the features to produce
pseudo-labels using Eq. (2) and updating the parameters of the convnet by pre-
dicting these pseudo-labels using Eq. (1). This type of alternating procedure is
prone to trivial solutions; we describe how to avoid such degenerate solutions in
the next section.
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3.3 Avoiding Trivial Solutions

The existence of trivial solutions is not specific to the unsupervised training of
neural networks, but to any method that jointly learns a discriminative classifier
and the labels. Discriminative clustering suffers from this issue even when applied
to linear models [67]. Solutions are typically based on constraining or penalizing
the minimal number of points per cluster [2,26]. These terms are computed over
the whole dataset, which is not applicable to the training of convnets on large
scale datasets. In this section, we briefly describe the causes of these trivial
solutions and give simple and scalable workarounds.

Empty Clusters. A discriminative model learns decision boundaries between
classes. An optimal decision boundary is to assign all of the inputs to a single
cluster [67]. This issue is caused by the absence of mechanisms to prevent from
empty clusters and arises in linear models as much as in convnets. A common
trick used in feature quantization [25] consists in automatically reassigning empty
clusters during the k-means optimization. More precisely, when a cluster becomes
empty, we randomly select a non-empty cluster and use its centroid with a small
random perturbation as the new centroid for the empty cluster. We then reassign
the points belonging to the non-empty cluster to the two resulting clusters.

Trivial Parametrization. If the vast majority of images is assigned to a few
clusters, the parameters θ will exclusively discriminate between them. In the
most dramatic scenario where all but one cluster are singleton, minimizing
Eq. (1) leads to a trivial parametrization where the convnet will predict the
same output regardless of the input. This issue also arises in supervised classifi-
cation when the number of images per class is highly unbalanced. For example,
metadata, like hashtags, exhibits a Zipf distribution, with a few labels dominat-
ing the whole distribution [28]. A strategy to circumvent this issue is to sample
images based on a uniform distribution over the classes, or pseudo-labels. This is
equivalent to weight the contribution of an input to the loss function in Eq. (1)
by the inverse of the size of its assigned cluster.

3.4 Implementation Details

Training data and convnet architectures. We train DeepCluster on the
training set of ImageNet [12] (1, 281, 167 images distributed uniformly into 1, 000
classes). We discard the labels. For comparison with previous works, we use a
standard AlexNet [32] architecture. It consists of five convolutional layers with
96, 256, 384, 384 and 256 filters; and of three fully connected layers. We remove
the Local Response Normalization layers and use batch normalization [24]. We
also consider a VGG-16 [55] architecture with batch normalization. Unsupervised
methods often do not work directly on color and different strategies have been
considered as alternatives [13,42]. We apply a fixed linear transformation based
on Sobel filters to remove color and increase local contrast [5,47].
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Fig. 2. Preliminary studies. (a): evolution of the clustering quality along training
epochs; (b): evolution of cluster reassignments at each clustering step; (c): validation
mAP classification performance for various choices of k

Optimization. We cluster the features of the central cropped images and train
the convnet with data augmentation (random horizontal flips and crops of ran-
dom sizes and aspect ratios). This enforces invariance to data augmentation
which is useful for feature learning [16]. The network is trained with dropout [56],
a constant step size, an �2 penalization of the weights θ and a momentum of 0.9.
Each mini-batch contains 256 images. For the clustering, features are PCA-
reduced to 256 dimensions, whitened and �2-normalized. We use the k-means
implementation of Johnson et al . [25]. Note that running k-means takes a third
of the time because a forward pass on the full dataset is needed. One could reas-
sign the clusters every n epochs, but we found out that our setup on ImageNet
(updating the clustering every epoch) was nearly optimal. On Flickr, the concept
of epoch disappears: choosing the tradeoff between the parameter updates and
the cluster reassignments is more subtle. We thus kept almost the same setup
as in ImageNet. We train the models for 500 epochs, which takes 12 days on a
Pascal P100 GPU for AlexNet.

Hyperparameter Selection. We select hyperparameters on a down-stream
task, i.e., object classification on the validation set of Pascal VOC with no
fine-tuning. We use the publicly available code of Krähenbühl1.

4 Experiments

In a preliminary set of experiments, we study the behavior of DeepCluster dur-
ing training. We then qualitatively assess the filters learned with DeepCluster
before comparing our approach to previous state-of-the-art models on standard
benchmarks.

1 https://github.com/philkr/voc-classification.

https://github.com/philkr/voc-classification
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4.1 Preliminary Study

We measure the information shared between two different assignments A and B
of the same data by the Normalized Mutual Information (NMI), defined as:

NMI(A;B) =
I(A;B)√
H(A)H(B)

where I denotes the mutual information and H the entropy. This measure can
be applied to any assignment coming from the clusters or the true labels. If the
two assignments A and B are independent, the NMI is equal to 0. If one of them
is deterministically predictable from the other, the NMI is equal to 1.

Fig. 3. Filters from the first layer of an AlexNet trained on unsupervised ImageNet on
raw RGB input (left) or after a Sobel filtering (right) (Color figure online)

Relation Between Clusters and Labels. Fig. 2(a) shows the evolution of the
NMI between the cluster assignments and the ImageNet labels during training. It
measures the capability of the model to predict class level information. Note that
we only use this measure for this analysis and not in any model selection process.
The dependence between the clusters and the labels increases over time, showing
that our features progressively capture information related to object classes.

Number of Reassignments Between Epochs. At each epoch, we reassign
the images to a new set of clusters, with no guarantee of stability. Measuring
the NMI between the clusters at epoch t − 1 and t gives an insight on the
actual stability of our model. Figure 2(b) shows the evolution of this measure
during training. The NMI is increasing, meaning that there are less and less
reassignments and the clusters are stabilizing over time. However, NMI saturates
below 0.8, meaning that a significant fraction of images are regularly reassigned
between epochs. In practice, this has no impact on the training and the models
do not diverge.

Choosing the Number of Clusters. We measure the impact of the number
k of clusters used in k-means on the quality of the model. We report the same
down-stream task as in the hyperparameter selection process, i.e. mAP on the
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Pascal VOC 2007 classification validation set. We vary k on a logarithmic scale,
and report results after 300 epochs in Fig. 2(c). The performance after the same
number of epochs for every k may not be directly comparable, but it reflects
the hyper-parameter selection process used in this work. The best performance
is obtained with k = 10, 000. Given that we train our model on ImageNet, one
would expect k = 1000 to yield the best results, but apparently some amount of
over-segmentation is beneficial.

Fig. 4. Filter visualization and top 9 activated images from a subset of 1 million images
from YFCC100M for target filters in the layers conv1, conv3 and conv5 of an AlexNet
trained with DeepCluster on ImageNet. The filter visualization is obtained by learning
an input image that maximizes the response to a target filter [69]

4.2 Visualizations

First Layer Filters. Figure 3 shows the filters from the first layer of an AlexNet
trained with DeepCluster on raw RGB images and images preprocessed with a
Sobel filtering. The difficulty of learning convnets on raw images has been noted
before [5,13,42,47]. As shown in the left panel of Fig. 3, most filters capture only
color information that typically plays a little role for object classification [61].
Filters obtained with Sobel preprocessing act like edge detectors.

Probing Deeper Layers. We assess the quality of a target filter by learning
an input image that maximizes its activation [18,70]. We follow the process
described by Yosinki et al . [69] with a cross entropy function between the target
filter and the other filters of the same layer. Figure 4 shows these synthetic
images as well as the 9 top activated images from a subset of 1 million images
from YFCC100M. As expected, deeper layers in the network seem to capture
larger textural structures. However, some filters in the last convolutional layers
seem to be simply replicating the texture already captured in previous layers,
as shown on the second row of Fig. 5. This result corroborates the observation
by Zhang et al . [72] that features from conv3 or conv4 are more discriminative
than those from conv5.
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Fig. 5. Top 9 activated images from a random subset of 10 millions images from
YFCC100M for target filters in the last convolutional layer. The top row corresponds
to filters sensitive to activations by images containing objects. The bottom row exhibits
filters more sensitive to stylistic effects. For instance, the filters 119 and 182 seem to
be respectively excited by background blur and depth of field effects

Finally, Fig. 5 shows the top 9 activated images of some conv5 filters that
seem to be semantically coherent. The filters on the top row contain information
about structures that highly corrolate with object classes. The filters on the
bottom row seem to trigger on style, like drawings or abstract shapes.

4.3 Linear Classification on Activations

Following Zhang et al . [72], we train a linear classifier on top of different frozen
convolutional layers. This layer by layer comparison with supervised features
exhibits where a convnet starts to be task specific, i.e. specialized in object
classification. We report the results of this experiment on ImageNet and the
Places dataset [73] in Table 1. We choose the hyperparameters by cross-validation
on the training set. On ImageNet, DeepCluster outperforms the state of the art
from conv2 to conv5 layers by 1−6%. The largest improvement is observed in the
conv3 layer, while the conv1 layer performs poorly, probably because the Sobel
filtering discards color. Consistently with the filter visualizations of Sect. 4.2,
conv3 works better than conv5. Finally, the difference of performance between
DeepCluster and a supervised AlexNet grows significantly on higher layers: at
layers conv2-conv3 the difference is only around 4%, But this difference rises to
12.3% at conv5, marking where the AlexNet probably stores most of the class
level information. In the supplementary material, we also report the accuracy if
a MLP is trained on the last layer; DeepCluster outperforms the state of the art
by 8%.
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Table 1. Linear classification on ImageNet and Places using activations from the con-
volutional layers of an AlexNet as features. We report classification accuracy averaged
over 10 crops. Numbers for other methods are from Zhang et al . [72]

Method ImageNet Places

conv1 conv2 conv3 conv4 conv5 conv1 conv2 conv3 conv4 conv5

Places labels – – – – – 22.1 35.1 40.2 43.3 44.6

ImageNet labels 19.3 36.3 44.2 48.3 50.5 22.7 34.8 38.4 39.4 38.7

Random 11.6 17.1 16.9 16.3 14.1 15.7 20.3 19.8 19.1 17.5

Pathak et al. [46] 14.1 20.7 21.0 19.8 15.5 18.2 23.2 23.4 21.9 18.4

Doersch et al. [13] 16.2 23.3 30.2 31.7 29.6 19.7 26.7 31.9 32.7 30.9

Zhang et al. [71] 12.5 24.5 30.4 31.5 30.3 16.0 25.7 29.6 30.3 29.7

Donahue et al. [15] 17.7 24.5 31.0 29.9 28.0 21.4 26.2 27.1 26.1 24.0

Noroozi and Favaro [42] 18.2 28.8 34.0 33.9 27.1 23.0 32.1 35.5 34.8 31.3

Noroozi et al. [43] 18.0 30.6 34.3 32.5 25.7 23.3 33.9 36.3 34.7 29.6

Zhang et al. [72] 17.7 29.3 35.4 35.2 32.8 21.3 30.7 34.0 34.1 32.5

DeepCluster 13.4 32.3 41.0 39.6 38.2 19.6 33.2 39.2 39.8 34.7

The same experiment on the Places dataset provides some interesting
insights: like DeepCluster, a supervised model trained on ImageNet suffers from
a decrease of performance for higher layers (conv4 versus conv5). Moreover,
DeepCluster yields conv3-4 features that are comparable to those trained with
ImageNet labels. This suggests that when the target task is sufficently far from
the domain covered by ImageNet, labels are less important.

4.4 Pascal VOC 2007

Finally, we do a quantitative evaluation of DeepCluster on image classification,
object detection and semantic segmentation onPascalVOC. The relatively small
size of the training sets on Pascal VOC (2, 500 images) makes this setup closer
to a “real-world” application, where a model trained with heavy computational
resources, is adapted to a task or a dataset with a small number of instances. Detec-
tion results are obtained using fast-rcnn2; segmentation results are obtained
using the code of Shelhamer et al .3. For classification and detection, we report the
performance on the test set of Pascal VOC 2007 and choose our hyperparame-
ters on the validation set. For semantic segmentation, following the related work,
we report the performance on the validation set of Pascal VOC 2012.

Table 2 summarized the comparisons of DeepCluster with other feature-
learning approaches on the three tasks. As for the previous experiments, we out-
perform previous unsupervised methods on all three tasks, in every setting. The
improvement with fine-tuning over the state of the art is the largest on semantic
segmentation (7.5%). On detection, DeepCluster performs only slightly better
than previously published methods. Interestingly, a fine-tuned random network

2 https://github.com/rbgirshick/py-faster-rcnn.
3 https://github.com/shelhamer/fcn.berkeleyvision.org.

https://github.com/rbgirshick/py-faster-rcnn
https://github.com/shelhamer/fcn.berkeleyvision.org
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performs comparatively to many unsupervised methods, but performs poorly if
only fc6-8 are learned. For this reason, we also report detection and segmenta-
tion with fc6-8 for DeepCluster and a few baselines. These tasks are closer to
a real application where fine-tuning is not possible. It is in this setting that the
gap between our approach and the state of the art is the greater (up to 9% on
classification).

Table 2. Comparison of the proposed approach to state-of-the-art unsupervised feature
learning on classification, detection and segmentation on Pascal VOC. ∗ indicates the
use of the data-dependent initialization of Krähenbühl et al . [31]. Numbers for other
methods produced by us are marked with a †

Method Classification Detection Segmentation

fc6-8 all fc6-8 all fc6-8 all

ImageNet labels 78.9 79.9 – 56.8 – 48.0

Random-rgb 33.2 57.0 22.2 44.5 15.2 30.1

Random-sobel 29.0 61.9 18.9 47.9 13.0 32.0

Pathak et al . [46] 34.6 56.5 – 44.5 – 29.7

Donahue et al . [15]∗ 52.3 60.1 – 46.9 – 35.2

Pathak et al . [45] – 61.0 – 52.2 – –

Owens et al . [44]∗ 52.3 61.3 – – – –

Wang and Gupta [63]∗ 55.6 63.1 32.8† 47.2 26.0† 35.4†

Doersch et al . [13]∗ 55.1 65.3 – 51.1 – –

Bojanowski and Joulin [5]∗ 56.7 65.3 33.7† 49.4 26.7† 37.1†

Zhang et al . [71]∗ 61.5 65.9 43.4† 46.9 35.8† 35.6

Zhang et al . [72]∗ 63.0 67.1 – 46.7 – 36.0

Noroozi and Favaro [42] – 67.6 – 53.2 – 37.6

Noroozi et al . [43] – 67.7 – 51.4 – 36.6

DeepCluster 72.0 73.7 51.4 55.4 43.2 45.1

5 Discussion

The current standard for the evaluation of an unsupervised method involves the
use of an AlexNet architecture trained on ImageNet and tested on class-level
tasks. To understand and measure the various biases introduced by this pipeline
on DeepCluster, we consider a different training set, a different architecture and
an instance-level recognition task.
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5.1 ImageNet Versus YFCC100M

ImageNet is a dataset designed for a fine-grained object classification chal-
lenge [51]. It is object oriented, manually annotated and organised into well bal-
anced object categories. By design, DeepCluster favors balanced clusters and, as
discussed above, our number of cluster k is somewhat comparable with the number
of labels in ImageNet. This may have given an unfair advantage to DeepCluster
over other unsupervised approaches when trained on ImageNet. To measure the
impact of this effect, we consider a subset of randomly-selected 1M images from
the YFCC100M dataset [58] for the pre-training. Statistics on the hashtags used
in YFCC100M suggests that the underlying “object classes” are severly unbal-
anced [28], leading to a data distribution less favorable to DeepCluster.

Table 3. Impact of the training set on the performance of DeepCluster measured on
the Pascal VOC transfer tasks as described in Sect. 4.4. We compare ImageNet with a
subset of 1M images from YFCC100M [58]. Regardless of the training set, DeepCluster
outperforms the best published numbers on most tasks. Numbers for other methods
produced by us are marked with a †

Method Training set Classification Detection Segmentation

fc6-8 all fc6-8 all fc6-8 all

Best competitor ImageNet 63.0 67.7 43.4† 53.2 35.8† 37.7

DeepCluster ImageNet 72.0 73.7 51.4 55.4 43.2 45.1

DeepCluster YFCC100M 67.3 69.3 45.6 53.0 39.2 42.2

Table 3 shows the difference in performance on Pascal VOC of DeepClus-
ter pre-trained on YFCC100M compared to ImageNet. As noted by Doersch
et al . [13], this dataset is not object oriented, hence the performance are expected
to drop by a few percents. However, even when trained on uncured Flickr images,
DeepCluster outperforms the current state of the art by a significant margin on
most tasks (up to +4.3% on classification and +4.5% on semantic segmentation).
We report the rest of the results in the supplementary material with similar con-
clusions. This experiment validates that DeepCluster is robust to a change of
image distribution, leading to state-of-the-art general-purpose visual features
even if this distribution is not favorable to its design.

5.2 AlexNet Versus VGG

In the supervised setting, deeper architectures like VGG or ResNet [21] have
a much higher accuracy on ImageNet than AlexNet. We should expect the
same improvement if these architectures are used with an unsupervised app-
roach. Table 4 compares a VGG-16 and an AlexNet trained with DeepClus-
ter on ImageNet and tested on the Pascal VOC 2007 object detection task
with fine-tuning. We also report the numbers obtained with other unsupervised
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approaches [13,64]. Regardless of the approach, a deeper architecture leads to a
significant improvement in performance on the target task. Training the VGG-
16 with DeepCluster gives a performance above the state of the art, bringing
us to only 1.4 percents below the supervised topline. Note that the difference
between unsupervised and supervised approaches remains in the same ballpark
for both architectures (i.e. 1.4%). Finally, the gap with a random baseline grows
for larger architectures, justifying the relevance of unsupervised pre-training for
complex architectures when little supervised data is available.

Table 4. Pascal VOC 2007 object detec-
tion with AlexNet and VGG-16. Numbers
are taken from Wang et al . [64]

Method AlexNet VGG-16

ImageNet labels 56.8 67.3

Random 47.8 39.7

Doersch et al . [13] 51.1 61.5

Wang and Gupta [63] 47.2 60.2

Wang et al . [64] – 63.2

DeepCluster 55.4 65.9

Table 5. mAP on instance-level image
retrieval on Oxford and Paris dataset
with a VGG-16. We apply R-MAC with
a resolution of 1024 pixels and 3 grid
levels [59]

Method Oxford5K Paris6K

ImageNet labels 72.4 81.5

Random 6.9 22.0

Doersch et al . [13] 35.4 53.1

Wang et al . [64] 42.3 58.0

DeepCluster 61.0 72.0

5.3 Evaluation on Instance Retrieval

The previous benchmarks measure the capability of an unsupervised network to
capture class level information. They do not evaluate if it can differentiate images
at the instance level. To that end, we propose image retrieval as a down-stream
task. We follow the experimental protocol of Tolias et al . [59] on two datasets,
i.e., Oxford Buildings [48] and Paris [49]. Table 5 reports the performance of a
VGG-16 trained with different approaches obtained with Sobel filtering, except
for Doersch et al . [13] and Wang et al . [64]. This preprocessing improves by
5.5 points the mAP of a supervised VGG-16 on the Oxford dataset, but not on
Paris. This may translate in a similar advantage for DeepCluster, but it does not
account for the average differences of 19 points. Interestingly, random convnets
perform particularly poorly on this task compared to pre-trained models. This
suggests that image retrieval is a task where the pre-training is essential and
studying it as a down-stream task could give further insights about the quality
of the features produced by unsupervised approaches.
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6 Conclusion

In this paper, we propose a scalable clustering approach for the unsupervised
learning of convnets. It iterates between clustering with k-means the features
produced by the convnet and updating its weights by predicting the cluster
assignments as pseudo-labels in a discriminative loss. If trained on large dataset
like ImageNet or YFCC100M, it achieves performance that are better than the
previous state-of-the-art on every standard transfer task. Our approach makes
little assumption about the inputs, and does not require much domain specific
knowledge, making it a good candidate to learn deep representations specific to
domains where annotations are scarce.
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