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Abstract. We propose CornerNet, a new approach to object detection
where we detect an object bounding box as a pair of keypoints, the
top-left corner and the bottom-right corner, using a single convolution
neural network. By detecting objects as paired keypoints, we eliminate
the need for designing a set of anchor boxes commonly used in prior
single-stage detectors. In addition to our novel formulation, we introduce
corner pooling, a new type of pooling layer that helps the network better
localize corners. Experiments show that CornerNet achieves a 42.1% AP
on MS COCO, outperforming all existing one-stage detectors.
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1 Introduction

Object detectors based on convolutional neural networks (ConvNets) [15,20,36]
have achieved state-of-the-art results on various challenging benchmarks [8,9,
24]. A common component of state-of-the-art approaches is anchor boxes [25,
32], which are boxes of various sizes and aspect ratios that serve as detection
candidates. Anchor boxes are extensively used in one-stage detectors [10,23,25,
31], which can achieve results highly competitive with two-stage detectors [11—-
13,32] while being more efficient. One-stage detectors place anchor boxes densely
over an image and generate final box predictions by scoring anchor boxes and
refining their coordinates through regression.

But the use of anchor boxes has two drawbacks. First, we typically need
a very large set of anchor boxes, e.g. more than 40k in DSSD [10] and more
than 100k in RetinaNet [23]. This is because the detector is trained to classify
whether each anchor box sufficiently overlaps with a ground truth box, and a
large number of anchor boxes is needed to ensure sufficient overlap with most
ground truth boxes. As a result, only a tiny fraction of anchor boxes will overlap
with ground truth; this creates a huge imbalance between positive and negative
anchor boxes and slows down training [23].

Second, the use of anchor boxes introduces many hyperparameters and design
choices. These include how many boxes, what sizes, and what aspect ratios. Such
choices have largely been made via ad-hoc heuristics, and can become even more
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complicated when combined with multiscale architectures where a single network
makes separate predictions at multiple resolutions, with each scale using different
features and its own set of anchor boxes [10,23,25].
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Fig. 1. We detect an object as a pair of bounding box corners grouped together. A
convolutional network outputs a heatmap for all top-left corners, a heatmap for all
bottom-right corners, and an embedding vector for each detected corner. The network
is trained to predict similar embeddings for corners that belong to the same object.

In this paper we introduce CornerNet, a new one-stage approach to object
detection that does away with anchor boxes. We detect an object as a pair of
keypoints—the top-left corner and bottom-right corner of the bounding box. We
use a single convolutional network to predict a heatmap for the top-left corners
of all instances of the same object category, a heatmap for all bottom-right
corners, and an embedding vector for each detected corner. The embeddings
serve to group a pair of corners that belong to the same object—the network is
trained to predict similar embeddings for them. Our approach greatly simplifies
the output of the network and eliminates the need for designing anchor boxes.
Our approach is inspired by the associative embedding method proposed by
Newell et al. [27], who detect and group keypoints in the context of multiperson
human-pose estimation. Figure 1 illustrates the overall pipeline of our approach.

Fig. 2. Often there is no local evidence to determine the location of a bounding box
corner. We address this issue by proposing a new type of pooling layer.
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Another novel component of CornerNet is corner pooling, a new type of pool-
ing layer that helps a convolutional network better localize corners of bounding
boxes. A corner of a bounding box is often outside the object—consider the case
of a circle as well as the examples in Fig.2. In such cases a corner cannot be
localized based on local evidence. Instead, to determine whether there is a top-
left corner at a pixel location, we need to look horizontally towards the right for
the topmost boundary of the object, and look vertically towards the bottom for
the leftmost boundary. This motivates our corner pooling layer: it takes in two
feature maps; at each pixel location it max-pools all feature vectors to the right
from the first feature map, max-pools all feature vectors directly below from the
second feature map, and then adds the two pooled results together. An example
is shown in Fig. 3.
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Fig. 3. Corner pooling: for each channel, we take the maximum values (red dots) in two
directions (red lines), each from a separate feature map, and add the two maximums
together (blue dot). (Color figure online)

We hypothesize two reasons why detecting corners would work better than
bounding box centers or proposals. First, the center of a box can be harder to
localize because it depends on all 4 sides of the object, whereas locating a corner
depends on 2 sides and is thus easier, and even more so with corner pooling,
which encodes some explicit prior knowledge about the definition of corners.
Second, corners provide a more efficient way of densely discretizing the space of
boxes: we just need O(wh) corners to represent O(w?h?) possible anchor boxes.

We demonstrate the effectiveness of CornerNet on MS COCO [24]. CornerNet
achieves a 42.1% AP, outperforming all existing one-stage detectors. In addition,
through ablation studies we show that corner pooling is critical to the superior
performance of CornerNet. Code is available at https://github.com/umich-vl/
CornerNet.
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2 Related Works

Two-Stage Object Detectors. Two-stage approach was first introduced and
popularized by R-CNN [12]. Two-stage detectors generate a sparse set of regions
of interest (Rols) and classify each of them by a network. R-CNN generates Rols
using a low level vision algorithm [41,47]. Each region is then extracted from
the image and processed by a ConvNet independently, which creates lots of
redundant computations. Later, SPP [14] and Fast-RCNN [11] improve R-CNN
by designing a special pooling layer that pools each region from feature maps
instead. However, both still rely on separate proposal algorithms and cannot be
trained end-to-end. Faster-RCNN [32] does away low level proposal algorithms
by introducing a region proposal network (RPN), which generates proposals from
a set of pre-determined candidate boxes, usually known as anchor boxes. This
not only makes the detectors more efficient but also allows the detectors to be
trained end-to-end. R-FCN [6] further improves the efficiency of Faster-RCNN
by replacing the fully connected sub-detection network with a fully convolutional
sub-detection network. Other works focus on incorporating sub-category infor-
mation [42], generating object proposals at multiple scales with more contextual
information [1,3,22,35], selecting better features [44], improving speed [21], cas-
cade procedure [4] and better training procedure [37].

One-Stage Object Detectors. On the other hand, YOLO [30] and SSD [25]
have popularized the one-stage approach, which removes the Rol pooling step
and detects objects in a single network. One-stage detectors are usually more
computationally efficient than two-stage detectors while maintaining competitive
performance on different challenging benchmarks.

SSD places anchor boxes densely over feature maps from multiple scales,
directly classifies and refines each anchor box. YOLO predicts bounding box
coordinates directly from an image, and is later improved in YOLO9000 [31]
by switching to anchor boxes. DSSD [10] and RON [19] adopt networks similar
to the hourglass network [28], enabling them to combine low-level and high-
level features via skip connections to predict bounding boxes more accurately.
However, these one-stage detectors are still outperformed by the two-stage detec-
tors until the introduction of RetinaNet [23]. In [23], the authors suggest that
the dense anchor boxes create a huge imbalance between positive and negative
anchor boxes during training. This imbalance causes the training to be ineffi-
cient and hence the performance to be suboptimal. They propose a new loss,
Focal Loss, to dynamically adjust the weights of each anchor box and show that
their one-stage detector can outperform the two-stage detectors. RefineDet [45]
proposes to filter the anchor boxes to reduce the number of negative boxes, and
to coarsely adjust the anchor boxes.

DeNet [39] is a two-stage detector which generates Rols without using anchor
boxes. It first determines how likely each location belongs to either the top-
left, top-right, bottom-left or bottom-right corner of a bounding box. It then
generates Rols by enumerating all possible corner combinations, and follows the
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standard two-stage approach to classify each Rol. Our approach is very different
from DeNet. First, DeNet does not identify if two corners are from the same
objects and relies on a sub-detection network to reject poor Rols. In contrast, our
approach is a one-stage approach which detects and groups the corners using a
single ConvNet. Second, DeNet selects features at manually determined locations
relative to a region for classification, while our approach does not require any
feature selection step. Third, we introduce corner pooling, a novel type of layer
to enhance corner detection.

Our approach is inspired by Newell et al. work [27] on Associative Embedding
in the context of multi-person pose estimation. Newell et al. propose an approach
that detects and groups human joints in a single network. In their approach each
detected human joint has an embedding vector. The joints are grouped based
on the distances between their embeddings. To the best of our knowledge, we
are the first to formulate the task of object detection as a task of detecting and
grouping corners simultaneously. Another novelty of ours is the corner pooling
layers that help better localize the corners. We also significantly modify the
hourglass architecture and add our novel variant of focal loss [23] to help better
train the network.

3 CornerNet

3.1 Overview

In CornerNet, we detect an object as a pair of keypoints—the top-left corner
and bottom-right corner of the bounding box. A convolutional network predicts
two sets of heatmaps to represent the locations of corners of different object
categories, one set for the top-left corners and the other for the bottom-right
corners. The network also predicts an embedding vector for each detected cor-
ner [27] such that the distance between the embeddings of two corners from the
same object is small. To produce tighter bounding boxes, the network also pre-
dicts offsets to slightly adjust the locations of the corners. With the predicted
heatmaps, embeddings and offsets, we apply a simple post-processing algorithm
to obtain the final bounding boxes.

Prediction Module

-
Top-left Corners < Heatmaps
Corner Pooling

Embeddings

] Offsets

Bottom-right corners

Hourglass Network

Fig. 4. Overview of CornerNet. The backbone network is followed by two prediction
modules, one for the top-left corners and the other for the bottom-right corners. Using
the predictions from both modules, we locate and group the corners.
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Figure4 provides an overview of CornerNet. We use the hourglass net-
work [28] as the backbone network of CornerNet. The hourglass network is fol-
lowed by two prediction modules. One module is for the top-left corners, while
the other one is for the bottom-right corners. Each module has its own corner
pooling module to pool features from the hourglass network before predicting
the heatmaps, embeddings and offsets. Unlike many other object detectors, we
do not use features from different scales to detect objects of different sizes. We
only apply both modules to the output of the hourglass network.

3.2 Detecting Corners

We predict two sets of heatmaps, one for top-left corners and one for bottom-
right corners. Each set of heatmaps has C channels, where C is the number of
categories, and is of size H x W. There is no background channel. Each channel
is a binary mask indicating the locations of the corners for a class.

Fig.5. “Ground-truth” heatmaps for training. Boxes (green dotted rectangles) whose
corners are within the radii of the positive locations (orange circles) still have large
overlaps with the ground-truth annotations (red solid rectangles). (Color figure online)

For each corner, there is one ground-truth positive location, and all other
locations are negative. During training, instead of equally penalizing negative
locations, we reduce the penalty given to negative locations within a radius of
the positive location. This is because a pair of false corner detections, if they
are close to their respective ground truth locations, can still produce a box that
sufficiently overlaps the ground-truth box (Fig.5). We determine the radius by
the size of an object by ensuring that a pair of points within the radius would
generate a bounding box with at least ¢ IoU with the ground-truth annotation

(we set t to 0.7 in all experiments). Given the radius, the amount of penalty
22442
reduction is given by an unnormalized 2D Gaussian, e™ 2% , whose center is at

the positive location and whose o is 1/3 of the radius.
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Let pc;; be the score at location (7,7) for class ¢ in the predicted heatmaps,
and let y.;; be the “ground-truth” heatmap augmented with the unnormalized
Gaussians. We design a variant of focal loss [23]:

C H W

pcij)a log (peij) if yeij =1
Lget = — o ) 1
det =N ; Z Z { 1- yCU) (Peij) " log (1 — peij) otherwise (1)

where N is the number of objects in an image, and o and g are the hyper-
parameters which control the contribution of each point (we set a to 2 and 3 to
4 in all experiments). With the Gaussian bumps encoded in yc;;, the (1 — yei;)
term reduces the penalty around the ground truth locations.

Many networks [15,28] involve downsampling layers to gather global infor-
mation and to reduce memory usage. When they are applied to an image fully
convolutionally, the size of the output is usually smaller than the image. Hence, a
location (z,y) in the image is mapped to the location (L%J, L%J) in the heatmaps,
where n is the downsampling factor. When we remap the locations from the
heatmaps to the input image, some precision may be lost, which can greatly
affect the IoU of small bounding boxes with their ground truths. To address this
issue we predict location offsets to slightly adjust the corner locations before
remapping them to the input resolution.

Tk Tk | Yk Yk
om (2|2 2 |2) »
n n n n
where oy, is the offset, x} and y; are the x and y coordinate for corner k. In
particular, we predict one set of offsets shared by the top-left corners of all

categories, and another set shared by the bottom-right corners. For training, we
apply the smooth L1 Loss [11] at ground-truth corner locations:

N
1
Loy =~ ; SmoothL1Loss (0, 61) (3)

3.3 Grouping Corners

Multiple objects may appear in an image, and thus multiple top-left and bottom-
right corners may be detected. We need to determine if a pair of the top-left
corner and bottom-right corner is from the same bounding box. Our approach
is inspired by the Associative Embedding method proposed by Newell et al. [27]
for the task of multi-person pose estimation. Newell et al. detect all human joints
and generate an embedding for each detected joint. They group the joints based
on the distances between the embeddings.

The idea of associative embedding is also applicable to our task. The network
predicts an embedding vector for each detected corner such that if a top-left cor-
ner and a bottom-right corner belong to the same bounding box, the distance
between their embeddings should be small. We can then group the corners based
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on the distances between the embeddings of the top-left and bottom-right cor-
ners. The actual values of the embeddings are unimportant. Only the distances
between the embeddings are used to group the corners.

We follow Newell et al. [27] and use embeddings of 1 dimension. Let e;, be
the embedding for the top-left corner of object k and e, for the bottom-right
corner. As in [26], we use the “pull” loss to train the network to group the corners
and the “push” loss to separate the corners:

N
1
Lyun = N [(etk —er)? + (e, —er)?], (4)
k=1
N N
1
L;Dush = m;;max(oaA_|ek_ej|)v (5)
J#k

where ey, is the average of e;, and ep, and we set A to be 1 in all our experiments.
Similar to the offset loss, we only apply the losses at the ground-truth corner
location.

3.4 Corner Pooling

As shown in Fig. 2, there is often no local visual evidence for the presence of
corners. To determine if a pixel is a top-left corner, we need to look horizontally
towards the right for the topmost boundary of an object and vertically towards
the bottom for the leftmost boundary. We thus propose corner pooling to better
localize the corners by encoding explicit prior knowledge.
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Fig. 6. The top-left corner pooling layer can be implemented very efficiently. We scan
from left to right for the horizontal max-pooling and from bottom to top for the vertical
max-pooling. We then add two max-pooled feature maps.

Suppose we want to determine if a pixel at location (4, j) is a top-left corner.
Let f; and f; be the feature maps that are the inputs to the top-left corner
pooling layer, and let f;,, and fi,, be the vectors at location (4,7) in f; and f;
respectively. With H x W feature maps, the corner pooling layer first max-pools
all feature vectors between (i,7) and (i, H) in f; to a feature vector ¢;;, and
max-pools all feature vectors between (4, j) and (W, j) in f; to a feature vector
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l;;. Finally, it adds ¢;; and [;; together. This computation can be expressed by
the following equations:

b= max (ftij?t(i"rl)j) ifi< H (6)
* tr otherwise

[, — Jmax (fiy lig+ny) 15 <W (7)
Y Liw otherwise

where we apply an elementwise max operation. Both ¢;; and I;; can be computed
efficiently by dynamic programming as shown Fig. 6.

We define bottom-right corner pooling layer in a similar way. It max-pools
all feature vectors between (0, j) and (4, ), and all feature vectors between (i, 0)
and (7, 7) before adding the pooled results. The corner pooling layers are used
in the prediction modules to predict heatmaps, embeddings and offsets.

Top-left Comer Pooling Module

Top-eft Comer Pooling |
> | 3x3 Conv-BN Ly Heatmaps

| Embeddings

Backbone — — 3x3 Conv-BN-ReLU

-y Offsets

1x1 Conv-BN 3x3 Conv-RelU 1x1 Conv

Fig. 7. The prediction module starts with a modified residual block, in which we replace
the first convolution module with our corner pooling module. The modified residual
block is then followed by a convolution module. We have multiple branches for predict-
ing the heatmaps, embeddings and offsets.

The architecture of the prediction module is shown in Fig. 7. The first part
of the module is a modified version of the residual block [15]. In this modified
residual block, we replace the first 3 x 3 convolution module with a corner pooling
module, which first processes the features from the backbone network by two 3x3
convolution modules' with 128 channels and then applies a corner pooling layer.
Following the design of a residual block, we then feed the pooled features into a
3 x 3 Conv-BN layer with 256 channels and add back the projection shortcut.
The modified residual block is followed by a 3 x 3 convolution module with 256
channels, and 3 Conv-ReLLU-Conv layers to produce the heatmaps, embeddings
and offsets.

! Unless otherwise specified, our convolution module consists of a convolution layer, a
BN layer [17] and a ReLU layer.
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3.5 Hourglass Network

CornerNet uses the hourglass network [28] as its backbone network. The hour-
glass network was first introduced for the human pose estimation task. It is a
fully convolutional neural network that consists of one or more hourglass mod-
ules. An hourglass module first downsamples the input features by a series of
convolution and max pooling layers. It then upsamples the features back to
the original resolution by a series of upsampling and convolution layers. Since
details are lost in the max pooling layers, skip layers are added to bring back the
details to the upsampled features. The hourglass module captures both global
and local features in a single unified structure. When multiple hourglass modules
are stacked in the network, the hourglass modules can reprocess the features to
capture higher-level of information. These properties make the hourglass net-
work an ideal choice for object detection as well. In fact, many current detec-
tors [10,19,22,35] already adopted networks similar to the hourglass network.

Our hourglass network consists of two hourglasses, and we make some mod-
ifications to the architecture of the hourglass module. Instead of using max
pooling, we simply use stride 2 to reduce feature resolution. We reduce feature
resolutions 5 times and increase the number of feature channels along the way
(256,384,384, 384,512). When we upsample the features, we apply 2 residual
modules followed by a nearest neighbor upsampling. Every skip connection also
consists of 2 residual modules. There are 4 residual modules with 512 channels in
the middle of an hourglass module. Before the hourglass modules, we reduce the
image resolution by 4 times using a 7 x 7 convolution module with stride 2 and
128 channels followed by a residual block [15] with stride 2 and 256 channels.

Following [28], we also add intermediate supervision in training. However,
we do not add back the intermediate predictions to the network as we find that
this hurts the performance of the network. We apply a 3 x 3 Conv-BN module
to both the input and output of the first hourglass module. We then merge
them by element-wise addition followed by a ReLU and a residual block with
256 channels, which is then used as the input to the second hourglass module.
The depth of the hourglass network is 104. Unlike many other state-of-the-art
detectors, we only use the features from the last layer of the whole network to
make predictions.

4 Experiments

4.1 Training Details

We implement CornerNet in PyTorch [29]. The network is randomly initialized
under the default setting of PyTorch with no pretraining on any external dataset.
As we apply focal loss, we follow [23] to set the biases in the convolution layers
that predict the corner heatmaps. During training, we set the input resolution
of the network to 511 x 511, which leads to an output resolution of 128 x 128. To
reduce overfitting, we adopt standard data augmentation techniques including
random horizontal flipping, random scaling, random cropping and random color
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jittering, which includes adjusting the brightness, saturation and contrast of an
image. Finally, we apply PCA [20] to the input image.
We use Adam [18] to optimize the full training loss:

L= Ldet + O4Lpull + ﬂLpush + ’YLoﬁ (8)

where «, § and 7y are the weights for the pull, push and offset loss respectively.
We set both o and 3 to 0.1 and v to 1. We find that 1 or larger values of o and 3
lead to poor performance. We use a batch size of 49 and train the network on 10
Titan X (PASCAL) GPUs (4 images on the master GPU, 5 images per GPU for
the rest of the GPUs). To conserve GPU resources, in our ablation experiments,
we train the networks for 250k iterations with a learning rate of 2.5 x 1074,
When we compare our results with other detectors, we train the networks for an
extra 250k iterations and reduce the learning rate to 2.5 x 10~ for the last 50k
iterations.

4.2 Testing Detalils

During testing, we use a simple post-processing algorithm to generate bounding
boxes from the heatmaps, embeddings and offsets. We first apply non-maximal
suppression (NMS) by using a 3 x 3 max pooling layer on the corner heatmaps.
Then we pick the top 100 top-left and top 100 bottom-right corners from the
heatmaps. The corner locations are adjusted by the corresponding offsets. We
calculate the L1 distances between the embeddings of the top-left and bottom-
right corners. Pairs that have distances greater than 0.5 or contain corners from
different categories are rejected. The average scores of the top-left and bottom-
right corners are used as the detection scores.

Instead of resizing an image to a fixed size, we maintain the original resolution
of the image and pad it with zeros before feeding it to CornerNet. Both the
original and flipped images are used for testing. We combine the detections from
the original and flipped images, and apply soft-nms [2] to suppress redundant
detections. Only the top 100 detections are reported. The average inference time
is 244 ms per image on a Titan X (PASCAL) GPU.

4.3 MS COCO

We evaluate CornerNet on the very challenging MS COCO dataset [24]. MS
COCO contains 80k images for training, 40k for validation and 20k for testing.
All images in the training set and 35k images in the validation set are used for
training. The remaining 5k images in validation set are used for hyper-parameter
searching and ablation study. All results on the test set are submitted to an
external server for evaluation. To provide fair comparisons with other detectors,
we report our main results on the test-dev set. MS COCO uses average precisions
(APs) at different IoUs and APs for different object sizes as the main evaluation
metrics.
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4.4 Ablation Study
Corner Pooling. Corner pooling is a key component of CornerNet. To under-

stand its contribution to performance, we train another network without corner
pooling but with the same number of parameters.

Table 1. Ablation on corner pooling on MS COCO validation.

| | AP AP AP | AP® AP™ AP" ]
w/o corner pooling|  36.5 52.0 38.9 17.6 38.7 48.8
w/ corner pooling 38.5 54.1 41.1 17.7 41.1 52.5
limprovement [ +2.0 +2.1 +2.2 [ +0.1 +2.4 +3.7 ‘

Table 1 shows that adding corner pooling gives significant improvement: 2.0%
on AP, 2.1% on AP® and 2.2% on AP". We also see that corner pooling is
especially helpful for medium and large objects, improving their APs by 2.4% and
3.7% respectively. This is expected because the topmost, bottommost, leftmost,
rightmost boundaries of medium and large objects are likely to be further away
from the corner locations.

Reducing Penalty to Negative Locations. We reduce the penalty given to
negative locations around a positive location, within a radius determined by the
size of the object (Sect. 3.2). To understand how this helps train CornerNet, we
train one network with no penalty reduction and another network with a fixed
radius of 2.5. We compare them with CornerNet on the validation set.

Table 2. Reducing the penalty given to the negative locations near positive locations
helps significantly improve the performance of the network

| AP AP APV AP® AP™ AP’

w/o reducing penalty 329 49.1 34.8 19.0 37.0 40.7
fixed radius 35.6 52.5 37.7 18.7 38.5 46.0
object-dependent radius| 38.5 54.1 41.1 17.7 41.1 52.5

Table 2 shows that a fixed radius improves AP over the baseline by 2.7%,
AP™ by 1.5% and AP! by 5.3%. Object-dependent radius further improves the
AP by 2.9%, AP™ by 2.6% and AP' by 6.5%. In addition, we see that the penalty
reduction especially benefits medium and large objects.
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Error Analysis. CornerNet simultaneously outputs heatmaps, offsets, and
embeddings, all of which affect detection performance. An object will be missed
if either corner is missed; precise offsets are needed to generate tight bounding
boxes; incorrect embeddings will result in many false bounding boxes. To under-
stand how each part contributes to the final error, we perform an error analysis
by replacing the predicted heatmaps and offsets with the ground-truth values
and evaluting performance on the validation set.

Table 3. Error analysis. We replace the predicted heatmaps and offsets with the ground-
truth values. Using the ground-truth heatmaps alone improves the AP from 38.5% to
74.0%, suggesting that the main bottleneck of CornerNet is detecting corners.

y AP AP AP | AP°  AP™ AP |
38.5 54.1 41.1 17.7 41.1 52.5
w/ gt heatmaps 74.0 88.5 79.3 60.8 82.0 82.6
w/ gt heatmaps + offsets| 87.1 90.0 86.7 85.0 87.9 83.1

Table 3 shows that using the ground-truth corner heatmaps alone improves
the AP from 38.5% to 74.0%. AP*, AP™ and AP' also increase by 43.1%, 40.9%
and 30.1% respectively. If we replace the predicted offsets with the ground-truth
offsets, the AP further increases by 13.1% to 87.1%. This suggests that although
there is still ample room for improvement in both detecting and grouping corners,
the main bottleneck is detecting corners. Figure 8 shows two qualitative examples
of the predicted corners.

Fig. 8. Example bounding box predictions overlaid on predicted heatmaps of corners.

4.5 Comparisons with State-of-the-Art Detectors

We compare CornerNet with other state-of-the-art detectors on MS COCO test-
dev (Table4). With multi-scale evaluation, CornerNet achieves an AP of 42.1%,
the state of the art among existing one-stage methods and competitive with
two-stage methods.
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Table 4. CornerNet versus others on MS COCO test-dev. CornerNet outperforms all
one-stage detectors and achieves results competitive to two-stage detectors

[Method Backbone [AP AP™ AP[AP® AP™ AP'JAR' AR™ AR™J[AR® AR™ AR|
Two-stage detectors

DeNet [39] ResNet-101 33.8 53.4 36.1(12.3 36.1 50.8/29.6 42.6 43.5 [19.2 46.9 64.3
CoupleNet [46] ResNet-101 34.4 54.8 37.213.4 38.1 50.8/30.0 45.0 46.4 [20.7 53.1 68.5
Faster R-CNN by G-RMI [16] |Inception-ResNet-v2 [38] [34.7 55.5 36.7 |13.5 38.1 52.0| - - - - - -
Faster R-CNN+++ [15] ResNet-101 34.9 55.7 37.4|15.6 38.7 50.9| - - - - - -
Faster R-CNN w/ FPN [22] ResNet-101 36.2 59.1 39.0 [18.2 39.0 48.2| - - - - - -
Faster R-CNN w/ TDM [35] |Inception-ResNet-v2 36.8 57.7 39.216.2 39.8 52.1|31.6 49.3 51.9 [28.1 56.6 71.1
D-FCN [7] Aligned-Inception-ResNet[37.5 58.0 - [19.4 40.1 52.5| - - - - - -
Regionlets [43] ResNet-101 39.3 59.8 - |21.7 43.7 50.9| - - - - - -
Mask R-CNN [13] ResNeXt-101 39.8 62.3 43.4|22.1 43.2 51.2| - - - - - -
Soft-NMS [2] Aligned-Inception-ResNet|40.9 62.8 - [23.3 43.6 53.3| - - - - - -
LH R-CNN [21] ResNet-101 41.5 - - |25.2 45.3 53.1] - - - - - -
Fitness-NMS [40] ResNet-101 41.8 60.9 44.9 |21.5 45.0 57.5| - - - - - -
Cascade R-CNN [4] ResNet-101 42.8 62.1 46.3 |23.7 45.5 55.2| - - - - - -
D-RFCN + SNIP [37] DPN-98 [5] 45.7 67.3 51.1|29.3 488 57.1| - - - -
One-stage detectors

YOLOv2 [31] DarkNet-19 21.6 44.0 19.2]5.0 22.4 35.5/20.7 31.6 33.3 | 9.8 36.5 54.4
DSOD300 [33] DS/64-192-48-1 29.3 47.3 30.6 | 9.4 31.5 47.0{27.3 40.7 43.0 |16.7 47.1 65.0
GRP-DSOD320 [34] DS/64-192-48-1 30.0 47.9 31.8 |10.9 33.6 46.3|28.0 42.1 44.5 |18.8 49.1 65.0
SSD513 [25] ResNet-101 31.2 50.4 33.3]10.2 34.5 49.8/28.3 42.1 44.4 [17.6 49.2 65.8
DSSD513 [10] ResNet-101 33.2 53.3 35.2|13.0 35.4 51.1|28.9 43.5 46.2 |21.8 49.1 66.4
RefineDet512 (single scale) [45]|ResNet-101 36.4 57.5 39.5|16.6 39.9 51.4| - - - - - -
RetinaNet800 [23] ResNet-101 39.1 59.1 42.3|21.8 42.7 50.2| - - - - - -
RefineDet512 (multi scale) [45] |ResNet-101 41.8 62.9 45.7|25.6 45.1 54.1| - - - - -
CornerNet511 (single scale) Hourglass-104 40.5 56.5 43.1]19.4 42.7 53.9|35.3 54.3 59.1 [37.4 61.9 76.9
CornerNet511 (multi scale) Hourglass-104 42.1 57.8 45.320.8 44.8 56.7|36.4 55.7 60.0 [38.5 62.7 77.4

5 Conclusion

We have presented CornerNet, a new approach to object detection that detects
bounding boxes as pairs of corners. We evaluate CornerNet on MS COCO and
demonstrate competitive results.

Acknowledgements. Toyota Research Institute (“TRI”) provided funds to assist the
authors with their research but this article solely reflects the opinions and conclusions
of its authors and not TRI or any other Toyota entity.

References

1.

Bell, S., Lawrence Zitnick, C., Bala, K., Girshick, R.: Inside-outside net: detecting
objects in context with skip pooling and recurrent neural networks. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2874—
2883 (2016)

Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS improving object detec-
tion with one line of code. In: 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 5562-5570. IEEE (2017)

Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convo-
lutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354-370. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46493-0-22

Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detec-
tion. arXiv preprint arXiv:1712.00726 (2017)


https://doi.org/10.1007/978-3-319-46493-0_22
http://arxiv.org/abs/1712.00726

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

CornerNet: Detecting Objects as Paired Keypoints 779

Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks. In:
Advances in Neural Information Processing Systems, pp. 4470-4478 (2017)

Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully
convolutional networks. arXiv preprint arXiv:1605.06409 (2016)

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convo-
lutional networks. CoRR, abs/1703.06211, vol. 1(2), p. 3 (2017)

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: IEEE Conference on Computer Vision and Pattern
Recognition CVPR 2009, pp. 248-255. IEEE (2009)

Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman,
A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis.
111(1), 98-136 (2015)

Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD: Deconvolutional single
shot detector. arXiv preprint arXiv:1701.06659 (2017)

Girshick, R.: FAST R-CNN. arXiv preprint arXiv:1504.08083 (2015)

Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580-587 (2014)
He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. arxiv preprint
arxiv: 170306870 (2017)

He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8691, pp. 346-361. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10578-9_23

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770-778 (2016)

Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detec-
tors. In: IEEE CVPR (2017)

Toffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448-456 (2015)

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Kong, T., Sun, F., Yao, A., Liu, H., Lu, M., Chen, Y.: Ron: reverse connection with
objectness prior networks for object detection. arXiv preprint arXiv:1707.01691
(2017)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097-1105 (2012)

Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: Light-head R-CNN: in
defense of two-stage object detector. arXiv preprint arXiv:1711.07264 (2017)

Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. arXiv preprint arXiv:1612.03144 (2016)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object
detection. arXiv preprint arXiv:1708.02002 (2017)

Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740-755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48


http://arxiv.org/abs/1605.06409
http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/170306870
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-10578-9_23
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1707.01691
http://arxiv.org/abs/1711.07264
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1708.02002
https://doi.org/10.1007/978-3-319-10602-1_48

780

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

H. Law and J. Deng

Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21-37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0-2

Newell, A., Deng, J.: Pixels to graphs by associative embedding. In: Advances in
Neural Information Processing Systems, pp. 2168-2177 (2017)

Newell, A., Huang, Z., Deng, J.: Associative embedding: end-to-end learning for
joint detection and grouping. In: Advances in Neural Information Processing Sys-
tems, pp. 2274-2284 (2017)

Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose esti-
mation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9912, pp. 483-499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46484-8_29

Paszke, A., et al.: Automatic differentiation in pytorch (2017)

Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779-788 (2016)

Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. arXiv preprint 1612
(2016)

Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91-99 (2015)

Shen, Z., Liu, Z., Li, J., Jiang, Y.G., Chen, Y., Xue, X.: DSOD: learning deeply
supervised object detectors from scratch. In: The IEEE International Conference
on Computer Vision (ICCV), vol. 3, p. 7 (2017)

Shen, Z., et al.: Learning object detectors from scratch with gated recurrent feature
pyramids. arXiv preprint arXiv:1712.00886 (2017)

Shrivastava, A., Sukthankar, R., Malik, J., Gupta, A.: Beyond skip connections:
top-down modulation for object detection. arXiv preprint arXiv:1612.06851 (2016)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

Singh, B., Davis, L.S.: An analysis of scale invariance in object detection-snip.
arXiv preprint arXiv:1711.08189 (2017)

Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: AAAI, vol. 4, p. 12 (2017)
Tychsen-Smith, L., Petersson, L.: Denet: scalable real-time object detection with
directed sparse sampling. arXiv preprint arXiv:1703.10295 (2017)
Tychsen-Smith, L., Petersson, L.: Improving object localization with fitness nms
and bounded iou loss. arXiv preprint arXiv:1711.00164 (2017)

Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search
for object recognition. Int. J. Comput. Vis. 104(2), 154-171 (2013)

Xiang, Y., Choi, W., Lin, Y., Savarese, S.: Subcategory-aware convolutional neu-
ral networks for object proposals and detection. arXiv preprint arXiv:1604.04693
(2016)

Xu, H., Lv, X., Wang, X., Ren, Z., Chellappa, R.: Deep regionlets for object detec-
tion. arXiv preprint arXiv:1712.02408 (2017)

Zhai, Y., Fu, J., Lu, Y., Li, H.: Feature selective networks for object detection.
arXiv preprint arXiv:1711.08879 (2017)

Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network
for object detection. arXiv preprint arXiv:1711.06897 (2017)


https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-319-46484-8_29
http://arxiv.org/abs/1712.00886
http://arxiv.org/abs/1612.06851
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1711.08189
http://arxiv.org/abs/1703.10295
http://arxiv.org/abs/1711.00164
http://arxiv.org/abs/1604.04693
http://arxiv.org/abs/1712.02408
http://arxiv.org/abs/1711.08879
http://arxiv.org/abs/1711.06897

46.

47.

CornerNet: Detecting Objects as Paired Keypoints 781

Zhu, Y., Zhao, C., Wang, J., Zhao, X., Wu, Y., Lu, H.: Couplenet: coupling global
structure with local parts for object detection. In: Proceedings of International
Conference on Computer Vision (ICCV) (2017)

Zitnick, C.L., Dollar, P.: Edge boxes: locating object proposals from edges. In:
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8693, pp. 391-405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10602-1-26


https://doi.org/10.1007/978-3-319-10602-1_26
https://doi.org/10.1007/978-3-319-10602-1_26

	CornerNet: Detecting Objects as Paired Keypoints
	1 Introduction
	2 Related Works
	3 CornerNet
	3.1 Overview
	3.2 Detecting Corners
	3.3 Grouping Corners
	3.4 Corner Pooling
	3.5 Hourglass Network

	4 Experiments
	4.1 Training Details
	4.2 Testing Details
	4.3 MS COCO
	4.4 Ablation Study
	4.5 Comparisons with State-of-the-Art Detectors

	5 Conclusion
	References




