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Abstract. Many methods have been developed to help people find the
video content they want efficiently. However, there are still some unsolved
problems in this area. For example, given a query video and a reference
video, how to accurately localize a segment in the reference video such
that the segment semantically corresponds to the query video? We define
a distinctively new task, namely video re-localization, to address this
need. Video re-localization is an important enabling technology with
many applications, such as fast seeking in videos, video copy detection,
as well as video surveillance. Meanwhile, it is also a challenging research
task because the visual appearance of a semantic concept in videos can
have large variations. The first hurdle to clear for the video re-localization
task is the lack of existing datasets. It is labor expensive to collect pairs
of videos with semantic coherence or correspondence, and label the corre-
sponding segments. We first exploit and reorganize the videos in Activ-
ityNet to form a new dataset for video re-localization research, which
consists of about 10,000 videos of diverse visual appearances associated
with the localized boundary information. Subsequently, we propose an
innovative cross gated bilinear matching model such that every time-step
in the reference video is matched against the attentively weighted query
video. Consequently, the prediction of the starting and ending time is
formulated as a classification problem based on the matching results.
Extensive experimental results show that the proposed method outper-
forms the baseline methods. Our code is available at: https://github.
com/fengyang0317/video reloc.
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1 Introduction

A massive amount of videos is generated every day. To effectively access the
videos, several kinds of methods have been developed. The most common and
mature one is searching by keywords. However, keyword-based search largely
depends on user tagging. The tags of a video are user specified and it is unlikely
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for a user to tag all the content in a complex video. Content-based video retrieval
(CBVR) [3,11,22] emerges to address these shortcomings. Given a query video,
CBVR systems analyze the content in it and retrieve videos with relevant content
to the query video. After retrieving videos, the user will have many videos in
hand. It is time-consuming to watch all the videos from the beginning to the
end to determine the relevance. Thus video summarization methods [21,30] are
proposed to create a brief synopsis of a long video. Users are able to get the
general idea of a long video quickly with the help of video summarization. Similar
to video summarization, video captioning aims to summarize a video using one
or more sentences. Researchers have also developed localization methods to help
users quickly seek some video clips in a long video. The localization methods
mainly focus on localizing video clips belonging to a list of pre-defined classes, for
example, actions [13,26]. Recently, localization methods with natural language
queries have been developed [1,7].

Fig. 1. The top video is a clip of an action performed by two characters. The mid-
dle video is a whole episode which contains the same action happening in a different
environment (marked by the green rectangle). The bottom is a video containing the
same action but performed by two real persons. Given the top query video, video
re-localization aims to accurately detect the starting and ending points of the green
segment in the middle video and the bottom video, which semantically corresponds to
the given query video. (Color figure online)

Although existing video retrieval techniques are powerful, there still remain
some unsolved problems. Consider the following scenario: when a user is watch-
ing YouTube, he finds a very interesting video clip as shown in the top row of
Fig. 1. This clip shows an action performed by two boy characters in a cartoon
named “Dragon Ball Z”. What should the user do if he wants to find when such
action also happens in that cartoon? Simply finding exactly the same content
with copy detection methods [12] would fail for most cases, as the content vari-
ations between videos are of great difference. As shown in the middle video of
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Fig. 1, the action takes place in a different environment. Copy detection methods
cannot handle such complicated scenarios. An alternative approach is relying on
the action localization methods. However, action localization methods usually
localize pre-defined actions. When the action within the video clip, as shown in
Fig. 1, has not been pre-defined or seen in the training dataset, action localiza-
tion methods will not work. Therefore, an intuitive way to solve this problem is
to crop the segment of interest as the query video and design a new model to
localize the semantically matched segments in full episodes.

Motivated by this example, we define a distinctively new task called video
re-localization, which aims at localizing a segment in a reference video such that
the segment semantically corresponds to a query video. Specifically, the inputs
to the task are one query video and one reference video. The query video is a
short clip which users are interested in. The reference video contains at least one
segment semantically corresponding to the content in the query video. Video re-
localization aims at accurately detecting the starting and ending points of the
segment, which semantically corresponds to the query video.

Video re-localization has many real applications. With a query clip, a user can
quickly find the content he is interested in by video re-localization, thus avoiding
seeking in a long video manually. Video re-localization can also be applied to
video surveillance or video-based person re-identification [19,20].

Video re-localization is a very challenging task. First, the appearance of the
query and reference videos may be quite different due to environment, subject,
and viewpoint variances, even though they express the same visual concept.
Second, determining the accurate starting and ending points is very challeng-
ing. There may be no obvious boundaries at the starting and ending points.
Another key obstacle to video re-localization is the lack of video datasets that
contain pairs of query and reference videos as well as the associated localization
information.

In order to address the video re-localization problem, we create a new dataset
by reorganizing the videos in ActivityNet [6]. When building the dataset, we
assume that the action segments belonging to the same class semantically cor-
respond to each other. The query video is the segment that contains one action.
The paired reference video contains both one segment of the same type of action
and the background information before and after the segment. We randomly
split the 200 action classes into three parts. 160 action classes are used for train-
ing and 20 action classes are used for validation. The remaining 20 action classes
are used for testing. Such a split guarantees that the action class of a video used
for testing is unseen during training. Therefore, if the performance of a video
re-localization model is good on the testing set, it should be able to generalize
to other unseen actions as well.

To address the technical challenges of video re-localization, we propose a
cross gated bilinear matching model with three recurrent layers. First, local
video features are extracted from both the query and reference videos. The fea-
ture extraction is performed considering only a short period of video frames. The
first recurrent layer is used to aggregate the extracted features and generate a
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new video feature considering the context information. Based on the aggregated
representations, we perform matching of the query and reference videos. The
feature of every reference video is matched with the attentively weighted query
video. In each matching step, the reference video feature and the query video
feature are processed by factorized bilinear matching to generate their interac-
tion results. Since not all the parts in the reference video are equally relevant to
the query video, a cross gating strategy is stacked before bilinear matching to
preserve the most relevant information while gating out the irrelevant informa-
tion. The computed interaction results are fed into the second recurrent layer to
generate a query-aware reference video representation. The third recurrent layer
is used to perform localization, where prediction of the starting and ending posi-
tions is formulated as a classification problem. For each time step, the recurrent
unit outputs the probability that the time step belongs to one of the four classes:
starting point, ending point, inside the segment, and outside the segment. The
final prediction result is the segment with the highest joint probability in the
reference video.

In summary, our contributions lie in four-fold:

1. We introduce a novel task, namely video re-localization, which aims at local-
izing a segment in the reference video such that the segment semantically
corresponds to the given query video.

2. We reorganize the videos in ActivityNet [6] to form a new dataset to facilitate
the research on video re-localization.

3. We propose a cross gated bilinear matching model with the localization task
formulated as a classification problem for video re-localization, which can
comprehensively capture the interactions between the query and reference
videos.

4. We validate the effectiveness of our model on the new dataset and achieve
favorable results better than the baseline methods.

2 Related Work

CBVR systems [3,11,22] have evolved for over two decades. Modern CBVR
systems support various types of queries such as query by example, query by
objects, query by keywords and query by natural language. Given a query, CBVR
systems can retrieve a list of entire videos related to the query. Some of the
retrieved videos will inevitably contain content irrelevant to the query. Users may
still need to manually seek the part of interest in a retrieved video, which is time-
consuming. Video re-localization proposed in this paper is different from CBVR
in that it can locate the exact starting and ending points of the semantically
coherent segment in a long reference video.

Action localization [16,17] is related to our video re-localization in that both
are intended to find the starting and ending points of a segment in a long
video. The difference is that action localization methods only focus on certain
pre-defined action classes. Some attempts were made to go beyond pre-defined
classes. Seo et al. [25] proposed a one-shot action recognition method that does
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not require prior knowledge about actions. Soomro and Shah [27] moved one step
further by introducing unsupervised action discovery and localization. In con-
trast, video re-localization is more general than one-shot or unsupervised action
localization in that video re-localization can be applied to many other concepts
besides actions or involving multiple actions.

Recently, Hendricks et al. [1] proposed to retrieve a specific temporal segment
from a video by a natural language query. Gao et al. [7] focused on temporal
localization of actions in untrimmed videos using natural language queries. Com-
pared to existing action localization methods, it has the advantage of localizing
more complex actions than the actions in a pre-defined list. Our method is dif-
ferent in that we directly match the query and reference video segments in a
single video modality.

3 Methodology

Given a query video clip and a reference video, we design one model to address
the video re-localization task by exploiting their complicated interactions and
predicting the starting and ending points of the matched segment. As shown in
Fig. 2, our model consists of three components, specifically they are aggregation,
matching, and localization.

3.1 Video Feature Aggregation

In order to effectively represent the video content, we need to choose one or
several kind of video features depending on what kind of semantics we intend
to capture. For our video re-localization task, the global video features are not
considered, as we need to rely on the local information to perform segment
localization.

After performing feature extraction, two lists of local features with a tem-
poral order are obtained for the query and reference videos, respectively. The
query video features are denoted by a matrix Q ∈ R

d×q, where d is the feature
dimension and q is the number of features in the query video, which is related to
the video length. Similarly, the reference video is denoted by a matrix R ∈ R

d×r,
where r is the number of features in the reference video. As aforementioned, fea-
ture extraction only considers the video characteristics within a short range. In
order to incorporate the contextual information within a longer range, we employ
the long short-term memory (LSTM) [10] to aggregate the extracted features:

hq
i = LSTM(qi, h

q
i−1)

hr
i = LSTM(ri, hr

i−1),
(1)

where qi and ri are the i-th column in Q and R, respectively. hq
i , hr

i ∈ R
l×1 are

the hidden states at the i-th time step of the two LSTMs, with l denoting the
dimensionality of the hidden state. Note that the parameters of the two LSTM
are shared to reduce the model size. The yielded hidden state of the LSTM is
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Fig. 2. The architecture of our proposed model for video re-localization. Local video
features are first extracted for both query and reference videos and then aggregated by
LSTMs. The proposed cross gated bilinear matching scheme exploits the complicated
interactions between the aggregated query and reference video features. The localiza-
tion layer, relying on the matching results, detects the starting and ending points of
a segment in the reference video by performing classification on the hidden state of
each time step. The four possible classes are Starting, Ending, Inside and Outside. A©
denotes the attention mechanism described in Sect. 3. � and ⊗ are inner and outer
products, respectively.

regarded as the new video representation. Due to the natural characteristics and
behaviors of LSTM, the hidden states can encode and aggregate the previous
contextual information.

3.2 Cross Gated Bilinear Matching

At each time step, we perform matching of the query and reference videos,
based on the aggregated video representations hq

i and hr
i . Our proposed cross

gated bilinear matching scheme consists of four modules, specifically the gener-
ation of attention weighted query, cross gating, bilinear matching, and matching
aggregation.

Attention Weighted Query. For video re-localization, the segment corre-
sponding to the query clip can potentially be anywhere in the reference video.
Therefore, every feature from the reference video needs to be matched against
the query video to capture their semantic correspondence. Meanwhile, the query
video may be quite long, thus only some parts in the query video actually cor-
respond to one feature in the reference video. Motivated by the machine com-
prehension method in [29], an attention mechanism is used to select which part
in the query video is to be matched with the feature in the reference video.
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At the i-th time step of the reference video, the query video is weighted by an
attention mechanism:

ei,j = tanh(W qhq
j + W rhr

i + Wmhf
i−1 + bm),

αi,j =
exp(w�ei,j + b)

∑
k exp(w�ei,k + b)

,

h̄q
i =

∑

j

αi,jh
q
j ,

(2)

where W q, W r, Wm ∈ R
l×l, w ∈ R

l×1 are the weight parameters in our attention
model with bm ∈ R

l×1 and b ∈ R denoting the bias terms. It can be observed that
the attention weight αi,j relies on not only the current representation hr

i of the
reference video but also the matching result hf

i−1 ∈ R
l×1 in the previous stage,

which can be obtained by Eq. (7) and will be introduced later. The attention
mechanism tries to find the most relevant hq

j to hr
i and use the relevant hq

j to
generate the query representation h̄q

i , which is believed to better match hr
i for

the video re-localization task.

Cross Gating. Based on the attention weighted query representation h̄q
i and

reference representation hr
i , we propose a cross gating mechanism to gate out

the irrelevant reference parts and emphasize the relevant parts. In cross gating,
the gate for the reference video feature depends on the query video. Meanwhile,
the query video features are also gated by the current reference video feature.
The cross gating mechanism can be expressed by the following equation:

gri = σ(W g
r hr

i + bgr), h̃q
i = h̄q

i � gri ,

gqi = σ(W g
q h̄q

i + bgq), h̃r
i = hr

i � gqi ,
(3)

where W g
r ,W g

q ∈ R
l×l, and bgr , b

g
q ∈ R

l×1 denote the learnable parameters. σ
denotes the non-linear sigmoid function. If the reference feature hr

i is irrelevant
to the query video, both the reference feature hr

i and query representation h̄q
i

are filtered to reduce their effect on the subsequent layers. If hr
i closely relates to

h̄q
i , the cross gating strategy is expected to further enhance their interactions.

Bilinear Matching. Motivated by bilinear CNN [18], we propose a bilinear
matching method to further exploit the interactions between h̃q

i and h̃r
i , which

can be written as:
tij = h̃q�

i W b
j h̃r

i + bbj , (4)

where tij is the j-th dimension of the bilinear matching result, given by ti =
[ti1, ti2, . . . , til]�. W b

j ∈ R
l×l and bbj ∈ R are the learnable parameters used to

calculate tij .
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The bilinear matching model in Eq. (4) introduces too many parameters, thus
making the model difficult to learn. Normally, to generate an l-dimension bilinear
output, the number of parameters introduced would be l3 + l. In order to reduce
the number of parameters, we factorize the bilinear matching model as:

ĥq
i = Fj h̃

q
i + bfj ,

ĥr
i = Fj h̃

r
i + bfj ,

tij = ĥq�
i ĥr

i ,

(5)

where Fj ∈ R
k×l and bfj ∈ R

k×1 are the parameters to be learned. k is a hyper-
parameter much smaller than l. Therefore, only k × l × (l + 1) parameters are
introduced by the factorized bilinear matching model.

The factorized bilinear matching scheme captures the relationships between
the query and reference representations. By expanding Eq. (5), we have the
following equation:

tij = h̃q�
i F�

j Fj h̃
r
i

︸ ︷︷ ︸
quadratic term

+ bf�
j Fj(h̃

q
i + h̃r

i )
︸ ︷︷ ︸

linear term

+ bf�
i bfi︸ ︷︷ ︸

bias term

. (6)

Each tij consists of a quadratic term, a linear term, and a bias term, with the
quadratic term capable of capturing the complex dynamics between h̃q

i and h̃r
i .

Matching Aggregation. Our obtained matching result ti captures the com-
plicated interactions between the query and reference videos from the local view
point. Therefore, an LSTM is used to further aggregate the matching context:

hf
i = LSTM(ti, h

f
i−1). (7)

Following the idea in bidirectional RNN [24], we also use another LSTM to
aggregate the matching results in the reverse direction. Let hb

i denote the hidden
state of the LSTM in the reverse direction. By concatenating hf

i together with
hb
i , the aggregated hidden state hm

i is generated.

3.3 Localization

The output of the matching layer hm
i indicates whether the content in the i-th

time step in the reference video matches well with the query clip. We rely on hm
i

to predict the starting and ending points of the matching segment. We formulate
the localization task as a classification problem. As illustrated in Fig. 2, at each
time step in the reference video, the localization layer predicts the probability
that this time step belongs to one of the four classes: starting point, ending
point, inside point, and outside point. The localization layer is given by:

hl
i = LSTM(hm

i , hl
i−1),

pi = softmax(W lhl
i + bl),

(8)
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where W l ∈ R
4×l and bl ∈ R

4×1 are the parameters in the softmax layer. pi is
the predicted probability for time step i. It has four dimensions p1i , p2i , p3i , and
p4i , denoting the probability of starting, ending, inside and outside, respectively.

3.4 Training

We train our model using the weighted cross entropy loss. We generate a label
vector for the reference video at each time step. For a reference video with a
ground-truth segment [s, e], we assume 1 ≤ s ≤ e ≤ r. The time steps belonging
to [1, s) and (e, r] are outside the ground-truth segment, the generated label
probabilities for them are gi = [0, 0, 0, 1]. The s-th time step is the starting time
step, which is assigned with label probability gi = [12 , 0, 1

2 , 0]. Similarly, the label
probability at the e-th time step is gi = [0, 1

2 , 1
2 , 0]. The time steps in the segment

(s, e) are labeled as gi = [0, 0, 0, 1]. When the segment is very short and falls in
only one time step, s will be equal to e. In that case, the label probability for
that time step would be [13 , 1

3 , 1
3 , 0]. The cross entropy loss for one sample pair

is given by:

loss = −1
r

r∑

i=1

4∑

n=1

gni log(pni ), (9)

where gni is the n-th dimension of gi.
One problem of using the above loss for training is that the predicted proba-

bilities of the starting point and ending point would be orders smaller than the
probabilities of the other two classes. The reason is that the positive samples
for the starting and ending points are much fewer than those of the other two
classes. For one reference video, there is only one starting point and one ending
point. In contrast, all the other positions are either inside or outside of the seg-
ment. So we decide to pay more attention to losses at the starting and ending
positions, with a dynamic weighting strategy:

wi =
{

cw, if g1i + g2i > 0
1, otherwise (10)

where cw is a constant. Thus, the weighted loss used for training can be further
formulated as:

lossw = −1
r

r∑

i=1

wi

4∑

n=1

gni log(pni ). (11)

3.5 Inference

After the model is properly trained, we can perform video re-localization on a
pair of query and reference videos. We localize the segment with the largest joint
probability in the reference video, which is given by:

s, e = arg max
s,e

p1sp
2
e

(
e∏

i=s

p3i

) 1
e−s+1

, (12)
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where s and e are the predicted time steps of the starting and ending points,
respectively. As shown in Eq. (12), the geometric mean of all the probabilities
inside the segment is used such that the joint probability will not be affected by
the length of the segment.

4 The Video Re-localization Dataset

Existing video datasets are usually created for classification [8,14], temporal
localization [6], captioning [4] or video summarization [9]. None of them can be
directly used for the video re-localization task. To train our video re-localization
model, we need pairs of query videos and reference videos, where the segment
in the reference video semantically corresponding to the query video should be
annotated with its localization information, specifically the starting and ending
points. It would be labor expensive to manually collect query and reference videos
and localize the segments having the same semantics with the query video.

Fig. 3. Several video samples in our dataset. The segments containing different actions
are marked by the green rectangles. (Color figure online)

Therefore, in this study, we create a new dataset based on ActivityNet [6]
for video re-localization. ActivityNet is a large-scale action localization dataset
with segment-level action annotations. We reorganize the video sequences in
ActivityNet aiming to relocalize the actions in one video sequence given another
video segment of the same action. There are 200 classes in ActivityNet and the
videos of each class are split into training, validation and testing subsets. This
split is not suitable for our video re-localization problem because we hope a
video re-localization method should be able to relocalize more actions than the
actions defined in ActivityNet. Therefore, we split the dataset by action classes.
Specifically, we randomly select 160 classes for training, 20 classes for validation,
and the remaining 20 classes for testing. This split guarantees that the action
classes used for validation and testing will not be seen during training. The video
re-localization model is required to relocalize unknown actions during testing.
If it works well on the testing set, it should be able to generalize well to other
unseen actions.

Many videos in ActivityNet are untrimmed and contain several action seg-
ments. First, we filter the videos with two overlapped segments, which are anno-
tated with different action classes. Second, we merge the overlapped segments of
the same action class. Third, we also remove the segments that are longer than
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512 frames. After such processes, we obtain 9, 530 video segments. Figure 3 illus-
trates several video samples in the dataset. It can be observed that some video
sequences contain more than one segment. One video segment can be regarded
as a query video clip, while its paired reference video can be selected or cropped
from the video sequence to contain only one segment with the same action label
as the query video clip. During our training process, the query video and ref-
erence video are randomly paired, while the pairs are fixed for validation and
testing. In the future, we will release the constructed dataset to the public and
continuously enhance the dataset.

5 Experiments

In this section, we conduct several experiments to verify our proposed model.
First, three baseline methods are designed and introduced. Then we will intro-
duce our experimental settings including evaluation criteria and implementation
details. Finally, we demonstrate the effectiveness of our proposed model through
performance comparisons and ablation studies.

5.1 Baseline Models

Currently, there is no model specifically designed for video re-localization. We
design three baseline models, performing frame-level and video-level compar-
isons, and action proposal generation, respectively.

Frame-Level Baseline. We design a frame-level baseline motivated by the
backtracking table and diagonal blocks described in [5]. We first normalize the
features of query and reference videos. Then we calculate a distance table D ∈
R

q×r by Dij = ‖hq
i −hr

j‖2. The diagonal block with the smallest average distances
is searched by dynamic programming. The output of this method is the segment
in which the diagonal block lies. Similar to [5], we also allow horizontal and
vertical movements to allow the length of the output segment to be flexible.
Please note that no training is needed for this baseline.

Video-Level Baseline. In this baseline, each video segment is encoded as
a vector by an LSTM. The L2-normalized last hidden state in the LSTM is
selected as the video representation. To train this model, we use the triplet loss in
[23], which enforces anchor positive distance to be smaller than anchor negative
distance by a margin. The query video is regarded as the anchor. Positive samples
are generated by sampling a segment in the reference video having temporal
overlap (tIoU) over 0.8 with the ground-truth segment while negative samples
are obtained by sampling a segment with tIoU less than 0.2. When testing, we
perform exhaustively search to select the most similar segment with the query
video.
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Action Proposal Baseline. We train the SST [2] model on our training set
and perform the evaluation on the testing set. The output of the model is the
proposal with the largest confidence score.

5.2 Experimental Settings

We use C3D [28] features released by ActivityNet Challenge 20161. The features
are extracted by publicly available pre-trained C3D model having a temporal
resolution of 16 frames. The values in the second fully-connected layer (fc7) are
projected to 500 dimensions by PCA. We temporally downsample the provided
features by a factor of two so they do not have overlap with each other. Adam
[15] is used as the optimization method. The parameters for the Adam optimiza-
tion method are left at defaults: β1 = 0.9 and β2 = 0.999. The learning rate,
dimension of the hidden state l, loss weight cw and factorized matrix rank k
are set to 0.001, 128, 10, and 8, respectively. We manually limit the maximum
allowed length of the predicted segment to 1024 frames.

Following the action localization task, we report the average top-1 mAP
computed with tIoU thresholds between 0.5 and 0.9 with the step size of 0.1.

5.3 Performance Comparisons

Table 1 shows the results of our method and baseline methods. According to
the results, we have several observations. The frame-level baseline performs bet-
ter than randomly guesses, which suggests that the C3D features preserve the
similarity between videos. The result of the frame-level baseline is significantly
inferior to our model. The reasons may be attributed to the fact that no training
process is involved in the frame-level baseline.

The performance of the video-level baseline is slightly better than the frame-
level baseline, which suggests that the LSTM used in the video-level baseline
learns to project corresponding videos to similar representations. However, the
LSTM encodes the two video segments independently without considering their
complicated interactions. Therefore, it cannot accurately predict the starting and
ending points. Additionally, this video-level baseline is very inefficient during the

Table 1. Performance comparisons on our constructed dataset. The top entry is high-
lighted in boldface.

1 http://activity-net.org/challenges/2016/download.html.

http://activity-net.org/challenges/2016/download.html
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inference process because the reference video needs to be encoded multiple times
for an exhaustive search.

Our method is substantially better than the three baseline methods. The
good results of our method indicate that the cross gated bilinear matching
scheme indeed helps to capture the interactions between the query and the
reference videos. The starting and ending points can be accurately detected,
demonstrating its effectiveness for the video re-localization task.

Some qualitative results from the testing set are shown in Fig. 4. It can be
observed that the query and reference videos are of great visual difference, even
though they express the same semantic meaning. Although our model has not
seen these actions during the training process, it can effectively measure their
semantic similarities, and consequently localizes the segments correctly in the
reference videos.

Fig. 4. Qualitative results. The segment corresponding to the query is marked by green
rectangles. Our model can accurately localize the segment semantically corresponding
to the query video in the reference video. (Color figure online)

Fig. 5. Visualization of the attention mechanism. The top video is the query, while
the bottom video is the reference. The color intensity of the blue lines indicates the
attention strength. The darker the colors are, the higher the attention weights are.
Note that only the connections with high attention weights are shown. (Color figure
online)
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Table 2. Performance comparisons of the ablation study. The top entry is highlighted
in boldface.

5.4 Ablation Study

Contributions of Different Components. To verify the contribution of each
part of our proposed cross gated bilinear matching model, we perform three abla-
tion studies. In the first ablation study, we create a base model by removing the
cross gating part and replacing the bilinear part with the concatenation of two
feature vectors. The second and third studies are designed by adding cross gating
and bilinear to the base model, respectively. Table 2 lists all the results of the
aforementioned ablation studies. It can be observed that both bilinear matching
and cross gating are helpful for the video re-localization task. Cross gating can
help filter out the irrelevant information while enhancing the meaningful inter-
actions between the query and reference videos. Bilinear matching fully exploits
the interactions between the reference and query videos, leading to better results
than the base model. Our full model, consisting of both cross gating and bilinear
matching, achieves the best results.

Attention. In Fig. 5, we visualize the attention values for a query and reference
video pair. The top video is the query video, while the bottom video is the
reference. Both of the two videos contain some parts of “hurling” and“talking”.
It is clear that the “hurling” parts in the reference video highly interact with
the“hurling” parts in the query with larger attention weights.

6 Conclusions

In this paper, we first define a distinctively new task called video re-localization,
which aims at localizing a segment in the reference video such that the segment
semantically corresponds to the query video. Video re-localization has many
real-world applications, such as finding interesting moments in videos, video
surveillance, and person re-id. To facilitate the new video re-localization task,
we create a new dataset by reorganizing the videos in ActivityNet [6]. Further-
more, we propose a novel cross gated bilinear matching network, which effectively
performs the matching between the query and reference videos. Based on the
matching results, an LSTM is applied to localize the query video in the refer-
ence video. Extensive experimental results show that our model is effective and
outperforms several baseline methods.
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