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Abstract. Comparing the appearance of corresponding body parts is
essential for person re-identification. As body parts are frequently mis-
aligned between the detected human boxes, an image representation
that can handle this misalignment is required. In this paper, we pro-
pose a network that learns a part-aligned representation for person re-
identification. Our model consists of a two-stream network, which gener-
ates appearance and body part feature maps respectively, and a bilinear-
pooling layer that fuses two feature maps to an image descriptor. We
show that it results in a compact descriptor, where the image match-
ing similarity is equivalent to an aggregation of the local appearance
similarities of the corresponding body parts. Since the image similar-
ity does not depend on the relative positions of parts, our approach
significantly reduces the part misalignment problem. Training the net-
work does not require any part annotation on the person re-identification
dataset. Instead, we simply initialize the part sub-stream using a pre-
trained sub-network of an existing pose estimation network and train
the whole network to minimize the re-identification loss. We validate the
effectiveness of our approach by demonstrating its superiority over the
state-of-the-art methods on the standard benchmark datasets including
Market-1501, CUHK03, CUHK01 and DukeMTMC, and standard video
dataset MARS.
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1 Introduction

The goal of person re-identification is to identify the same person across videos
captured from different cameras. It is a fundamental visual recognition problem
in video surveillance with various applications [55]. It is challenging because the
camera views are usually disjoint, the temporal transition time between cam-
eras varies considerably, and the lighting conditions/person poses differ across
cameras in real-world scenarios.

Body part misalignment (i.e., the problem that body parts are spatially
misaligned across person images) is one of the key challenges in person re-
identification. Figure 1 shows some examples. This problem causes conventional
strip/grid-based representations [1,10,25,58,69,71] to be unreliable as they
implicitly assume that every person appears in a similar pose within a tightly
surrounded bounding box. Thus, a body part-aligned representation, which can
ease the representation comparison and avoid the need for complex comparison
techniques, should be designed.

To resolve this problem, recent approaches have attempted to localize body
parts explicitly and combine the representations over them [23,50,74,75,78].
For example, the body parts are represented by the pre-defined (or refined [50])
bounding boxes estimated from the state-of-the-art pose estimators [4,50,74,78].
This scheme requires highly-accurate pose estimation. Unfortunately, state-of-
the-art pose estimation solutions are still not perfect. Also, these schemes are
bounding box-based and lack fine-grained part localization within the boxes.
To mitigate the problems, we propose to encode human poses by feature maps
rather than by bounding boxes. Recently, Zhao et al. [75] represented body
parts through confidence maps, which are estimated using attention techniques.
The method has a lack of guidance on body part locations during the training,
thereby failing to attend to certain body regions consistently.

In this paper, we propose a part-aligned representation for person re-
identification. Our approach learns to represent the human poses as part maps
and combine them directly with the appearance maps to compute part-aligned
representations. More precisely, our model consists of a two-stream network and
an aggregation module. (1) Each stream separately generates appearance and
body part maps. (2) The aggregation module first generates the part-aligned

Fig. 1. (a, b) As a person appears in different poses/viewpoints in different cameras,
and (c) human detections are imperfect, the corresponding body parts are usually not
spatially aligned across the human detections, causing person re-identification to be
challenging.
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feature maps by computing the bilinear mapping of the appearance and part
descriptors at each location, and then spatially averages the local part-aligned
descriptors. The resulting image matching similarity is equivalent to an aggrega-
tion of the local appearance similarities of the corresponding body parts. Since
it does not depend on the relative positions of parts, the misalignment problem
is reduced.

Training the network does not require any body part annotations on the
person re-identification dataset. Instead, we simply initialize the part map gen-
eration stream using the pre-trained weights, which are trained from a standard
pose estimation dataset. Surprisingly, although our approach only optimizes the
re-identification loss function, the resulting two-stream network successfully sep-
arates appearance and part information into each stream, thereby generating
the appearance and part maps from each of them, respectively. In particular, the
part maps adapt from the original form to further differentiate informative body
parts for person re-identification. Through extensive experiments, we verify that
our approach consistently improves the accuracy of the baseline and achieves
competitive/superior performance over standard image datasets, Market-1501,
CUHK03, CUHK01 and DukeMTMC, and one standard video dataset, MARS.

2 Related Work

The early solutions of person re-identification mainly relied on hand-
crafted features [18,27,36,39], metric learning techniques [20,22,26,28,42,70,
72], and probabilistic patch matching algorithms [5,6,48] to handle resolu-
tion/light/view/pose changes. Recently, attributes [51,52,76], transfer learn-
ing [43,49], re-ranking [15,80], partial person matching [82], and human-in-the-
loop learning [38,60], have also been studied. More can be found in the sur-
vey [81]. In the following, we review recent spatial-partition-based and part-
aligned representations, matching techniques, and some works using bilinear
pooling.

Regular Spatial-Partition Based Representations. The approaches in this
stream of research represent an image as a combination of local descriptors,
where each local descriptor represents a spatial partition such as grid cell [1,25,
71] and horizontal stripe [10,58,69]. They work well under a strict assumption
that the location of each body part is consistent across images. This assumption
is often violated under realistic conditions, thereby causing the methods to fail.
An extreme case is that no spatial partition is used and a global representation
is computed over the whole image [7,42,63–65,77].

Body Part-Aligned Representations. Body part and pose detection results
have been exploited for person re-identification to handle the body part misalign-
ment problem [3,11–13,62,68]. Recently, these ideas have been re-studied using
deep learning techniques. Most approaches [50,74,78] represent an image as a
combination of body part descriptors, where a dozen of pre-defined body parts
are detected using the off-the-shelf pose estimator (possibly an additional RoI
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refinement step). They usually crop bounding boxes around the detected body
parts and compute the representations over the cropped boxes. In contrast, we
propose part-map-based representations, which is different from the previously
used box-based representations [50,74,78].

Tang et al. [55] also introduced part maps for person re-identification to solve
the multi-people tracking problem. They used part maps to augment appear-
ances as another feature, rather than to generate part-aligned representations,
which is different from our method. Some works [34,75] proposed the use of
attention maps, which are expected to attend to informative body parts. They
often fail to produce reliable attentions as the attention maps are estimated from
the appearance maps; guidance from body part locations is lacking, resulting in
a limited performance.

Matching. The simple similarity functions [10,58,69], e.g., cosine similarity or
Euclidean distance, have been adapted, for part-aligned representations, such
as our approach, or under an assumption that the representations are body
part/pose aligned. Various schemes [1,25,59,71] were designed to eliminate the
influence from body part misalignment for spatial partition-based representa-
tions. For instance, a matching sub-network was proposed to conduct convolution
and max-pooling operations, over the differences [1] or the concatenation [25,71]
of grid-based representation of a pair of person images. Varior et al. [57] pro-
posed the use of matching maps in the intermediate features to guide feature
extraction in the later layers through a gated CNN.

Bilinear Pooling. Bilinear pooling is a scheme to aggregate two different types
of feature maps by using the outer product at each location and spatial pooling
them to obtain a global descriptor. This strategy has been widely adopted in fine-
grained recognition [14,21,30] and showed promising performance. For person
re-identification, Ustinova et al. [56] adopted a bilinear pooling to aggregate two
different appearance maps; this method does not generate part-aligned represen-
tations and leads to poor performance. Our approach uses a bilinear pooling to
aggregate appearance and part maps to compute part-aligned representations.

3 Our Approach

The proposed model consists of a two-stream network and an aggregation mod-
ule. It receives an image I as an input and outputs a part-aligned feature repre-
sentation f̃ as illustrated in Fig. 2. The two-stream network contains two separate
sub-networks, the appearance map extractor A and the part map extractor P,
which extract the appearance map A and part map P, respectively. The two
types of maps are aggregated through bilinear pooling to generate the part-
aligned feature f , which is subsequently normalized to generate the final feature
vector f̃ .
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Fig. 2. Overview of the proposed model. The model consists of a two-stream network
and an aggregator (bilinear pooling). For a given image I, the appearance and part
map extractors, A and P, generate the appearance and part maps, A and P, respec-
tively. The aggregator performs bilinear pooling over A and P and generates a feature
vector f . Finally, the feature vector is l2-normalized, resulting in a final part-aligned
representation f̃ . Conv and BN denote the convolution and batch normalization layers,
respectively.

3.1 Two-Stream Network

Appearance Map Extractor. We feed an input image I into the appearance
map extractor A, thereby outputting the appearance map A:

A = A(I). (1)

A ∈ R
h×w×cA is a feature map of size h × w, where each location is described

by cA-dimensional local appearance descriptor. We use the sub-network of
GoogLeNet [54] to form and initialize A.

Part Map Extractor. The part map extractor P receives an input image I
and outputs the part map P:

P = P(I). (2)

P ∈ R
h×w×cP is a feature map of size h×w, where each location is described by

a cP -dimensional local part descriptor. Considering the rapid progress in pose
estimation, we use the sub-network of the pose estimation network, OpenPose [4],
to form and initialize P. We denote the sub-network of the OpenPose as Ppose.

3.2 Bilinear Pooling

Let axy be the appearance descriptor at the position (x, y) from the appearance
map A, and pxy be the part descriptor at the position (x, y) from the part
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map P. We perform bilinear pooling over A and P to compute the part-aligned
representation f . There are two steps, bilinear transformation and spatial global
pooling, which are mathematically given as follows:

f = poolingxy{fxy} =
1
S

∑

xy

fxy, fxy = vec(axy ⊗ pxy), (3)

where S is the spatial size. The pooling operation we use here is average-pooling.
vec(.) transforms a matrix to a vector, and ⊗ represents the outer product of
two vectors, with the output being a matrix. The part-aligned feature f is then
normalized to generate the final feature vector f̃ as follows:

f̃ =
f

‖f‖2
. (4)

Considering the normalization, we denote the normalized part-aligned represen-
tation as f̃xy = vec(ãxy ⊗ p̃xy), where ãxy = axy√

‖f‖2
and p̃xy = pxy√

‖f‖2
. Therefore,

f̃ = 1
S

∑
xy f̃xy.

Part-Aligned Interpretation. We can decompose a⊗p1 into cP components:

vec(a ⊗ p) = [(p1a)� (p2a)� . . . (pcP a)�]�, (5)

where each sub-vector pia corresponds to a i-th part channel. For example, if
pknee = 1 on knee and 0 otherwise, then pkneea becomes a only on the knee
and 0 otherwise. Thus, we call vec(a ⊗ p) as part-aligned representation. In
general, each channel c does not necessarily correspond to a certain body part.
However, the part-aligned representation remains valid as p encodes the body
part information. Section 4 describes this interpretation in detail.

3.3 Loss

To train the network, we utilize the widely-used triplet loss function. Let Iq,
Ip and In denote the query, positive and negative images, respectively. Then,
(Iq, Ip) is a pair of images of the same person, and (Iq, In) is that of different
persons. Let f̃q, f̃p, and f̃n indicate their representations. The triplet loss function
is formulated as

�triplet(f̃q, f̃p, f̃n) = max(m + sim(f̃q, f̃n) − sim(f̃q, f̃p), 0), (6)

where m denotes a margin and sim(x,y) = <x,y>. The margin is empirically
set as m = 0.2. The overall loss function is written as follows.

L =
1

|T |
∑

(Iq,Ip,In)∈T
�triplet(f̃q, f̃p, f̃n), (7)

where T is the set of all triplets, {(Iq, Ip, In)}.

1 We drop the subscript xy for presentation clarification.
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4 Analysis

Part-Aware Image Similarity. We show that under the proposed part-aligned
representation in Eqs. (3) and (4), the similarity between two images is equivalent
to the aggregation of local appearance similarities between the corresponding
body parts. The similarity between two images can be represented as the sum
of local similarities between every pair of locations as follows.

simI(I, I′) = <f̃ , f̃ ′> =
1
S2

<
∑

xy

f̃xy,
∑

x′y′
f̃ ′
x′y′>

=
1
S2

∑

xy

∑

x′y′
<f̃xy, f̃ ′

x′y′>

=
1
S2

∑

xy

∑

x′y′
sim(f̃xy, f̃ ′

x′y′), (8)

where simI(, ) measures the similarity between images. Here, the local similarity
is computed by an inner product:

sim(f̃xy, f̃ ′
x′y′) = < vec(ãxy ⊗ p̃xy), vec(ã′

x′y′ ⊗ p̃′
x′y′)>

= <ãxy, ã′
x′y′><p̃xy, p̃′

x′y′>

= sim(ãxy, ã′
x′y′) sim(p̃xy, p̃′

x′y′). (9)

This local similarity can be interpreted as the appearance similarity weighted by
the body part similarity or vice versa. Thus, from Eqs. (8) and (9), the similarity
between two images is computed as the average of local appearance similarities
weighted by the body part similarities at the corresponding positions:

simI(I, I′) =
1
S2

∑

xyx′y′
sim(ãxy, ã′

x′y′) sim(p̃xy, p̃′
x′y′).

As a result, the image similarity does not depend on the relative positions of
parts in images, and therefore the misalignment problem is reduced. To make
the local part similarity to be always non-negative and therefore the sign of the
local similarity depends only on the sign of the local appearance similarity, we
can also restrict the part descriptors pxy to be element-wise non-negative by
adding a ReLU layer after the part map extractor P as shown in Fig. 2. As
this variant results in similar accuracy to the original one, we used the model
without the ReLU layer for all the experiments. See supplementary material for
more details.

Relationship to the Baseline Models. Consider a baseline approach
that only uses the appearance maps and spatial global pooling for image
representation. Then, the image similarity is computed as simI(I, I′) =
1
S2

∑
xyx′y′ sim(ãxy, ã′

x′y′). Unlike our model, this approach cannot reflect part
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similarity. Consider another model based on the box-based representation, which
represents an image as a concatenation of K body part descriptors, where k-th
body part is represented as the average-pooled appearance feature within the
corresponding bounding box. This model is equivalent to our model when pxy

is defined as pxy = [δ[(x, y) ∈ R1], · · · , δ[(x, y) ∈ RK ]], where Rk is the region
within the k-th part bounding box and δ[·] is an indicator function, i.e., δ[x] = 1
if x is true otherwise 0. Because our model contains these baselines as special
cases and is trained to optimize the re-identification loss, it is guaranteed to
perform better than them.

The Two-Stream Network Yields a Decomposed Appearance and Part
Maps. At the beginning of the training, the two streams of the network mainly
represent the appearance and part maps because the appearance map extrac-
tor A and the part map extractor P are initialized using GoogleNet [54] pre-
trained on ImageNet [46] and OpenPose [4] model pre-trained on COCO [29],
respectively. During training, we do not set any constraints on the two streams,
i.e., no annotations for the body parts, but only optimize the re-identification
loss. Surprisingly, the trained two-stream network maintains to decompose the
appearance and part information into two streams: one stream corresponds to
the appearance maps and the other corresponds to the body part maps.

We visualize the distribution of the learned local appearance and part descrip-
tors using t-SNE [37] as shown in Figs. 3(a) and (b). Figure 3(a) shows that the
appearance descriptors are clustered depending on the appearance while being
independent on the parts that they come from. For example, the red/yellow box
shows that the red/black-colored patches are closely embedded, respectively. By
contrast, Fig. 3(b) illustrates that the local part embedding maps the similar

Fig. 3. The t-SNE visualization of the normalized local appearance and part descriptors
on the Market-1501 dataset. It illustrates that our two-stream network decomposes
the appearance and part information into two streams successfully. (a) Appearance
descriptors are clustered roughly by colors, independently from the body parts where
they came from. (b) Part descriptors are clustered by body parts where they came
from, regardless of the colors. (Best viewed on a monitor when zoomed in) (Color
figure online)
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Fig. 4. Visualization of the appearance maps A and part maps P obtained from the
proposed method. For a given input image (left), appearance (center) and part (right)
maps encode the appearance and body parts, respectively. For both appearance and
part maps, the same color implies that the descriptors are similar, whereas different
colors indicate that the descriptors are different. The appearance maps share similar
color patterns among the images from the same person, which means that the pat-
terns of appearance descriptors are similar as well. In the part maps, the color differs
depending on the location of the body parts where the descriptors came from. (Best
viewed in color)

Fig. 5. Comparing the body part descriptors. For a given image (left), the conventional
joint-based (center) and the proposed (right) descriptors are visualized. (Best viewed
in color) (Color figure online)

body parts into close regions regardless of color. For example, the green/blue
box shows that the features from the head/lower leg are clustered, respectively.
In addition, physically adjacent body parts, such as head–shoulder and shoulder–
torso, are also closely embedded.

To understand how the learned appearance/part descriptors are used in per-
son re-identification, we visualize the appearance maps A and the part maps
P following the visualization used in SIFTFlow [32], as shown in Fig. 4. For a
given input image (left), the appearance (center) and part (right) maps encode
the appearance and body parts, respectively. The figure shows how the appear-
ance maps differentiate different persons while being invariant for each person.
By contrast, the part maps encode the body parts independently from their
appearance. In particular, a certain body part is represented by a similar color
across images, which confirms our observation in Fig. 3 that the part features
from physically adjacent regions are closely embedded.



Part-Aligned Bilinear Representations for Person Re-identification 427

Our approach learns the optimal part descriptor for person re-identification,
rather than relying on the pre-defined body parts. Figure 5 qualitatively com-
pares the conventional body part descriptor and the one learned by our app-
roach.2 In the previous works on human pose estimation [4,41,61], human poses
are represented as a collection of pre-defined key body joint locations. It corre-
sponds to a part descriptor which one-hot encodes the key body joints depending
on the existence of a certain body joint at the location, e.g., pknee = 1 on knee
and 0 otherwise. Compared to the baseline, ours smoothly maps the body parts.
In other words, the colors are continuous over the whole body in ours, which
implies that the adjacent body parts are mapped closely. By contrast, the base-
line not always maps adjacent body parts maps closely. For example, the upper
leg between the hip and knee is more close to the background descriptors than
to ankle or knee descriptors. This smooth mapping makes our method to work
robustly against the pose estimation error because the descriptors do not change
rapidly along the body parts and therefore are insensitive to the error in estima-
tion. In addition, the part descriptors adopt to distinguish the informative parts
more finely. For example, the mapped color varies sharply from elbow to shoul-
der and differentiates the detailed regions. Based on these properties, the learned
part descriptors better support the person re-identification task and improve the
accuracy.

5 Implementation Details

Network Architecture. We use a sub-network of the first version of
GoogLeNet [54] as the appearance map extractor A, from the image input of
size 160 × 80 to the output of inception4e, which is followed by a 1 × 1 con-
volution layer and a batch normalization layer to reduce the dimension to 512
(Fig. 2). Moreover, we optionally adopt dilation filters in the layers from the
inception4a to the final layer, resulting in 20 × 10 response maps. Figure 2 illus-
trates the architecture of the part map extractor P. We use a sub-network of
the OpenPose network [4], from the image input to the output of stage2 (i.e.,
concat stage3 ) to extract 185 pose heat maps, which is followed by a 3×3 convo-
lution layer and a batch normalization layer, thereby outputting 128 part maps.
We adopt the compact bilinear pooling [14] to aggregate the two feature maps
into a 512-dimensional vector f .

Compact Bilinear Pooling. The bilinear transformation over the 512-
dimensional appearance vector and the 128-dimensional part vector results in
an extremely high dimensional vector, which consumes large computational cost
and memory. To resolve this issue, we use the tensor sketch approach [44] to
compute a compact representation as in [14]. The key idea of the tensor sketch
approach is that the original inner product, on which the Euclidean distance is
based, between two high-dimensional vectors can be approximated as an inner

2 We used the visualization method proposed in SIFTFlow [32].
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product of the dimension-reduced vectors, which are random projections of the
original vectors. Details can be found in [44].

Network Training. The appearance map extractor A and part map extractor
P are fine-tuned from the network pre-trained on ImageNet [46] and COCO [29],
respectively. The added layers are initialized following [17]. We use the stochas-
tic gradient descent algorithm. The initial learning rate, weight decay, and the
momentum are set to 0.01, 2 × 10−4, and 0.9, respectively. The learning rate
is decreased by a factor of 5 after every 20, 000 iterations. All the networks are
trained for 75, 000 iterations.

We follow [75] to sample a mini-batch of samples at each iteration and use all
the possible triplets within each mini-batch. The gradients are computed using
the acceleration trick presented in [75]. In each iteration, we sample a mini-batch
of 180 images, e.g., there are on average 18 identities with each containing 10
images. In total, there are approximately 102 · (180 − 10) · 18 ≈ 3 × 105 triplets
in each iteration.

6 Experiments

6.1 Datasets

Market-1501 [79]. This dataset is one of the largest benchmark datasets for
person re-identification. Six cameras are used: five high-resolution cameras and
one low-resolution camera. There are 32, 668 DPM-detected pedestrian image
boxes of 1, 501 identities: 750 identities are utilized for training and the remaining
751 identities are used for testing. There are 3, 368 query images and 19, 732
gallery images with 2, 793 distractors.

CUHK03 [25]. This dataset consists of 13, 164 images of 1, 360 people captured
by six cameras. Each identity appears in two disjoint camera views (i.e., 4.8
images in each view on average). We divided the train/test set following the
previous work [25]. For each test identity, two images are randomly sampled as
the probe and gallery images and the average accuracy over 20 trials is reported
as the final result.

CUHK01 [24]. This dataset comprises 3884 images of 971 people captured in
two disjoint camera views. Two images are captured for each person from each
of the two cameras (i.e., a total of four images). Experiments are performed
under two evaluation settings [1], using 100 and 486 test IDs. Following the
previous works [1,7,10,75], we fine-tuned the model from the one learned from
the CUHK03 training set for the experiments with 486 test IDs.

DukeMTMC [45]. This dataset is originally proposed for video-based person
tracking and re-identification. We use the fixed train/test split and evaluation
setting following [31]3. It includes 16, 522 training images of 702 identities, 2, 228
query images of 702 identities and 17, 661 galley images.

3 https://github.com/layumi/DukeMTMC-reID evaluation.

https://github.com/layumi/DukeMTMC-reID_evaluation
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MARS [77]. This dataset is proposed for video-based person re-identification.
It consists of 1261 different pedestrians captured by at least two cameras. There
are 509, 914 bounding boxes and 8, 298 tracklets from 625 identities for training
and 681, 089 bounding boxes and 12, 180 tracklets from 636 identities for testing.

6.2 Evaluation Metrics

We use both the cumulative matching characteristics (CMC) and mean average
precision (mAP) to evaluate the accuracy. The CMC score measures the quality
of identifying the correct match at each rank. For multiple ground truth matches,
CMC cannot measure how well all the images are ranked. Therefore, we report
the mAP scores for Market-1501, DukeMTMC, and MARS where more than one
ground truth images are in the gallery.

6.3 Comparison with the Baselines

We compare the proposed method with the baselines in three aspects. In this
section, when not specified, all the experiments are performed on the Market-
1501 dataset, all the models do not use dilation, and Ppose is trained together
with the other parameters.

Effect of Part Maps. We compare our method with a baseline that does not
explicitly use body parts. As a baseline network, we use the appearance map
extractor of Eq. (1), which is followed by a global spatial average pooling and a
fully connected layer, thereby outputting the 512-dimensional image descriptor.
Figures 6(a) and (b) compare the proposed method with the baseline, while vary-
ing the training strategy: fixing and training Ppose. Fixing Ppose initializes Ppose

using the pre-trained weights [4,29] and fixes the weight through the training.
Training Ppose also initializes Ppose in the same way, but fine-tunes the network
using the loss of Eq. (7) during training. Figure 6(a) illustrates the accuracy com-
parison on three datasets, Market-1501, MARS, and Duke. It shows that using
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Fig. 6. (a) Comparison of different pooling methods on the appearance maps. (c) Com-
paring models, with and without part maps, on different datasets. (d) Comparing
models, with and without part maps, on different architectures of the appearance map
extractor. If not specified, the results are reported on Market-1501. (b) Comparison of
different methods to aggregate the appearance and part maps.
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part maps consistently improves the accuracy on all the three datasets from the
baseline. In addition, training Ppose largely improves the accuracy than fixing
Ppose. It implies that the part descriptors are adopted to better serve the person
re-identification task. Figure 6(b) shows the accuracy comparison while vary-
ing the appearance sub-network architecture. Similarly, the baseline accuracy is
improved when part maps are introduced and further improved when Ppose is
fine-tuned during training.

Effect of Bilinear Pooling. Figure 6(c) compares the proposed method (bilin-
ear) to the baseline with a different aggregator. For the given appearance and
part maps, concat+averagepool+linear generates a feature vector by concate-
nating two feature maps, spatially average pooling, and feeding through a fully
connected layer, resulting in a 512-dimensional vector. The result shows that
bilinear pooling consistently achieves higher accuracy than the baseline, for both
cases when Ppose is fixed/trained.

Comparison with Previous Pose-Based Methods. Finally, we compare our
method with three previous works [50,74,78], which use human pose estimation,
on Market-1501. For a fair comparison, we use the reduced CPM(R-CPM [∼3M
param]) utilized in [50]4 as Ppose. The complexity of the R-CPM is lower than
the standard FCN (∼6M param) used in [74] and CPM (30M param) used in
[78]. As the appearance network, [74] used GoogLeNet and [78] used ResNet50.
[50] used 13 inception modules, whereas we use 7. Table 1 shows the comparison.
In comparison with the method adopted by [50,74,78], the proposed method
(Inception V1, R-CPM) achieves an increase of 4% and 9% for rank@1 accu-
racy and mAP, respectively. It shows that our method effectively uses the part
information compared with the previous approaches.

6.4 Comparison with State-of-the-Art Methods

Market-1501. Table 1 shows the comparison over two query schemes, single
query and multi-query. Single query takes one image from each person whereas
multi-query takes multiple images. For the multi-query setting, one descriptor is
obtained from multiple images by averaging the feature from each image. Our
approach achieves the best accuracy in terms of both mAP and rank@K for
both single and multi-query. We also provide the result after re-ranking [85],
which further boosts accuracy. In addition, we conduct the experiment over an
expanded dataset with additional 500K images [79]. Following the standard eval-
uation protocol [19], we report the results over four different gallery sets, 19, 732,
119, 732, 219, 732, and 519, 732, using two evaluation metrics (i.e., rank-1 accu-
racy and mAP). Table 2 reports the results. The proposed method outperforms
all the other methods.

CUHK03. We report the results with two person boxes: manually labeled and
detected. Table 3 presents the comparison with existing solutions. In the case of

4 https://github.com/yokattame/SpindleNet.

https://github.com/yokattame/SpindleNet
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Table 1. Accuracy comparison on Market-1501

Rank Single query Multi query

1 5 10 20 mAP 1 5 10 20 mAP

Varior et al. 2016 [57] 61.6 - - - 35.3 - - - - -

Zhong et al. 2017 [85] 77.1 - - - 63.6 - - - - -

Zhao et al. 2017 [75] 80.9 91.7 94.7 96.6 63.4 - - - - -

Sun et al. 2017 [53] 82.3 92.3 95.2 - 62.1 - - - - -

Geng et al. 2016 [16] 83.7 - - - 65.5 89.6 - - - 73.8

Lin et al. 2017 [31] 84.3 93.2 95.2 97.0 64.7 - - - - -

Bai et al. 2017 [2] 82.2 - - - 68.8 88.2 - - - 76.2

Chen et al. 2017 [9] 72.3 88.2 91.9 95.0 - - - - -

Hermans et al. 2017 [19] 84.9 94.2 - - 69.1 90.5 96.3 - - 76.4

+ re − ranking 86.7 93.4 − − 81.1 91.8 95.8 - - 87.2

Zhang et al. 2017 [73] 87.7 - - - 68.8 91.7 - - - 77.1

Zhong et al. 2017 [86] 87.1 - - - 71.3 - - - - -

+ re − ranking 89.1 - - - 83.9 - - - - -

Chen et al. 2017 [8] (MobileNet) 90.0 - - - 70.6 - - - - -

Chen et al. 2017 [8] (Inception-V3) 88.6 - - - 72.6 - - - - -

Ustinova et al. 2017 [56] (Bilinear) 66.4 85.0 90.2 - 41.2 - - - - -

Zheng et al. 2017 [78] (Pose) 79.3 90.8 94.4 96.5 56.0 - - - - -

Zhao et al. 2017 [74] (Pose) 76.9 91.5 94.6 96.7 - - - - - -

Su et al. 2017 [50] (Pose) 84.1 92.7 94.9 96.8 65.4 - - - - -

Proposed (Inception-V1, R-CPM) 88.8 95.6 97.3 98.6 74.5 92.9 97.3 98.4 99.1 81.7

Proposed (Inception-V1, OpenPose) 90.2 96.1 97.4 98.4 76.0 93.2 97.5 98.4 99.1 82.7

+ dilation 91.7 96.9 98.1 98.9 79.6 94.0 98.0 98.8 99.3 85.2

+ re − ranking 93.4 96.4 97.4 98.2 89.9 95.4 97.5 98.2 98.9 93.1

Table 2. Accuracy comparison on Market-1501+500k.

Gallery size

Metric 19732 119732 219732 519732

Zheng et al. 2017 [83] rank-1 79.5 73.8 71.5 68.3

mAP 59.9 52.3 49.1 45.2

Linet al. 2017 [31] rank-1 84.0 79.9 78.2 75.4

mAP 62.8 56.5 53.6 49.8

Hermans et al. 2017 [19] rank-1 84.9 79.7 77.9 74.7

mAP 69.1 61.9 58.7 53.6

Proposed (Inception V1, OpenPose) rank-1 91.7 88.3 86.6 84.1

mAP 79.6 74.2 71.5 67.2

detected boxes, the state-of-the-art accuracy is achieved. With manual bounding
boxes, our method also achieves the best accuracy.

CUHK01. We compare the results with two evaluation settings (i.e., 100 and 486
test IDs) in Table 3. For 486 test IDs, the proposed method shows the best result.
For 100 test IDs, our method achieves the second best result, following [16]. Note
that [16] fine-tuned the model which is learned from the CUHK03+Market1501,
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Table 3. Accuracy comparison on CUHK03 and CUHK01

Table 4. Accuracy comparison on DukeMTMC

Rank 1 5 10 20 mAP

Zheng et al. [84] 67.7 - - - 47.1

Tong et al. [66] 68.1 - - - -

Lin et al. [31] 70.7 - - - 51.9

Schumann et al. [47] 72.6 - - - 52.0

Sun et al. [53] 76.7 86.4 89.9 - 56.8

Chen et al. [8] (MobileNet) 77.6 - - - 58.6

Chen et al. [8] (Inception-V3) 79.2 - - - 60.6

Zhun et al. [86] 79.3 - - - 62.4

+ re − ranking 84.0 − − − 78.3

Proposed (Inception V1, OpenPose) 82.1 90.2 92.7 95.0 64.2

+ dilation 84.4 92.2 93.8 95.7 69.3

+ re − ranking 88.3 93.1 95.0 96.1 83.9

whereas we trained the model using 871 training IDs of the CUHK01 dataset,
following the settings in previous works [1,7,10,75].

DukeMTMC. We follow the setting in [31] to conduct the experiments. Table 4
reports the results. The proposed method achieves the best result for both with
and without re-ranking.

MARS. We also evaluate our method on one video-based person re-
identification dataset [77]. We use our approach to extract the representation
for each frame and aggregate the representations of all the frames using tempo-
ral average pooling, which shows similar accuracy to other aggregation schemes
(RNN and LSTM). Table 5 presents the comparison with the competing meth-
ods. Our method shows the highest accuracy over both image-based and video-
based approaches.
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Table 5. Accuracy comparison on MARS

Rank 1 5 10 20 mAP

Xu et al. [67] (Video) 44 70 74 81 -

McLaughlin et al. [40] (Video) 45 65 71 78 27.9

Zheng et al. [77] (Video) 68.3 82.6 - 89.4 49.3

Liu et al. [33] (Video) 68.3 81.4 - 90.6 52.9

Zhou et al. [87] 70.6 90.0 - 97.6 50.7

Li et al. [23] 71.8 86.6 - 93.1 56.1

+ re − ranking 83.0 93.7 − 97.6 66.4

Liu et al. [35] 73.7 84.9 - 91.6 51.7

Hermans et al. [19] 79.8 91.4 - - 67.7

+ re − ranking 81.2 90.8 − − 77.4

Proposed (Inception V1, OpenPose) 83.0 92.8 95 96.8 72.2

+ dilation 84.7 94.4 96.3 97.5 75.9

+ re − ranking 85.1 94.2 96.1 97.4 83.9

7 Conclusions

We propose a new method for person re-identification. The key factors that con-
tribute to the superior performance of our approach are as follows. (1) We adopt
part maps where parts are not pre-defined but learned specially for person re-
identification. They are learned to minimize the re-identification loss with the
guidance of the pre-trained pose estimation model. (2) The part map represen-
tation provides a fine-grained/robust differentiation of the body part depend-
ing on their usefulness for re-identification. (3) We use part-aligned represen-
tations to handle the body part misalignment problem. The resulting approach
achieves superior/competitive person re-identification performances on the stan-
dard image and video benchmark datasets.
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