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Abstract. In this paper, we present an end-to-end learning framework
for predicting task-driven visual saliency on webpages. Given a webpage,
we propose a convolutional neural network to predict where people look
at it under different task conditions. Inspired by the observation that
given a specific task, human attention is strongly correlated with certain
semantic components on a webpage (e.g., images, buttons and input
boxes), our network explicitly disentangles saliency prediction into two
independent sub-tasks: task-specific attention shift prediction and task-
free saliency prediction. The task-specific branch estimates task-driven
attention shift over a webpage from its semantic components, while the
task-free branch infers visual saliency induced by visual features of the
webpage. The outputs of the two branches are combined to produce
the final prediction. Such a task decomposition framework allows us to
efficiently learn our model from a small-scale task-driven saliency dataset
with sparse labels (captured under a single task condition). Experimental
results show that our method outperforms the baselines and prior works,
achieving state-of-the-art performance on a newly collected benchmark
dataset for task-driven webpage saliency detection.
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1 Introduction

Webpages are a ubiquitous and important medium for information communica-
tion on the Internet. Webpages are essentially task-driven, created by web design-
ers with particular purposes in mind (e.g., higher click through and conversion
rates). When browsing a website, visitors often have tasks to complete, such as
finding the information that they need quickly or signing up to an online service.
Hence, being able to predict where people will look at a webpage under different
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task-driven conditions can be practically useful for optimizing web design [5] and
informing algorithms for webpage generation [24]. Although some recent works
attempt to model human attention on webpages [27,28], or graphic designs [4],
they only consider the free-viewing condition.

Fig. 1. Given an input webpage (a), our model can predict a different saliency map
under a different task, e.g., information browsing (b), form filling (c) and shopping (d).

In this paper, we are interested in predicting task-driven webpage saliency.
When visiting a webpage, people often gravitate their attention to different
places in different tasks. Hence, given a webpage, we aim to predict the visual
saliency under multiple tasks (Fig. 1). There are two main obstacles for this
problem: (1) Lack of powerful features for webpage saliency prediction: while
existing works have investigated various features for natural images, effective
features for graphic designs are ill-studied; (2) Scarcity of data: to our knowl-
edge, the state-of-the art task-driven webpage saliency dataset [24] only contains
hundreds of examples, and collecting task-driven saliency data is expensive.

To tackle these challenges, we propose a novel convolutional network archi-
tecture, which takes as input a webpage and a task label, and predicts the
saliency under the task. Our key observation is that human attention behaviors
on webpages under a particular task are mainly driven by the configurations
and arrangement of semantic components (e.g., buttons, images and text). For
example, in order to register an email account, people tend to first recognize the
key components on a webpage and then move their attention towards the sign-up
form region composed of several input boxes and a button. Likewise, for online
shopping, people are more likely to look at product images accompanied by text
descriptions. Inspired by this, we propose to disentangle task-driven saliency pre-
diction into two sub-tasks: task-specific attention shift prediction and task-free
saliency prediction. The task-specific branch estimates task-driven global atten-
tion shift over the webpage from its semantic components, while the task-free
branch predicts visual saliency independent of the task. Our network models
the two sub-tasks in an unified architecture and fuses the outputs to make final
prediction. We argue that such a task decomposition framework allows efficient
network training using only a small-scale task-driven saliency dataset captured
under the single task condition, i.e., each webpage in the dataset contains the
saliency captured on a single task.

To train our model effectively, we first pre-train the task-free subnet on a
large-scale natural image saliency dataset and task-specific subnet on synthetic
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data generated by our proposed data synthesis approach. We then train our
network end-to-end on a small-scale task-driven webpage saliency dataset. To
evaluate our model, we create a benchmark dataset of 200 webpages, each with
visual saliency maps captured under one or more tasks. Our results on this
dataset show that our model outperforms the baselines and prior works. Our
main contributions are:

– We address webpage saliency prediction under the multi-task condition.
– We propose a learning framework that disentangles the task-driven webpage

saliency problem into the task-specific and task-free sub-tasks, which enables
the network to be efficiently trained from a small-scale task-driven saliency
dataset with sparse annotations.

– We construct a new benchmark dataset for the evaluation of webpage saliency
prediction under the multi-task condition.

2 Related Work

2.1 Saliency Detection on Natural Images

Saliency detection on natural images is an active research topic in computer
vision. The early works mainly explore various hand-crafted features and feature
fusing strategies [1]. Recent works have made significant performance improve-
ments, due to the strong representation power of CNN features. Some works
[17,18,40] produce high-quality saliency maps using different CNNs to extract
multi-scale features. Pan et al. [23] propose shallow and deep CNNs for saliency
prediction. Wang et al. [32] use a multi-stage structure to handle local and global
saliency. More recent works [10,16,19,31] apply fully convolutional networks for
saliency detection, in order to reduce the number of parameters of the net-
works and preserve spatial information of internal representations throughout
the networks. To get more accurate results, more complex architectures, such
as recurrent neural networks [15,20,22,33], hybrid upsampling [38], multi-scale
refinement [6], and skip connection [7,9,34]. However, all these works focus on
natural images. In contrast, our work focuses on predicting saliency on webpages,
which are very different from natural images in visual, structural and semantic
characteristics [27].

2.2 Saliency Detection on Webpages

Webpages have well-designed configurations and layouts of semantic compo-
nents, aiming to direct viewer attention effectively. To address webpage saliency,
Shen et al. [28] propose a saliency model based on hand-crafted features (face,
positional bias, etc.) to predict eye fixations on webpages. They later extend [28]
to leverage the high-level features from CNNs [27], in addition to the low-level
features. However, all these methods assume a free-viewing condition, without
considering the effect of tasks upon saliency prediction. Recently, Bylinskii et al.
[4] propose deep learning based models to predict saliency for data visualization
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and graphics. They train two separate networks for two types of designs. How-
ever, our problem setting is quite different from theirs. Each of their models is
specific to a single task associated with their training data, without the ability
to control the task condition. In contrast, we aim for a unified, task-conditional
framework, where our model will output different saliency maps depending on
the given task label.

2.3 Task-Driven Visual Saliency

There are several works on analyzing or predicting visual saliency under task-
driven conditions. Some previous works [2,12,36] have shown that eye move-
ments are influenced by the given tasks. To predict human attention under a
particular task condition (e.g., searching an object in an image), an early work
[21] proposes a cognitive model. Recent works attempt to drive saliency pre-
diction using various high-level signals, such as example images [8] and image
captions [35]. There is also a line of research on visualizing object-level saliency
using image-level supervision [25,29,37,39,41].All of the above learning based
models are trained on large-scale datasets with dense labels, i.e., each image in
the dataset has the ground-truth for all the high-level signals. In contrast, as it is
expensive to collect the task-driven webpage saliency data, we especially design
our network architecture so that it can be trained efficiently on a small-scale
dataset with sparse annotations. Sparse annotations in our context means that
each image in our dataset only has ground-truth saliency for a single task, but
our goal is to predict saliency under the multiple tasks.

3 Approach

In this section, we describe the proposed approach for task-driven webpage
saliency prediction in details. First, we perform a data analysis to understand
the relationship between task-specific saliency and semantic components on web-
pages, which motivates the design of our network and inspires our data synthesis
approach. Second, we describe our proposed network that addresses the task-
specific and task-free sub-problems in a unified framework. Finally, we introduce
a task-driven data synthetic strategy for pre-training our task-specific subnet.

3.1 Task-Driven Webpage Saliency Dataset

To train our model, we use a publicly available, state-of-the-art task-driven web-
page saliency dataset presented in [24]. This dataset contains 254 webpages, cov-
ering 6 common categories: email, file sharing, job searching, product promotion,
shopping and social networking. It was collected from an eye tracking experi-
ment, where for each webpage, the eye fixation data of multiple viewers under
both a single task condition and a free-viewing condition were recorded. Four
types of semantic components, input field, text, button and image for all
the webpages were annotated. To compute a saliency map for a webpage, they
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aggregated the data gaze data from all the viewers and convolved the result with
a Gaussian filter, as in [13]. Note that the size of the dataset is small and we only
have saliency data of the webpages captured under the single task condition.

Task definition. In their data collection [24], two general tasks are defined: (1)
Comparison: viewers compared a pair of webpages and decided on which one
to take for a given purpose (e.g., which website to sign-up for a email service);
(2) Shopping: viewers were given a certain amount of cash and decided which
products to buy in a given shopping website. In our paper, we define 5 common
and more specific tasks according to the 6 webpage categories in their dataset:
Signing-up (email), Information browsing (product promotion), Form fill-
ing (file sharing, job searching), Shopping (shopping) and Community join-
ing (social networking). We use this task definition throughout the paper.

Fig. 2. Accumulative saliency of each semantic component (row) under a specific task
(column). From left to right, each column represents the saliency distribution under
the Signing-up, Form filling, Information browsing, Shopping or Community joining
task. Warm colors represent high saliency. Better view in color.

3.2 Data Analysis

Our hypothesis is that human attention on webpages under the task-driven
condition is related to the semantic components of webpages. In other words,
with different tasks, human attention may be biased towards different subsets
of semantic components, in order to complete their goals efficiently. Here, we
explore the relationship between task-driven saliency and semantic components
by analyzing the task-driven webpage saliency dataset in Sect. 3.1. Fig. 2 shows
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Table 1. Component saliency ratio for each semantic component (column) under each
task (row). The larger the value for a semantic component under a task is, the more
likely people look at the semantic component under the task, and vice versa. For each
task, we shade two salient semantic components as key components, which are used in
our task-driven data synthetic approach.

the accumulative saliency on each semantic component under different tasks.
We can visually inspect some connections between tasks and semantic compo-
nents. For example, for “Information browsing”, the image component receives
higher saliency, while other semantic components have relatively lower saliency.
Both the input field and button components have higher saliency under “Form
filling”, relative to other tasks. For “Shopping”, both image and text compo-
nents have higher saliency, while the other two semantic components have quite
low saliency. To understand such a relationship quantitatively, for each semantic
component c under a task t, we define a within-task component saliency ratio,
which measures the average saliency of c under t compared with the average
saliency of all the semantic components under t:

SR(c, t) =
Sc,t

SAt
, (1)

In particular, Sc,t is formulated as: Sc,t =
∑nc,t

i=1 sc,t,i
nc,t

, where sc,t,i denotes

the saliency of the i-th instance of semantic component c (computed as the aver-
age saliency value of the pixels within the instance) under task t. nc,t denotes
the total number of instances of semantic component c under task t. SAt is for-

mulated as: SAt =
∑n

c=1

∑nc,t

i=1 sc,t,i∑n
c=1 nc,t

, where n denotes the number of semantic

components. Our component saliency ratio tells whether a semantic component
under a particular task is more salient (>1), equally salient (=1) or less salient
(<1), as compared with the average saliency. We report the component saliency
ratios for all tasks and semantic components in Table 1. We find that, under
each task, some semantic components apparently have higher scores than oth-
ers. This means that people are more likely to look at the high-score semantic
components than the low-score ones under the task. For example, for “Form fill-
ing”, the scores for input and button components are high (1.681, 1.254), while
the scores for other semantic components are low (≤ 1), which is consistent with
our observation from the accumulative saliency maps above. Based on these
component saliency scores, for each task, we identify two semantic components
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with higher scores as the key components (the shaded components in Table 1)
that people tend to focus on under the task. These key components are used to
synthesize task-driven saliency data for pre-training the task-specific subnet of
our network, as introduced in Sect. 3.5. It is worth noting that when selecting the
key components, we also avoid two tasks having exactly the same set of key com-
ponents, which may confuse the learning of our model. Hence, for “Signing-up”,
we select “Text” instead of “Button” to prevent “Signing-up” to have the same
set of key components as “Community joining”. The above analysis confirms our
assumption that human attention shift under a particular task is correlated with
and can thus be predicted from a subset of semantic components.

3.3 Network Architecture

Figure 3 shows the architecture of our proposed network. A webpage image is
first fed into a shared encoder to extract high-level feature representation. The
shared encoder uses all the layers of the FCN [26] before the output layer. After
that, the network splits into two branches: the task-specific branch and task-free
branch. For the task-specific branch, we use a segmentation subnet (using the
output layer of the FCN [26]) to generate a semantic segmentation map from
the extracted feature representation. We then send a task label (e.g., “Signing-
up”) along with the semantic segmentation map to a task-specific subnet, which
outputs a task-specific attention shift map. For the task-free branch, we use
a task-free subnet to map the extracted feature representation to a task-free
saliency map. The task-specifc attention shift map and the task-free saliency
map are added to produce the final output. We also tried other fusion operations
e.g., multiplication, but found addition performs better.

Fig. 3. Network architecture. Inputs to our model are a webpage image and a task
label (e.g., “Signing-up”). The webpage image is first fed to a shared encoder to extract
high-level features, which are used by two subnets for predicting task-specific human
attention bias and task-free visual saliency. The task-specific subnet takes as input the
task label along with a semantic segmentation map from a segmentation subnet, and
predicts the task-dependent attention shift (upper), while the task-free subnet predicts
the task-independent saliency (lower). The task-specific attention shift and task-free
saliency are combined to obtain the final saliency map under the input task.
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Task-Specific Subnet: The task-specific subnet is used to model human attention
shift towards particular semantic components under the task-driven condition
(as validated in Sect. 3.2). To do this, we first obtain a semantic segmentation
map through a segmentation subnet. To account for segmentation uncertainty,
we directly take the output of the segmentation layer (probability distributions
over different semantic components) as the segmentation map, and then feed
it to the task-specific subnet to predict the attention shift among the semantic
components. Figure 4 shows the detailed structure. The semantic segmentation
map is passed through a series of convolutional layers to get a lower-dimensional
segmentation representation. To encode the task label, we represent it using
one-of-K representation (K = 5) and transform it into a semantic vector via a
task encoder with a stack of fully connected layers. The semantic vector is then
reshaped and duplicated multiple times, and concatenated with the segmentation
representation. The concatenated features are finally transformed by a stack of
deconvolutional layers to output a task-specific attention shift map.

Task

FC1 FC2 FC3

Task encoder

2828

64 64
28

128 28 128
28

32
56

16
112

16
112 56

32

0
0
0
0
1

3×3 3×3 3×3 3×3 3×3 4×4 4×4 4×4

FC

Convolutional Deconvolutional

ReshapeFully connected Duplicate

Fig. 4. Task-specific subnet. The filter sizes of the convolutional and deconvolutional
layers are labeled above the corresponding layers. The channel numbers and sizes of
the feature maps are also labeled nearby the feature maps.

Task-Free Subnet: The task-free subnet is used to model visual saliency, which is
task-independent and driven by visual contents of the input webpage. To simplify
our network, this subnet uses the output layer of the FCN [26] to directly output
a saliency map, which works well in our experiments. More complex layers can
be added, but at the cost of extra parameters.

Discussion: Our network architecture can be efficiently trained, even with small
amounts of training data, to produce reasonable saliency predictions given dif-
ferent tasks. This is because our framework has the task-specific branch to
model the task-related saliency shift from task-free saliency. In addition, the
task-specific subnet receives a semantic segmentation map, instead of the web-
page, as input. The complexity of the input space is greatly reduced, as only
several semantic classes need to be encoded. This makes it easier for the model
to discover consistent patterns and learn the mapping from a task label to the
corresponding attention shift.
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3.4 Training

Due to the deep network architecture, directly training it end-to-end on our small
dataset is difficult. Thus, we propose a two-stage training strategy, where we first
pre-train each part separately and then fine-tune the entire network jointly. In
particular, we first pre-train the task-free subnet on a large-scale natural image
saliency dataset, SALICON [11], and then fine-tune it on the webpage saliency
dataset [24]. It is trained by minimizing a L2 loss between the predicted and
ground-truth saliency, Lsal. For the segmentation subnet, we enforce a cross-
entry loss between the predicted and ground-truth semantic segmentation maps,
Lseg, and train it on the webpage saliency dataset with ground-truth semantic
annotations. Since the segmentation subnet and task-free subnet share the same
encoder, we thus jointly train them with a multi-task loss Lmulti,

Lmulti = Lsal + Lseg, (2)

The task-specific subnet is pre-trained from scratch on a synthetic task-driven
saliency dataset (as discussed below), with L2 loss between the predicted and
ground-truth attention maps. Finally, we train the entire model end-to-end using
L2 loss between the ground-truth and predicted saliency maps given a task label.
We have also tried several other loss functions, e.g., cross entropy loss and L1
loss, but found that they produced worse performances.

Fig. 5. Synthetic saliency data. (a) Saliency map from the webpage dataset [24]. (b)–(f)
Synthesized saliency maps from (a) for 5 different tasks. The corresponding key compo-
nents of each task are shown in braces.
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3.5 Task-Driven Data Synthesis

Pre-training the task-specific subnet requires a lot of saliency data on webpages
under the multi-task condition, which is not available and expensive to collect.
To address this limitation, we propose a data synthesis approach to generate
our training dataset by leveraging the key semantic components for each task
that we have identified in Sect. 3.2. Our data synthesis method works as follows.
Given a webpage in our dataset, we take its existing task-driven saliency map.
For each task of the five tasks, we only preserve the saliency of the saliency map
on the corresponding key components of the task, by zeroing out the saliency
in other regions. In this way, we generate 5 task-specific saliency maps for each
webpage. Figure 5 shows an example of the synthesized saliency maps under
different tasks. With our data synthesis approach, we generate a dataset with
dense annotations (i.e., the saliency data under all tasks are available for all
webpages), which is sufficient for pre-training our task-specific subnet.

4 Implementation Details

The segmentation subnet and task-free subnet are based on the FCN [26], and
we adopt VGG-16 [30] for the shared encoder of the FCN. The parameters are
optimized by Adam optimizer [30], with a batch size of 20. During training, we
use different learning rates for different parts. For the task-specific and task-free
subnets, we set the initial learning rate to be 10−7, and divide it by 10 every
20 epochs. For the shared encoder, we start with a small initial learning rate
(10−10) and set it to be the same as that of the task-free subnet after 20 epochs.
We train our network for 100 epochs. The webpage images and their saliency
maps are resized to 224 × 224.

5 Experiments

In this section, we first introduce the evaluation dataset and evaluation metrics.
We then analyze our network architecture and training strategy in an ablation
study. Finally, we compare our method with prior methods.

5.1 Evaluation Dataset and Metrics

To evaluate our method, a task-driven webpage saliency dataset is required,
where each webpage has ground-truth saliency under different tasks. Unfor-
tunately, such dataset is not available. Thus, we construct a new evaluation
dataset, which includes 200 webpages collected from the Internet by us. The
newly collected webpages cover various categories (shopping, traveling, games
and email). Please refer to the supplemental for the statistics of the dataset. We
assign each webpage with one or more tasks selected from the 5 tasks, depend-
ing on the type of webpage. In particular, 71 webpages are assigned 1 task,
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120 webpages are assigned 2 tasks and 9 webpages are assigned 3 tasks. To col-
lect ground-truth saliency on the webpages under different tasks, we performed
an eye-tracking experiment, following the experiment setup and methodologies
in [24]. We recruited 24 participants for our experiment. In each viewing session,
the participants are first informed of the task, followed by one or two web-
pages to perform the given task. For each webpage under each task, we collect
eye-tracking data from 10 different participants, which are aggregated to pro-
duce the corresponding saliency map. To the best of our knowledge, the newly
collected dataset, containing 200 webpages, is the largest task-driven webpage
saliency evaluation dataset (vs. 30 webpages in [24,28]). Similar to previous
works [3,12,14], we use the following metrics for evaluation: Kullback-Leibler
divergence (KL), shuffled Area Under Curve (sAUC) and Normalized Scanpath
Saliency (NSS).

5.2 Ablation Study

To evaluate the design of our network architecture and training strategy, we
compare against the following baselines:

No task-specific subnet: We remove the task-specific subnet and concatenate
the semantic vector of the input task label with the output of the shared encoder
(before the task-free subnet) to predict task-driven saliency.
No task-free subnet: We convert our network to a one-branch architecture by
removing the task-free subnet.
Separate encoders: Rather than using a shared encoder for the segmenta-
tion and task-free subnets, we use two separate encoders (VGG-16) for the two
subnets.
Separate CNNs: We train 5 separate CNNs for each of the 5 tasks, and select
the corresponding CNN for a given task, to predict the saliency.
No pre-train on synthetic data: We directly train our model on the real-
world dataset, without pre-training the task-specific subnet on the synthetic
data.
Train only on synthetic data: Instead of training on our real-world dataset,
our model is only trained end-to-end on our synthetic data in Sect. 3.5.

Table 2 shows the results on our evaluation dataset. The results are obtained
by averaging the metrics across all the tasks. (Please refer to the supplemen-
tal for the results on individual tasks.) Without the task-specific subnet, the
performance is the worst. This shows that having a one-branch network to
directly predict saliency from a webpage is not a promising solution and our
task-decomposition framework is essential for the task-driven saliency prediction
problem. The network without the task-free branch is slightly worse than our
proposed network. This implies that while task-driven human attention mainly
focuses on the semantic components of webpages that are important to the task,
it can still be attracted by other visual contents (e.g., color and contrast) as
in the free-viewing condition. Training task-specific models separately does not
perform well, as compared with our unified model. With only the task-specific
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Table 2. Results for the ablation study. The best results are highlighted in red, while
the second best are highlighted in blue.

Methods KL ↓ sAUC ↑ NSS ↑
No task-specific subnet 1.330 0.576 0.412

No task-free subnet 0.810 0.628 0.559

Separate encoders 1.013 0.629 0.566

Separate CNNs 1.235 0.605 0.498

No pre-train on synthetic data 10.428 0.553 0.337

Train only on synthetic data 2.722 0.614 0.552

Ours 0.883 0.645 0.622

subnet (i.e., no task-free subnet), the model tends to put saliency mainly on task-
relevant semantic components, but ignores the regions that people do look at
(although with lower probabilities). This will result in a better KL score, which is
more sensitive to the matching between high-saliency (probability) regions than
between the low-saliency regions. In contrast, our full model learns to optimally
allocate saliency between high-saliency task-relevant semantic components and
other low-saliency regions. Therefore, although with a slightly worse KL score, it
can better cover both high- and low-saliency regions, as reflected by other met-
rics. Finally, the results also suggest that our network can benefit from having a
shared encoder for the segmentation and task-free subnets. This happens since
the multi-task architecture can help our encoder learn better hidden represen-
tation to boost the performance of both tasks.

Without pre-training on the synthetic data, the performance of our model
drops greatly. This confirms the importance of our task-driven data synthesis.
In addition, learning with only synthetic saliency data does not perform well,
due to the gap between the statistics of real and synthetic saliency data.

5.3 Comparison with Prior Works

We compare our method with several state-of-the-art works for free-viewing
saliency detection, including one method for graphic design saliency, VIMGD [4],
two recent methods for natural images, SalNet [23] and SALICON [10]. We also
make comparison with a recent classification-driven concept localization model
that is adapted to predict task-driven saliency by treating our task labels as class
labels. For fair comparison, we finetune these models on the webpage saliency
dataset [24] using the same training setting as ours. Unfortunately, we did not
get the code for the free-viewing webpage saliency prediction method [28] for
comparison. Thus, we make visual comparison with the results included in their
paper (see the supplemental). For each webpage under each task, we run each
method to get a saliency map. Since the free-viewing saliency detection methods
do not take a task label as input, thus always producing the same results under
different task conditions.
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Table 3. Performances of different saliency detection approaches on our evaluation
dataset. The best results are in red, and the second best are in blue.

The results are shown in Table 3. Our model outperforms all the prior meth-
ods in sAUC and NSS, and achieves the second best performance in KL. The
saliency detection models (SalNet, SALICON) generally perform better than
other prior methods and SALICON even has a better performance than ours
in KL. This is perhaps because that those free-viewing saliency models tend to
fire at almost all the salient regions in a webpage, thereby generating a more
uniform saliency distribution that is more likely to cover the ground truth salient
regions. This leads to a higher KL score. However, such uniform saliency predic-
tions certainly result in more false positives, making the performance of these
models worse than ours in sAUC and NSS. The task-driven saliency method,
Grad-CAM [25] performs worst in our evaluation dataset. This is likely because
the complex and highly variable appearance of webpages make it difficult for
classification-based models to find consistent patterns and identify discrimina-
tive features for different tasks, given our small dataset. Our model generally
perform well in all metrics, which demonstrates the effectiveness of our model
for predicting task-driven saliency. Human performance (Human) is also pro-
vided [12], which serves as upper bound performance.

Figure 6 shows some qualitative results. Grad-CAM fails to locate salient
regions for each task.The free viewing saliency models (i.e., SalNet, SALICON,
VIMGD) simply highlight all the salient regions, oblivious to task conditions.
Hence, we only show one result from each of the prior methods regardless of
the input task label. In contrast, given different tasks, our model can predict
different saliency maps that are close to the ground truth. Please refer to the
supplemental for more results.
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Fig. 6. Saliency prediction results of our method and prior methods under different
task conditions.



314 Q. Zheng et al.

6 Conclusion

We have presented a learning framework to predict webpage saliency under
multiple tasks. Our framework disentangles the saliency prediction into a task-
specific branch and a task-free branch. Such disentangling framework allows
us to learn our model efficiently, even from a relatively small task-driven web-
page saliency dataset. Our experiments show that, for the task-driven webpage
saliency prediction problem, our method is superior to the baselines and prior
works, achieving state-of-the-art performance on a newly collected dataset.
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