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Abstract. We present a box-free bottom-up approach for the tasks of
pose estimation and instance segmentation of people in multi-person
images using an efficient single-shot model. The proposed PersonLab
model tackles both semantic-level reasoning and object-part associations
using part-based modeling. Our model employs a convolutional network
which learns to detect individual keypoints and predict their relative dis-
placements, allowing us to group keypoints into person pose instances.
Further, we propose a part-induced geometric embedding descriptor
which allows us to associate semantic person pixels with their corre-
sponding person instance, delivering instance-level person segmentations.
Our system is based on a fully-convolutional architecture and allows for
efficient inference, with runtime essentially independent of the number
of people present in the scene. Trained on COCO data alone, our sys-
tem achieves COCO test-dev keypoint average precision of 0.665 using
single-scale inference and 0.687 using multi-scale inference, significantly
outperforming all previous bottom-up pose estimation systems. We are
also the first bottom-up method to report competitive results for the per-
son class in the COCO instance segmentation task, achieving a person
category average precision of 0.417.

Keywords: Person detection and pose estimation
Segmentation and grouping

1 Introduction

The rapid recent progress in computer vision has allowed the community to move
beyond classic tasks such as bounding box-level face and body detection towards
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more detailed visual understanding of people in unconstrained environments. In
this work we tackle in a unified manner the tasks of multi-person detection, 2-D
pose estimation, and instance segmentation. Given a potentially cluttered and
crowded ‘in-the-wild’ image, our goal is to identify every person instance, localize
its facial and body keypoints, and estimate its instance segmentation mask. A
host of computer vision applications such as smart photo editing, person and
activity recognition, virtual or augmented reality, and robotics can benefit from
progress in these challenging tasks.

There are two main approaches for tackling multi-person detection, pose
estimation and segmentation. The top-down approach starts by identifying and
roughly localizing individual person instances by means of a bounding box object
detector, followed by single-person pose estimation or binary foreground/ back-
ground segmentation in the region inside the bounding box. By contrast, the
bottom-up approach starts by localizing identity-free semantic entities (individ-
ual keypoint proposals or semantic person segmentation labels, respectively),
followed by grouping them into person instances. In this paper, we adopt the
latter approach. We develop a box-free fully convolutional system whose com-
putational cost is essentially independent of the number of people present in the
scene and only depends on the cost of the CNN feature extraction backbone.

In particular, our approach first predicts all keypoints for every person in
the image in a fully convolutional way. We also learn to predict the relative
displacement between each pair of keypoints, also proposing a novel recurrent
scheme which greatly improves the accuracy of long-range predictions. Once we
have localized the keypoints, we use a greedy decoding process to group them into
instances. Our approach starts from the most confident detection, as opposed to
always starting from a distinguished landmark such as the nose, so it works well
even in clutter.

In addition to predicting the sparse keypoints, our system also predicts dense
instance segmentation masks for each person. For this purpose, we train our
network to predict instance-agnostic semantic person segmentation maps. For
every person pixel we also predict offset vectors to each of the K keypoints of the
corresponding person instance. The corresponding vector fields can be thought
as a geometric embedding representation and induce basins of attraction around
each person instance, leading to an efficient association algorithm: For each pixel
xi, we predict the locations of all K keypoints for the corresponding person that
xi belongs to; we then compare this to all candidate detected people j (in terms
of average keypoint distance), weighted by the keypoint detection probability; if
this distance is low enough, we assign pixel i to person j.

We train our model on the standard COCO keypoint dataset [1], which
annotates multiple people with 12 body and 5 facial keypoints. We significantly
outperform the best previous bottom-up approach to keypoint localization [2],
improving the keypoint AP from 0.655 to 0.687. In addition, we are the first
bottom-up method to report competitive results on the person class for the
COCO instance segmentation task. We get a mask AP of 0.417, which outper-
forms the strong top-down FCIS method of [3], which gets 0.386. Furthermore



284 G. Papandreou et al.

our method is very simple and hence fast, since it does not require any second
stage box-based refinement, or clustering algorithm. We believe it will therefore
be quite useful for a variety of applications, especially since it lends itself to
deployment in mobile phones.

2 Related Work

2.1 Pose Estimation

Proir to the recent trend towards deep convolutional networks [4,5], early suc-
cessful models for human pose estimation centered around inference mechanisms
on part-based graphical models [6,7], representing a person by a collection of
configurable parts. Following this work, many methods have been proposed to
develop tractable inference algorithms for solving the energy minimization that
captures rich dependencies among body parts [8–16]. While the forward inference
mechanism of this work differs to these early DPM-based models, we similarly
propose a bottom-up approach for grouping part detections to person instances.

Recently, models based on modern large scale convolutional networks
have achieved state-of-art performance on both single-person pose estimation
[17–26] and multi-person pose estimation [27–34]. Broadly speaking, there are
two main approaches to pose-estimation in the literature: top-down (person first)
and bottom-up (parts first). Examples of the former include G-RMI [33], CFN
[35], RMPE [36], Mask R-CNN [34], and CPN [37]. These methods all predict
key point locations within person bounding boxes obtained by a person detector
(e.g., Fast-RCNN [38], Faster-RCNN [39] or R-FCN [40]).

In the bottom-up approach, we first detect body parts and then group these
parts to human instances. Pishchulin et al. [27], Insafutdinov et al. [28,29], and
Iqbal et al. [30] formulate the problem of multi-person pose estimation as part
grouping and labeling via a Linear Program. Cao et al. [32] incorporate the unary
joint detector modified from [31] with a part affinity field and greedily generate
person instance proposals. Newell et al. [2] propose associative embedding to
identify key point detections from the same person.

2.2 Instance Segmentation

The approaches for instance segmentation can also be categorized into the two
top-down and bottom-up paradigms.

Top-down methods exploit state-of-art detection models to either classify
mask proposals [41–47] or to obtain mask segmentation results by refining the
bounding box proposals [3,34,48–51].

Ours is a bottom-up approach, in which we associate pixel-level predictions
to each object instance. Many recent models propose similar forms of instance-
level bottom-up clustering. For instance, Liang et al. use a proposal-free network
[52] to cluster semantic segmentation results to obtain instance segmentation.
Uhrig et al. [53] first predict each pixel’s direction towards its instance center
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and then employ template matching to decode and cluster the instance segmen-
tation result. Zhang et al. [54,55] predict instance ID by encoding the object
depth ordering within a patch and use this depth ordering to cluster instances.
Wu et al. [56] use a prediction network followed by a Hough transform-like app-
roach to perform prediction instance clustering. In this work, we similarly per-
form a Hough voting of multiple predictions. In a slightly different formulation,
Liu et al. [57] segment and aggregate segmentation results from dense multi-
scale patches, and aggregate localized patches into complete object instances.
Levinkov et al. [58] formulate the instance segmentation problem as a combi-
natorial optimization problem that consists of graph decomposition and node
labeling and propose efficient local search algorithms to iteratively refine an ini-
tial solution. InstanceCut [59] and the work of [60] propose to predict object
boundaries to separate instances. [2,61,62] group pixel predictions that have
similar values in the learned embedding space to obtain instance segmentation
results. Bai and Urtasun [63] propose a Watershed Transform Network which
produces an energy map where object instances are represented as basin. Liu et
al. [64] propose the Sequential Grouping Network which decomposes the instance
segmentation problem into several sub-grouping problems.

3 Methods

Figure 1 gives an overview of our system, which we describe in detail next.

3.1 Person Detection and Pose Estimation

We develop a box-free bottom-up approach for person detection and pose esti-
mation. It consists of two sequential steps, detection of K keypoints, followed
by grouping them into person instances. We train our network in a supervised
fashion, using the ground truth annotations of the K = 17 face and body parts
in the COCO dataset.

Keypoint Detection. The goal of this stage is to detect, in an instance-agnostic
fashion, all visible keypoints belonging to any person in the image.

For this purpose, we follow the hybrid classification and regression approach
of [33], adapting it to our multi-person setting. We produce heatmaps (one chan-
nel per keypoint) and offsets (two channels per keypoint for displacements in the
horizontal and vertical directions). Let xi be the 2-D position in the image, where
i = 1, . . . N is indexing the position in the image and N is the number of pixels.
Let DR(y) = {x : ‖x − y‖ ≤ R} be a disk of radius R centered around y. Also
let yj,k be the 2-D position of the k-th keypoint of the j-th person instance, with
j = 1, . . . , M , where M is the number of person instances in the image.

For every keypoint type k = 1, . . . , K, we set up a binary classification task
as follows. We predict a heatmap pk(x) such that pk(x) = 1 if x ∈ DR(yj,k)
for any person instance j, otherwise pk(x) = 0. We thus have K independent
dense binary classification tasks, one for each keypoint type. Each amounts to
predicting a disk of radius R around a specific keypoint type of any person in
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Fig. 1. Our PersonLab system consists of a CNN model that predicts: (1) keypoint
heatmaps, (2) short-range offsets, (3) mid-range pairwise offsets, (4) person segmenta-
tion maps, and (5) long-range offsets. The first three predictions are used by the Pose
Estimation Module in order to detect human poses while the latter two, along with
the human pose detections, are used by the Instance Segmentation Module in order to
predict person instance segmentation masks.

the image. The disk radius value is set to R = 32 pixels for all experiments
reported in this paper and is independent of the person instance scale. We have
deliberately opted for a disk radius which does not scale with the instance size
in order to equally weigh all person instances in the classification loss. During
training, we compute the heatmap loss as the average logistic loss along image
positions and we back-propagate across the full image, only excluding areas that
contain people that have not been fully annotated with keypoints (person crowd
areas and small scale person segments in the COCO dataset).

In addition to the heatmaps, we also predict short-range offset vectors Sk(x)
whose purpose is to improve the keypoint localization accuracy. At each position
x within the keypoint disks and for each keypoint type k, the short-range 2-D
offset vector Sk(x) = yj,k − x points from the image position x to the k-th
keypoint of the closest person instance j, as illustrated in Fig. 1. We generate
K such vector fields, solving a 2-D regression problem at each image position
and keypoint independently. During training, we penalize the short-range offset
prediction errors with the L1 loss, averaging and back-propagating the errors
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only at the positions x ∈ DR(yj,k) in the keypoint disks. We divide the errors
in the short-range offsets (and all other regression tasks described in the paper)
by the radius R = 32 pixels in order to normalize them and make their dynamic
range commensurate with the heatmap classification loss.

We aggregate the heatmap and short-range offsets via Hough voting into 2-D
Hough score maps hk(x), k = 1, . . . , K, using independent Hough accumulators
for each keypoint type. Each image position casts a vote to each keypoint channel
k with weight equal to its activation probability,

hk(x) =
1

πR2

∑

i=1:N

pk(xi)B(xi + Sk(xi) − x) , (1)

where B(·) denotes the bilinear interpolation kernel. The resulting highly local-
ized Hough score maps hk(x) are illustrated in Fig. 1.

Grouping Keypoints into Person Detection Instances.

Mid-Range Pairwise Offsets. The local maxima in the score maps hk(x) serve
as candidate positions for person keypoints, yet they carry no information about
instance association. When multiple person instances are present in the image,
we need a mechanism to “connect the dots” and group together the keypoints
belonging to each individual instance. For this purpose, we add to our network a
separate pairwise mid-range 2-D offset field output Mk,l(x) designed to connect
pairs of keypoints. We compute 2(K − 1) such offset fields, one for each directed
edge connecting pairs (k, l) of keypoints which are adjacent to each other in
a tree-structured kinematic graph of the person, see Figs. 1 and 2. Specifically,
the supervised training target for the pairwise offset field from the k-th to the
l-th keypoint is given by Mk,l(x) = (yj,l − x)I(x ∈ DR(yj,k)), since its purpose
is to allow us to move from the k-th to the l-th keypoint of the same person
instance j. During training, this target regression vector is only defined if both
keypoints are present in the training example. We compute the average L1 loss
of the regression prediction errors over the source keypoint disks x ∈ DR(yj,k)
and back-propagate through the network.

)c()b()a(

Fig. 2. Mid-range offsets. (a) Initial mid-range offsets that starting around the RightEl-
bow keypoint, they point towards the RightShoulder keypoint. (b) Mid-range offset
refinement using the short-range offsets. (c) Mid-range offsets after refinements.
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Recurrent Offset Refinement. Particularly for large person instances, the edges
of the kinematic graph connect pairs of keypoints such as RightElbow and Right-
Shoulder which may be several hundred pixels away in the image, making it hard
to generate accurate regressions. We have successfully addressed this important
issue by recurrently refining the mid-range pairwise offsets using the more accu-
rate short-range offsets, specifically:

Mk,l(x) ← x′ + Sl(x′) ,where x′ = Mk,l(x) , (2)

as illustrated in Fig. 2. We repeat this refinement step twice in our experiments.
We employ bilinear interpolation to sample the short-range offset field at the
intermediate position x′ and back-propagate the errors through it along both the
mid-range and short-range input offset branches. We perform offset refinement
at the resolution of CNN output activations (before upsamling to the original
image resolution), making the process very fast. The offset refinement process
drastically decreases the mid-range regression errors, as illustrated in Fig. 2.
This is a key novelty in our method, which greatly facilitates grouping and
significantly improves results compared to previous papers [28,32] which also
employ pairwise displacements to associate keypoints.

Fast Greedy Decoding. We have developed an extremely fast greedy decoding
algorithm to group keypoints into detected person instances. We first create a
priority queue, shared across all K keypoint types, in which we insert the position
xi and keypoint type k of all local maxima in the Hough score maps hk(x) which
have score above a threshold value (set to 0.01 in all reported experiments).
These points serve as candidate seeds for starting a detection instance. We then
pop elements out of the queue in descending score order. At each iteration, if
the position xi of the current candidate detection seed of type k is within a disk
Dr(yj′,k) of the corresponding keypoint of previously detected person instances
j′, then we reject it; for this we use a non-maximum suppression radius of r = 10
pixels. Otherwise, we start a new detection instance j with the k-th keypoint at
position yj,k = xi serving as seed. We then follow the mid-range displacement
vectors along the edges of the kinematic person graph to greedily connect pairs
(k, l) of adjacent keypoints, setting yj,l = yj,k + Mk,l(yj,k).

It is worth noting that our decoding algorithm does not treat any keypoint
type preferentially, in contrast to other techniques that always use the same
keypoint type (e.g.Torso or Nose) as seed for generating detections. Although we
have empirically observed that the majority of detections in frontal facing person
instances start from the more easily localizable facial keypoints, our approach
can also handle robustly cases where a large portion of the person is occluded.

Keypoint- and Instance-Level Detection Scoring. We have experimented
with different methods to assign a keypoint- and instance-level score to the
detections generated by our greedy decoding algorithm. Our first keypoint-level
scoring method follows [33] and assigns to each keypoint a confidence score
sj,k = hk(yj,k). A drawback of this approach is that the well-localizable facial
keypoints typically receive much higher scores than poorly localizable keypoints
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like the hip or knee. Our second approach attempts to calibrate the scores of the
different keypoint types. It is motivated by the object keypoint similarity (OKS)
evaluation metric used in the COCO keypoints task [1], which uses different
accuracy thresholds κk to penalize localization errors for different keypoint types.

Fig. 3. Long-range offsets defined in the person segmentation mask. (a) Estimated
person segmentation map. (b) Initial long range offsets for the Nose destination key-
point: each pixel in the foreground of the person segmentation mask points towards
the Nose keypoint of the instance that it belongs to. (c) Long-range offsets after their
refinements with the short-range offsets.

Specifically, consider a detected person instance j with keypoint coordinates
yj,k. Let λj be the square root of the area of the bounding box tightly containing
all detected keypoints of the j-th person instance. We define the Expected-OKS
score for the k-th keypoint by

sj,k = E{OKSj,k} = pk(yj,k)
∫

x∈DR(yj,k)

ĥk(x) exp

(
− (x − yj,k)2

2λ2
jκ

2
k

)
dx , (3)

where ĥk(x) is the Hough score normalized in DR(yj,k). The expected OKS
keypoint-level score is the product of our confidence that the keypoint is present,
times the OKS localization accuracy confidence, given the keypoint’s presence.

We use the average of the keypoint scores as instance-level score shj =
(1/K)

∑
k sj,k, followed by non-maximum suppression (NMS). We have exper-

imented both with hard OKS-based NMS [33] as well as a soft-NMS scheme
adapted for the keypoints tasks from [65], where we use as final instance-level
score the sum of the scores of the keypoints that have not already been claimed
by higher scoring instances, normalized by the total number of keypoints:

sj = (1/K)
∑

k=1:K

sj,k[‖yj,k − yj′,k‖ > r, for every j′ < j] , (4)

where r = 10 is the NMS-radius. In our experiments in the main paper we report
results with the best performing Expected-OKS scoring and soft-NMS but we
include ablation experiments in the supplementary material.

3.2 Instance-Level Person Segmentation

Given the set of keypoint-level person instance detections, the task of our
method’s segmentation stage is to identify pixels that belong to people (recog-
nition) and associate them with the detected person instances (grouping).
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We describe next the respective semantic segmentation and association mod-
ules, illustrated in Fig. 4.

Fig. 4. From semantic to instance segmentation: (a) Image; (b) person segmentation;
(c) basins of attraction defined by the long-range offsets to the Nose keypoint; (d)
instance segmentation masks.

Semantic Person Segmentation. We treat semantic person segmentation
in the standard fully-convolutional fashion [66,67]. We use a simple semantic
segmentation head consisting of a single 1× 1 convolutional layer that performs
dense logistic regression and compute at each image pixel xi the probability
pS(xi) that it belongs to at least one person. During training, we compute and
backpropagate the average of the logistic loss over all image regions that have
been annotated with person segmentation maps (in the case of COCO we exclude
the crowd person areas).

Associating Segments with Instances Via Geometric Embeddings. The
task of this module is to associate each person pixel identified by the semantic
segmentation module with the keypoint-level detections produced by the person
detection and pose estimation module.

Similar to [2,61,62], we follow the embedding-based approach for this task. In
this framework, one computes an embedding vector G(x) at each pixel location,
followed by clustering to obtain the final object instances. In previous works,
the representation is typically learned by computing pairs of embedding vectors
at different image positions and using a loss function designed to attract the
two embedding vectors if they both come from the same object instance and
repel them if they come from different person instances. This typically leads to
embedding representations which are difficult to interpret and involves solving
a hard learning problem which requires careful selection of the loss function and
tuning several hyper-parameters such as the pair sampling protocol.

Here, we opt instead for a considerably simpler, geometric approach. At each
image position x inside the segmentation mask of an annotated person instance
j with 2-D keypoint positions yj,k, k = 1, . . . , K, we define the long-range offset
vector Lk(x) = yj,k − x which points from the image position x to the position
of the k-th keypoint of the corresponding instance j. (This is very similar to
the short-range prediction task, except the dynamic range is different, since we
require the network to predict from any pixel inside the person, not just from
inside a disk near the keypoint. Thus these are like two “specialist” networks.
Performance is worse when we use the same network for both kinds of tasks. ) We
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compute K such 2-D vector fields, one for each keypoint type. During training,
we penalize the long-range offset regression errors using the L1 loss, averaging
and back-propagating the errors only at image positions x which belong to a
single person object instance. We ignore background areas, crowd regions, and
pixels which are covered by two or more person masks.

The long-range prediction task is challenging, especially for large object
instances that may cover the whole image. As in Sect. 3.1, we recurrently refine
the long-range offsets, twice by themselves and then twice by the short-range
offsets

Lk(x) ← x′ + Lk(x′) , x′ = Lk(x) and Lk(x) ← x′ + Sk(x′) , x′ = Lk(x) , (5)

back-propagating through the bilinear warping function during training. Simi-
larly with the mid-range offset refinement in Eq. 2, recurrent long-range offset
refinement dramatically improves the long-range offset prediction accuracy.

In Fig. 3 we illustrate the long-range offsets corresponding to the Nose key-
point as computed by our trained CNN for an example image. We see that
the long-range vector field effectively partitions the image plane into basins of
attraction for each person instance. This motivates us to define as embedding
representation for our instance association task the 2 · K dimensional vector
G(x) = (Gk(x))k=1,...,K with components Gk(x) = x + Lk(x).

Our proposed embedding vector has a very simple geometric interpretation:
At each image position xi semantically recognized as a person instance, the
embedding G(xi) represents our local estimate for the absolute position of every
keypoint of the person instance it belongs to, i.e., it represents the predicted
shape of the person. This naturally suggests shape metric as candidates for
computing distances in our proposed embedding space. In particular, in order
to decide if the person pixel xi belongs to the j-th person instance, we compute
the embedding distance metric

Di,j =
1∑

k pk(yj,k)

K∑

k=1

pk(yj,k)
1
λj

‖Gk(xi) − yj,k‖ , (6)

where yj,k is the position of the k-th detected keypoint in the j-th instance and
pk(yj,k) is the probability that it is present. Weighing the errors by the keypoint
presence probability allows us to discount discrepancies in the two shapes due
to missing keypoints. Normalizing the errors by the detected instance scale λj

allows us to compute a scale invariant metric. We set λj equal to the square root
of the area of the bounding box tightly containing all detected keypoints of the
j-th person instance. We emphasize that because we only need to compute the
distance metric between the NS pixels and the M person instances, our algorithm
is very fast in practice, having complexity O(NS ∗ M) instead of O(NS ∗ NS) of
standard embedding-based segmentation techniques which, at least in principle,
require computation of embedding vector distances for all pixel pairs.

To produce the final instance segmentation result: (1) We find all positions xi

marked as person in the semantic segmentation map, i.e. those pixels that have
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semantic segmentation probability pS(xi) ≥ 0.5. (2) We associate each person
pixel xi with every detected person instance j for which the embedding distance
metric satisfies Di,j ≤ t; we set the relative distance threshold t = 0.25 for
all reported experiments. It is important to note that the pixel-instance assign-
ment is non-exclusive: Each person pixel may be associated with more than one
detected person instance (which is particularly important when doing soft-NMS
in the detection stage) or it may remain an orphan (e.g., a small false positive
region produced by the segmentation module). We use the same instance-level
score produced by the previous person detection and pose estimation stage to
also evaluate on the COCO segmentation task and obtain average precision per-
formance numbers.

3.3 Imputing Missing Keypoint Annotations

The standard COCO dataset does not contain keypoint annotations in the train-
ing set for the small person instances, and ignores them during model evaluation.
However, it contains segmentation annotations and evaluates mask predictions
for those small instances. Since training our geometric embeddings requires key-
point annotations for training, we have run the single-person pose estimator of
[33] (trained on COCO data alone) in the COCO training set on image crops
around the ground truth box annotations of those small person instances to
impute those missing keypoint annotations. We treat those imputed keypoints
as regular training annotations during our PersonLab model training. Naturally,
this missing keypoint imputation step is particularly important for our COCO
instance segmentation performance on small person instances. We emphasize
that, unlike [68], we do not use any data beyond the COCO train split images and
annotations in this process. Data distillation on additional images as described
in [68] may yield further improvements.

4 Experimental Evaluation

4.1 Experimental Setup

Dataset and Tasks. We evaluate the proposed PersonLab system on the standard
COCO keypoints task [1] and on COCO instance segmentation [69] for the person
class alone. For all reported results we only use COCO data for model training (in
addition to Imagenet pretraining). Our train set is the subset of the 2017 COCO
training set images that contain people (64115 images). Our val set coincides
with the 2017 COCO validation set (5000 images). We only use train for training
and evaluate on either val or the test-dev split (20288 images).

Model Training Details. We report experimental results with models that use
either ResNet-101 or ResNet-152 CNN backbones [70] pretrained on the Ima-
genet classification task [71]. We discard the last Imagenet classification layer
and add 1× 1 convolutional layers for each of our model-specific layers. Dur-
ing model training, we randomly resize a square box tightly containing the full
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Table 1. Performance on the COCO keypoints test-dev split.

AP AP .50 AP .75 APM APL AR AR.50 AR.75 ARM ARL

Bottom-up methods:

CMU-Pose [32] (+refine) 0.618 0.849 0.675 0.571 0.682 0.665 0.872 0.718 0.606 0.746

Assoc. Embed. [2] (multi-scale) 0.630 0.857 0.689 0.580 0.704 - - - - -

Assoc. Embed. [2] (mscale, refine) 0.655 0.879 0.777 0.690 0.752 0.758 0.912 0.819 0.714 0.820

Top-down methods:

Mask-RCNN [34] 0.631 0.873 0.687 0.578 0.714 0.697 0.916 0.749 0.637 0.778

G-RMI COCO-only [33] 0.649 0.855 0.713 0.623 0.700 0.697 0.887 0.755 0.644 0.771

PersonLab (ours):

ResNet101 (single-scale) 0.655 0.871 0.714 0.613 0.715 0.701 0.897 0.757 0.650 0.771

ResNet152 (single-scale) 0.665 0.880 0.726 0.624 0.723 0.710 0.903 0.766 0.661 0.777

ResNet101 (multi-scale) 0.678 0.886 0.744 0.630 0.748 0.745 0.922 0.804 0.686 0.825

ResNet152 (multi-scale) 0.687 0.890 0.754 0.641 0.755 0.754 0.927 0.812 0.697 0.830

image by a uniform random scale factor between 0.5 and 1.5, randomly translate
it along the horizontal and vertical directions, and left-right flip it with proba-
bility 0.5. We sample and resize the image crop contained under the resulting
perturbed box to an 801× 801 image that we feed into the network. We use a
batch size of 8 images distributed across 8 Nvidia Tesla P100 GPUs in a single
machine and perform synchronous training for 1M steps with stochastic gradi-
ent descent with constant learning rate equal to 1e-3, momentum value set to
0.9, and Polyak-Ruppert model parameter averaging. We employ batch normal-
ization [72] but fix the statistics of the ResNet activations to their Imagenet
values. Our ResNet CNN network backbones have nominal output stride (i.e.,
ratio of the input image to output activations size) equal to 32 but we reduce
it to 16 during training and 8 during evaluation using atrous convolution [67].
During training we also make model predictions using as features activations
from a layer in the middle of the network, which we have empirically observed
to accelerate training. To balance the different loss terms we use weights equal
to (4, 2, 1, 1/4, 1/8) for the heatmap, segmentation, short-range, mid-range, and
long-range offset losses in our model. For evaluation we report both single-scale
results (image resized to have larger side 1401 pixels) and multi-scale results
(pyramid with images having larger side 601, 1201, 1801, 2401 pixels). We have
implemented our system in Tensorflow [73]. All reported numbers have been
obtained with a single model without ensembling.

4.2 COCO Person Keypoints Evaluation

Table 1 shows our system’s person keypoints performance on COCO test-dev.
Our single-scale inference result is already better than the results of the CMU-
Pose [32] and Associative Embedding [2] bottom-up methods, even when they per-
form multi-scale inference and refine their results with a single-person pose estima-
tion system applied on top of their bottom-up detection proposals. Our results also
outperform top-down methods like Mask-RCNN [34] and G-RMI [33]. Our best
result with 0.687 AP is attained with a ResNet-152 based model and multi-scale
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inference. Our result is still behind the winners of the 2017 keypoints challenge
(Megvii) [37] with 0.730 AP, but they used a carefully tuned two-stage, top-down
model that also builds on a significantly more powerful CNN backbone.

Table 2. Performance on COCO segmentation (Person category) test-dev split. Our
person-only results have been obtained with 20 proposals per image. The person cate-
gory FCIS eval results have been communicated by the authors of [3].

AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

FCIS

(baseline) [3]

0.334 0.641 0.318 0.090 0.411 0.618 0.153 0.372 0.393 0.139 0.492 0.688

FCIS

(multi-scale) [3]

0.386 0.693 0.410 0.164 0.481 0.621 0.161 0.421 0.451 0.221 0.562 0.690

PersonLab

(ours):

ResNet101

(1-scale, 20 prop)

0.377 0.659 0.394 0.166 0.480 0.595 0.162 0.415 0.437 0.207 0.536 0.690

ResNet152

(1-scale, 20 prop)

0.385 0.668 0.404 0.172 0.488 0.602 0.164 0.422 0.444 0.215 0.544 0.698

ResNet101

(mscale, 20 prop)

0.411 0.686 0.445 0.215 0.496 0.626 0.169 0.453 0.489 0.278 0.571 0.735

ResNet152

(mscale, 20 prop)

0.417 0.691 0.453 0.223 0.502 0.630 0.171 0.461 0.497 0.287 0.578 0.742

Table 3. Performance on COCO Segmentation (Person category) val split. The Mask-
RCNN [34] person results have been produced by the ResNet-101-FPN version of their
publicly shared model (which achieves 0.359 AP across all COCO classes).

AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

Mask-RCNN [34] 0.455 0.798 0.472 0.239 0.511 0.611 0.169 0.477 0.530 0.350 0.596 0.721

PersonLab

(ours):

ResNet101

(1-scale, 20 prop)

0.382 0.661 0.397 0.164 0.476 0.592 0.162 0.416 0.439 0.204 0.532 0.681

ResNet152

(1-scale, 20 prop)

0.387 0.667 0.406 0.169 0.483 0.595 0.163 0.423 0.446 0.213 0.539 0.686

ResNet101

(mscale, 20 prop)

0.414 0.684 0.447 0.213 0.492 0.621 0.170 0.454 0.492 0.278 0.566 0.728

ResNet152

(mscale, 20 prop)

0.418 0.688 0.455 0.219 0.497 0.621 0.170 0.460 0.497 0.284 0.573 0.730

ResNet152

(mscale, 100

prop)

0.429 0.711 0.467 0.235 0.511 0.623 0.170 0.460 0.539 0.346 0.612 0.741

4.3 COCO Person Instance Segmentation Evaluation

Tables 2 and 3 show our person instance segmentation results on COCO test-
dev and val, respectively. We use the small-instance missing keypoint imputation
technique of Sect. 3.3 for the reported instance segmentation experiments, which
significantly increases our performance for small objects. Our results without
missing keypoint imputation are shown in the supplementary material.
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Our method only produces segmentation results for the person class, since
our system is keypoint-based and thus cannot be applied to the other COCO
classes. The standard COCO instance segmentation evaluation allows for a max-
imum of 100 proposals per image for all 80 COCO classes. For a fair comparison
when comparing with previous works, we report test-dev results of our method
with a maximum of 20 person proposals per image, which is the convention also
adopted in the standard COCO person keypoints evaluation protocol. For refer-
ence, we also report the val results of our best model when allowed to produce
100 proposals.

We compare our system with the person category results of top-down instance
segmentation methods. As shown in Table 2, our method on the test split out-
performs FCIS [3] in both single-scale and multi-scale inference settings. As
shown in Table 3, our performance on the val split is similar to that of Mask-
RCNN [34] on medium and large person instances, but worse on small person
instances. However, we emphasize that our method is the first box-free, bottom-
up instance segmentation method to report experiments on the COCO instance
segmentation task.

4.4 Qualitative Results

In Fig. 5 we show representative person pose and instance segmentation results
on COCO val images produced by our model with single-scale inference.

Fig. 5. Visualization on COCO val images. The last row shows some failure cases:
missed key point detection, false positive key point detection, and missed segmentation.
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5 Conclusions

We have developed a bottom-up model which jointly addresses the problems
of person detection, pose estimation, and instance segmentation using a uni-
fied part-based modeling approach. We have demonstrated the effectiveness of
the proposed method on the challenging COCO person keypoint and instance
segmentation tasks. A key limitation of the proposed method is its reliance on
keypoint-level annotations for training on the instance segmentation task. In the
future, we plan to explore ways to overcome this limitation, via weakly super-
vised part discovery.
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