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Abstract. The world of human-object interactions is rich. While gener-
ally we sit on chairs and sofas, if need be we can even sit on TVs or top of
shelves. In recent years, there has been progress in modeling actions and
human-object interactions. However, most of these approaches require
lots of data. It is not clear if the learned representations of actions are
generalizable to new categories. In this paper, we explore the problem of
zero-shot learning of human-object interactions. Given limited verb-noun
interactions in training data, we want to learn a model than can work
even on unseen combinations. To deal with this problem, In this paper,
we propose a novel method using external knowledge graph and graph
convolutional networks which learns how to compose classifiers for verb-
noun pairs. We also provide benchmarks on several dataset for zero-shot
learning including both image and video. We hope our method, dataset
and baselines will facilitate future research in this direction.

1 Introduction

Our daily actions and activities are rich and complex. Consider the examples
in Fig. 1(a). The same verb “sit” is combined with different nouns (chair, bed,
floor) to describe visually distinctive actions (“sit on chair” vs. “sit on floor”).
Similarly, we can interact with the same object (TV) in many different ways
(turn on, clean, watch). Even small sets of common verbs and nouns will create
a huge combination of action labels. It is highly unlikely that we can capture
action samples covering all these combinations. What if we want to recognize an
action category that we had never seen before, e.g., the one in Fig. 1(b)?

This problem is known as zero shot learning, where categories at testing time
are not presented during training. It has been widely explored for object recogni-
tion [1,11,12,15,31,37,60]. And there is an emerging interest for zero-shot action
recognition [18,21,24,35,51,55]. How are actions different from objects in zero
shot learning? What we know is that human actions are naturally compositional
and humans have amazing ability to achieve similar goals with different objects
and tools. For example, while one can use hammer for the hitting the nail, we can
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Sit on table, chair, floor, ... Siton TV

(c)

Fig.1. (a-b) many of our daily actions are compositional. These actions can be
described by motion (verbs) and the objects (nouns). We build on this composition
for zero shot recognition of human-object interactions. Our method encodes motion
and object cues as visual embeddings of verbs (e.g., sit) and nouns (e.g., TV), uses
external knowledge for learning to assemble these embeddings into actions. We demon-
strate that our method can generalize to unseen action categories (e.g., sit on a TV). (c)
a graph representation of interactions: pairs of verb-noun nodes are linked via action
nodes (circle), and verb-verb/noun-noun pairs can be connected.

also use a hard-cover book for the same. We can thus leverage this unique com-
position to help recognizing novel actions. To this end, we address the problem
of zero shot action recognition. And we specifically focus on the compositional
learning of daily human object interactions, which can be described by a pair of
verb and noun (e.g., “wash a mirror” or “hold a laptop”).

This compositional learning faces a major question: How can a model learn
to compose a novel action within the context? For example, “Sitting on a TV”
looks very different from “Sitting on a chair” since the underlying body motion
and body poses are quite different. Even if the model has learned to recognize
individual concepts like “T'V” and “Sitting”, it will still fail to generalize. Indeed,
many of our seemly effortless interactions with novel objects build on our prior
knowledge. If the model knows that people also sit on floor, vase are put on
floor, and vase can be put on TV. It might be able to assemble the visual
concepts of “Sitting” and “TV” to recognize the rare action of “Sitting on a
TV”. Moreover, what if model knows “sitting” is similar to “lean” and “TV” is
similar to “Jukebox”, can model also recognize “lean into Jukebox”? Thus, we
propose to explore using external knowledge to bridge the gap of contextuality,
and to help the modeling of compositionality for human object interactions.

Specifically, we extract Subject, Verb and Object (SVO) triplets from knowl-
edge bases [8,30] to build an external knowledge graph. These triplets capture
a large range of human object interactions, and encode our knowledge about
actions. Each verb (motion) or noun (object) is a node in the graph with its
word embedding as the node’s feature. Each SVO-triplet defines an action node
and a path between the corresponding verb and noun nodes via the action node
(See Fig.1(c)). These action nodes start with all zero features, and must learn
its representation by propagating information along the graph during training.
This information passing is achieved by using a multi-layer graph convolutional
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network [29]. Our method jointly trains a projection of visual features and the
graph convolutional network, and thus learns to transform both visual features
and action nodes into a shared embedding space. Our zero shot recognition of
actions is thus reduced to nearest neighbor search in this space.

We present a comprehensive evaluation of our method on image datasets
(HICO [7] and a subset of Visual Genome [30]), as well as a more challenging
video dataset (Charades [48]). We define proper benchmarks for zero shot learn-
ing of human-object interactions, and compare our results to a set of baselines.
Our method demonstrates strong results for unseen combinations of known con-
cepts. Our results outperforms the state-of-the-art methods on HICO and Visual
Genome, and performs comparably to previous methods on Charades. We also
show that our method can generalize to unseen concepts, with a performance
level that is much better than chance. We hope our method and benchmark will
facilitate future research in this direction.

2 Related Work

Zero Shot Learning. Our work follows the zero-shot learning setting [53].
Early works focused on attribute based learning [26,31,41,58]. These methods
follow a two-stage approach by first predicting the attributes, and then infer-
ring the class labels. Recent works make use of semantic embeddings to model
relationships between different categories. These methods learn to map either
visual features [15,55], or labels [1,11,12,37], or both of them [52,52,56] into a
common semantic space. Recognition is then achieved by measuring the distance
between the visual inputs and the labels in this space. Similar to attribute based
approaches, our method considers interactions as verb-noun pairs. However, we
do not explicit predict individual verbs or nouns. Similar to embedding based
approaches, we learn semantic embeddings of interactions. Yet we focus on the
compositional learning [40] by leveraging external knowledge.

Our work is also related to previous works that combine side information
for zero shot recognition. For example, Rohrbach et al. [43] transferred part
attributes from linguistic data to recognize unseen objects. Fu et al. [16] used
hyper-graph label propagation to fuse information from multiple semantic repre-
sentations. Li et al. [33] explored semi-supervised learning in a zero shot setting.
Inspired by these methods, our method connects actions and objects using infor-
mation from external knowledge base. Yet we use graph convolution to propagate
the semantic representations of verbs and nouns, and learns to assemble them
into actions. Moreover, previous works considered the recognition of objects in
images. Our work thus stands out by addressing the recognition of human object
interactions in both images and videos. We believe our problem is an ideal bench-
mark for compositional learning of how to build generalizable representations.

Modeling Human Object Interactions. Modeling human object interactions
has a rich history in both computer vision and psychology. It starts from the
idea of “affordances” introduced by Gibson [17]. There have been lots of work
in using semantics for functional understanding of objects [49]. However, none
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of these early attempts scaled up due to lack of data and brittle inference under
noisy perception. Recently, the idea of modeling human object interactions has
made a comeback [19]. Several approaches have looked at modeling semantic
relationships [10,20,57], action-3D relationships [14] or completely data-driven
approach [13]. However, none of them considered the use of external knowledge.

Moreover, recent works focused on creating large scale image datasets for
human object interactions [7,30,36]. However, even the current largest dataset—
Visual Genome [30] only contains a small subset of our daily interactions (hun-
dreds), and did not capture the full dynamics of interactions that exist in video.
Our work takes a step forward by using external knowledge for recognizing
unseen interactions, and exploring the recognition of interactions for a challeng-
ing video dataset [48]. We believe an important test of intelligence and reasoning
is the ability to compose primitives into novel concepts. Therefore, we hope our
work can provide a step for visual reasoning based approaches to come in future.

Zero Shot Action Recognition. Our paper is inspired by compositional rep-
resentations for human object interactions. There has been a lot of work in psy-
chology and early computer vision on compositions, starting from original work
by Biederman [4] and Hoffman et al. [23]. More recently, several works started
to address the zero shot recognition of actions. Similar to attribute based object
recognition, Liu et al. [35] learned to recognize novel actions using attributes.
Going beyond recognition, Habibian et al. [21] proposed to model concepts in
videos for event detection. Inspired by zero shot object recognition, Xu et al.
presented a embedding based method for actions [55]. Other efforts include
the exploration of text descriptions [18,51], joint segmentation of actors and
actions [54], and model domain shift of actions [56]. However, these methods
simply treat actions as labels and did not consider their compositionality.

Perhaps the most relevant work is from [24,25,28]. Jain et al. [24,25] noticed
a strong relation between objects and actions, and thus proposed to use object
classifier for zero shot action recognition. As a step forward, Kalogeition et al.
[28] proposed to jointly detect objects and actions in videos. Instead of using
objects alone, our method models both body motion (verb) and objects (noun).
More importantly, we explore using external knowledge for assembling these
concepts into novel actions. Our method thus provides a revisit to the problem
of human object interactions from the perspective of compositionality.

Compositional Learning for Vision and Language. Compositional learn-
ing has been explored in Visual Question Answering (VQA). Andreas et al.
[2,3] decomposed VQA task into sequence of modular sub-problems—each mod-
eled by a neural network. Their method assembles a network from individual
modules based on the syntax of a question, and predicts the answer using the
instance-specific network. This idea was further extended by Johnson et al. [27],
where deep models are learned to generate programs from a question and to exe-
cute the programs on the image to predict the answer. Our method shares the
core idea of compositional learning, yet focuses on human object interactions.
Moreover, modeling SVO pairs using graph representations has been discussed
in [45,50,59]. Sadeghi et al. [45] constructed a knowledge graph of SVO nodes
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similar to our graph representation. However, their method aimed at verifying
SVO relationships using visual data. A factor graph model with SVO nodes
was presented in for video captioning [50], yet without using deep models. More
recently, Zellers et al. [59] proposed a deep model for generating scene graphs
of objects and their relations from an image. However, their method can not
handle unseen concepts.
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(a) A graph encoding of the knowledge about (b) Graph convolution that propagates information
human-object interactions on the graph and learns to compose new actions

Fig. 2. Overview of our approach. (a) our graph that encodes external SVO pairs.
Each verb or noun is represented as a node and comes with its word embeddings as
the node’s features. Every interaction defined by a SVO pair creates a new action node
(orange ones) on the graph, which is linked to the corresponding noun and verb nodes.
We can also add links between verbs and nouns, e.g., using WordNet [39]. (b) the graph
convolution operation. Our learning will propagate features on the graph, and fill in
new representations for the action nodes. These action features are further merged with
visual features from a convolutional network (c) to learn a similarity metric between
the action concepts and the visual inputs. (Color figure online)

3 Method

Given an input image or video, we denote its visual features as x; and its
action label as y;. We focus on human object interactions, where y; can be
further decomposed into a verb y? (e.g., “take”/“open”) and a noun y! (e.g.,
“phone” / “table”). For clarity, we drop the subscript ¢ when it is clear that we
refer to a single image or video. In our work, we use visual features from con-
volutional networks for z, and represent verbs y” and nouns y™ by their word
embeddings as z and z".

Our goal is to explore the use of knowledge for zero shot action recognition.
Specifically, we propose to learn a score function ¢ such that

p(ylr) = é(z,y",y"; K) (1)
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where K is the prior knowledge about actions. Our key idea is to represent K via
a graph structure and use this graph for learning to compose representations of
novel actions. An overview of our method is shown in Fig. 2. The core component
of our model is a graph convolutional network g(y*,y™; K) (See Fig.2(a-b)). g
learns to compose action representation z, based on embeddings of verbs and
nouns, as well as the knowledge of SVO triplets and lexical information. The
output z, is further compared to the visual feature = for zero shot recognition.
We now describe how we encode external knowledge using a graph, and how we
use this graph for compositional learning.

3.1 A Graphical Representation of Knowledge

Formally, we define our graph as G = (V,&,Z). G is a undirected graph with V
as its nodes. £ presents the links between nodes V and Z are the feature vectors
for nodes £. We propose to use this graph structure to encode two important
types of knowledge: (1) the “affordance” of objects, such as “book can be hold”
or “pen can be taken”, defined by SVO triplets from external knowledge base [8];
(2) the semantic similarity between verb or noun tokens, defined by the lexical
information from WordNet [39].

Graph Construction. Specifically, we construct the graph as follows.

— Each verb or noun is modeled as a node on the graph. These nodes are
denoted as V,, and V,,. And they comes with their word embeddings [38,42]
as the nodes features 7, and 7,

— Each verb-object pair in a SVO defines a human object interaction. These
interactions are modeled by a separate set of action nodes V, on the graph.
Each interaction will have its own node, even if it share the same verb or
noun with other interactions. For example, “take a book” and “hold a book”
will be two different nodes. These nodes are initialized with all zero feature
vectors, and must obtain their representation Z, via learning.

— A verb node can only connect to a noun node via a valid action node. Namely,
each interaction will add a new path on the graph.

— We also add links within noun or verb nodes by WordNet [39].

This graph is thus captured by its adjacency matrix A € RVIXIVI and a
feature matrix Z € R™IVI. Based on the construction, our graph structure can
be naturally decomposed into blocks, given by

Avv 0 Ava
A= 0 Ann A(j;n ) Z = [Zva Zn,O} (2)
AL Aen 0

where Ay, Avas Aan, Ann are adjacency matrix for verb-verb pairs, verb-action
pairs, action-noun pairs and noun-noun pairs, respectively. Z, and Z,, are word
embedding for verbs and nouns. Moreover, we have Z, = 0 and thus the action
nodes need to learn new representations for recognition.
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Graph Normalization. To better capture the graph structure, it is usually
desirable to normalize the adjacency matrix [29]. Due to the block structure
in our adjacency matrix, we add an identity matrix to the diagonal of A, and
normalize each block separately. More precisely, we have

R A’U’U ,\0 V{lva
A=10 A, AT |, (3)
Aan AT T

where A,, — Dw (Aus +I)Dw, A = Dot (Apn+ 1) D, Ay = D Ay D,

and A,, = Dm (A +1 )Dﬁn D is the diagonal node degree matrix for each
block. Thus, these are symmetric normalized adjacency blocks.

3.2 Graph Convolutional Network for Compositional Learning

Given the knowledge graph G, we want to learn to compose representation of
actions Z,. Z, can thus be further used as “action template” for zero shot
recognition. The question is how can we leverage the graph structure for learning
Z,. Our key insight is that word embedding of verbs and nouns encode important
semantic information, and we can use the graph to distill theses semantics, and
construct meaningful action representation. To this end, we adopt the Graph
Convolution Network (GCN) from [29]. The core idea of GCN is to transform
the node features based on its neighbors on the graph. Formally, given normalized
graph adjacency matrix A and node features Z , a single layer GCN is given by

Z =GCN(Z,A) = AZ™W (4)

where W is a d x d weight learned from data. d is the dimension of input feature
vector for each node and d is the output feature dimension. Intuitively, GCN first
transforms each feature on each node independently, then averages the features of
connected nodes. This operation is usually stacked multiple times, with nonlinear
activation functions (ReLU) in-between.

Note that A is a block matrix. It is thus possible to further decompose GCU
operations to each block. This decomposition provides better insights to our
model, and can significantly reduce the computational cost. Specially, we have

Zv = A’U’UZZW’U’U AnnZT nn Za = v[lanZT an + A;J;QZ;{ va (5)

where W, = Wy, = W = Wyo = W. We also experimented with using differ-
ent parameters for each block, which is similar to [46]. Note the last line of Zq
in Eq. 5. In a single layer GCN, this model learns linear functions W,,, and W,
that transform the neighboring word embeddings into an action template. With
nonlinear activations and K GCN layers, the model will construct a nonlinear
transform that considers more nodes for building the action representation (from
1-neighborhood to K-neighborhood).
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3.3 From Graph to Zero Shot Recognition

The outputs of our graph convolutional networks are the transformed node fea-
tures Z = [ZU Zn, «]. We use the output action representations Z, for the zero
shot recognition. This is done by learning to match action features Z, and visual
features x. More precisely, we learn a score function h that takes the inputs of
Z, and z, and outputs a similarity score between [0, 1].

h(z,a) = h(f(x) ® Z,) (6)

where f is a nonlinear transform that maps z into the same dimension as Z,. &
denotes concatenation. h is realized by a two-layer network with sigmoid function
at the end. h can be considered as a variant of a Siamese network [9].

3.4 Network Architecture and Training

We present the details about our network architecture and our training.

Architecture. Our network architecture is illustrated in Fig.2. Specifically,
our model includes 2 graph convolutional layers for learning action representa-
tions. Their output channels are 512 and 200, with ReLLU units after each layer.
The output of GCN is concatenated with image features from a convolutional
network. The image feature has a reduced dimension of 512 by a learned linear
transform. The concatenated feature vector as sent to two Fully Connected (FC)
layer with the size of 512 and 200, and finally outputs a scalar score. For all FC
layers except the last one, we attach ReLU and Dropout (ratio = 0.5).

Training the Network. Our model is trained with a logistic loss attached to
g. We fix the image features, yet update all parameters in GCN. We use mini-
batch SGD for the optimization. Note that there are way more negative samples
(unmatched actions) than positive samples in a mini-batch. We re-sample the
positives and negatives to keep the their ratio fixed (1:3). This re-sampling strat-
egy prevents the gradients to be dominated by the negative samples, and thus
is helpful for learning. We also experimented with hard-negative sampling, yet
found that it leads to severe overfitting on smaller datasets.

4 Experiments

We now present our experiments and results. We first introduce our experiment
setup, followed by a description of the datasets and baselines. Finally, we report
our results and compare them to state-of-the-art methods.

4.1 Experiment Setup

Benchmark. Our goal is to evaluate if methods can generalize to unseen actions.
Given the compositional structure of human-object interactions, these unseen
actions can be characterized into two settings: (a) a novel combination of known
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noun and verb; and (b) a new action with unknown verbs or nouns or both of
them. We design two tasks to capture both settings. Specifically, we split both
noun and verb tokens into two even parts. We denote the splits of nouns as 1/2
and verbs as A/B. Thus, 1B refers to actions from the first split of nouns and
the second split of verbs. We select combinations of the splits for training and
testing as our two benchmark tasks.

e Task 1. Our first setting allows a method to access the full set of verbs
and nouns during training, yet requires the method to recognize either a
seen or an unseen combination of known concepts for testing. For example,
a method is given the action of “hold apple” and “wash motorcycle”, and is
asked to recognize novel combinations of “hold motorcycle” and “wash apple”.
Our training set is a subset of 1A and 2B (1A +2B). This set captures all
concepts of nouns and verbs, yet misses many combination of them (1B/2A).
Our testing set consists of samples from 1A and 2B and unseen combination
of 1B and 2A.

e Task 2. Our second setting exposes only a partial set of verbs and nouns
(1A) to a method during training. But the method is tasked to recognize
all possible combinations of actions (1A, 1B, 2A, 2B), including those with
unknown concepts. For example, a method is asked to jump from “hold apple”
to “hold motorcycle” and “wash apple”, as well as the complete novel combi-
nation of “wash motorcycle”. This task is extremely challenging. It requires
the method to generalize to completely new categories of nouns and verbs,
and assemble them into new actions. We believe the prior knowledge such
as word-embeddings or SVO pairs will allow the jumps from 1 to 2 and A
to B. Finally, we believe this setting provides a good testbed for knowledge
representation and transfer.

Generalized Zero Shot Learning. We want to highlight that our benchmark
follows the setting of generalized zero shot learning [53]. Namely, during test, we
did no constrain the recognition to the categories on the test set but all possible
categories. For example, if we train on 1A, during testing the output class can be
any of {14,2B,2A,2B}. We do also report numbers separately for each subset
to understand where what approach works. More importantly, as pointed out
by [53], a ImageNet pre-trained model may bias the results if the categories are
already seen during pre-training. We force nouns that appears in ImageNet [44]
stay in training sets for all our experiments except for Charades.

Mining from Knowledge Bases. We describe how we construct the knowledge
graph for all our experiments. Specifically, we make use of WordNet to create
noun-noun and verb-verb links. We consider two nodes are connected if (1) they
are the immediate hypernym or hyponym to each other (denoted as 1 HOP);
(2) their LCH similarity score [32] is larger than 2.0. Furthermore, we extracted
SVO from NELL [5] and further verified them using COCO dataset [34]. Specif-
ically, we parse all image captions on COCO, only keep the verb-noun pairs that
appeared on COCO, and add the remaining pairs to our graph.
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Implementation Details. We extracted the last FC features from ResNet
152 [22] pre-trained with ImageNet for HICO and Visual Genome HOI datasets,
and I3D Network pre-trained with kinetics [6] for Charades dataset. All images
are re-sized to 224 x 224 and the convolutional network is fixed. For all our
experiments, we used GloVe [42] for embedding verb and noun tokens, leading to
a 200D vector for each token. GloVe is pretrained with Wikipedia and Gigaword5b
text corpus. We adapt hard negative mining for HICO and Visual Genome HOI
datasets, yet disable it for Charades dataset to prevent overfitting.

Table 1. Ablation study of our methods. We report mAP for both tasks and compare
different variant of our methods. These results suggest that adding more links to the
graph (and thus inject more prior knowledge) helps to improve the results.

Methods mAP on test set

Train 1A + 2B Train 1A

All 2A + 1B Unseen | All 1B+ 2A + 2B Unseen
Chance 0.55 [0.49 0.55 |0.51
GCNCL-I 20.96 | 16.05 11.93 |7.22
GCNCL-I+ A 21.39 | 16.82 11.57 16.73
GCNCL-I+NV + A |21.40|16.99 11.51 |6.92
GCNCL 19.91 | 14.07 11.46 |7.18
GCNCL + A 20.43 | 15.65 11.72 |7.19
GCNCL+NV+A |21.04 16.35 11.94 | 7.50

4.2 Dataset and Benchmark

We evaluate our method on HICO [7], Visual Genome [30] and Charades [48]
datasets. We use mean Average Precision (mAP) scores averaged across all cate-
gories as our evaluation metric. We report results for both tasks (unseen combi-
nation and unseen concepts). We use 80/20 training/testing splits for all exper-
iments unless otherwise noticed. Details of these datasets are described below.

HICO Dataset [7] is developed for Humans Interacting with Common Objects.
It is thus particularly suitable for our task. We follow the classification task. The
goal is to recognize the interaction in an image, with each interaction consists
of a verb-noun pair. HICO has 47,774 images with 80 nouns, 117 verbs and
600 interactions. We remove the verb of “no interaction” and all its associated
categories. Thus our benchmark of HICO includes 116 verbs and 520 actions.

Visual Genome HOI Dataset is derived from Visual Genome [30]—the
largest dataset for structured image understanding. Based on the annotations,
we carve out a sub set from Visual Genome that focuses on human object interac-
tions. We call this dataset Visual Genome HOI in our experiments. Specifically,
from all annotations, we extracted relations in the form of “human-verb-object”
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and their associated images. Note that we did not include relations with “be”,
“wear” or “have”, as most of these relations did not demonstrate human object
interactions. The Visual Genome HOI dataset includes 21256 images with 1422
nouns, 520 verbs and 6643 unique actions. We notice that a large amount of
actions only have 1 or 2 instances. Thus, for testing, we constrain our actions to
532 categories, which include more than 10 instances.

Charades Dataset [48] contains 9848 videos clips of daily human-object inter-
actions that can be described by a verb-noun pair. We remove actions with
“no-interaction” from the original 157 category. Thus, our benchmark on Cha-
rades includes interactions with 37 objects and 34 verbs, leading to a total of
149 valid action categories. We note that Charades is a more challenging dataset
as the videos are captured in naturalistic environments.

Input GCNCL-I GCNCL+NV+A Input GCNCL-I GCNCL+NV+A

GT: Wear Snowboard Prect Repair Skis Prect Wear Snowboard T Smell Pizza Prect Clean Fridge Prec: Smell Pizza

GT: Race/Ride/Sit on/
Straddle/Tum Motorcycle  Pred: Park Bicycle  Pred: Straddie Motorcycle Pred: Wear Backpack

GT: Garry/Hold
Backpack

Prect Sit on Skateboard

1B
(Unseen)

GT: Ride/Watch

Prec: Smell Donut Pred: Eat Sandwich Elephant Prec: Walk Bepharnt Prect Walk Elephant

2A
(Unseen)

Fig. 3. Results of GCNCL-I and GCNCL + NV + A on HICO dataset. All methods are
trained on 1A + 2B and tested on both seen (1A, 2B) and unseen (2A, 1B) actions.
Each row shows results on a subset. Each sample includes the input image and its
label, top-1 predictions from GCNCL-I and GCNCL + NV + A. We plot the attention
map using the top-1 predicted labels. Red regions correspond to high prediction scores.
(Color figure online)

4.3 Baseline Methods
We consider a set of baselines for our experiments. These methods include

e Visual Product [31] (VP): VP composes outputs of a verb and a noun
classifier by computing their product (p(a, b) = p(a)p(b)). VP does not model
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contextuality between verbs and nouns, and thus can be considered as late
fusion. VP can deal with unseen combination of known concepts but is not
feasible for novel actions with unknown verb or noun.

e Triplet Siamese Network (Triplet Siamese): Triplet Siamese is inspired
by [12,15]. We first concatenate verb and noun embedding and pass them
through two FC layers (512, 200). The output is further concatenated with
visual features, followed by another FC layers to output a similarity score.
The network is trained with sigmoid cross entropy loss.

e Semantic Embedding Space (SES) [55]: SES is originally designed for
zero shot action recognition. We take the average of verb and noun as the
action embedding. The model learns to minimize the distance between the
action embeddings and their corresponding visual features using L2 loss.

¢ Deep Embedding Model [60] (DEM): DEM passes verb and noun embed-
dings independently through FC layers. Their outputs are fused (element-wise
sum) and matched to visual features using L2 loss.

e Classifier Composition [40] (CC): CC composes classifiers instead of word
embeddings. Each token is represented by its SVM classifier weights. CC thus
learns to transform the combination of two weights into the new classifier.
The model is trained with sigmoid cross entropy loss. It can not handle novel
concepts if no samples are provided for learning the classifier.

4.4 Ablation Study

We start with an ablation study of our method. We denote our base model
as GCNCL (Graph Convolutional Network for Compositional Learning) and
consider the following variants

e GCNCL-I is our base model that only includes action links on the dataset.
There is no connection between nouns and verbs in this model and thus the
adjacency matrix of Ay, and A,, are identity matrix.

e GCNCL further adds edges within noun/verb nodes using WordNet.

¢ GCNCL/GCNCL-I+ A adds action links from external knowledge base.

¢ GCNCL/GCNCL-I+ NV + A further includes new tokens (1 Hop on
WordNet). Note that we did not add new tokens for Visual Genome dataset.

We evaluate these methods on HICO dataset and summarize the results in
Table 1. For recognizing novel combination of seen concepts, GCNCL-I works
better than GCNCL versions. We postulate that removing these links will force
the network to pass information through action nodes, and thus help better
compose action representations from seen concepts. However, when tested with
a more challenging case of recognizing novel concepts, the results are in favor of
GCNCL model, especially on the unseen categories. In this case, the model has
to use the extra links (verb-verb or noun-noun) for learning the represent ions for
new verbs and nouns. Moreover, for both settings, adding more links generally
helps to improve the performance, independent of the design of the model. This
result provides a strong support to our core argument—external knowledge can
be used to improve zero shot recognition of human object interactions.
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Moreover, we provide qualitative results in Fig. 3. Specifically, we compare
the results of GCNCL-I and GCNCL+ NV + A and visualize their attention
maps using Grad-Cam [47]. Figure 3 helps to understand the benefit of external
knowledge. First, adding external knowledge seems to improve the recognition
of nouns but not verbs. For example, GCNCL + NV + A successfully corrected
the wrongly recognized objects by GCNCL-I (e.g., “bicycle” to “motorcycle”,
“skateboard” to “backpack”). Second, both methods are better at recognizing
nouns—objects in the interactions. And their attention maps highlight the cor-
responding object regions. Finally, mis-matching of verbs is the main failure
mode of our methods. For the rest of our experiments, we only include the best
performing methods of GCNCL-I+ NV + A and GCNCL + NV + A.

4.5 Results

We present the full results of our methods and compare them to our baselines.

HICO. Our methods outperformed all previous methods when tasked to rec-
ognize novel combination of actions. Especially, our results for the unseen cat-
egories achieved a relative gap of 6% when compared to the best result from
previous work. When tested on more challenging task 2, our results are bet-
ter overall, yet slightly worse than Triplet Siamese. We further break down the
results on different test splits. It turns out that our result is only worse on the
split of 1B (—2.8%), where the objects have been seen before. And our results
are better in all other cases (+2.0% on 2A and +0.9% on 2B). We argue that
Triplet Siamese might have over-fitted to the seen object categories, and thus
will fail to transfer knowledge to unseen concepts. Moreover, we also run signifi-
cance analysis to explore if the results are statistically significant. We did t-test
by comparing results of our GCNCL-I+ NV + A to CC (training on 1A + 2B)
and GCNCL 4+ NV + A to Triplet Siamese (training on 1A) for all classes. Our
results are significantly better than CC (P =0.04) and Triplet Siamese (P =
0.05) (Tables2 and 3).

Table 2. Recognition results (mAP) on HICO. We benchmark both tasks of recognizing
unseen combinations of known concepts and of recognizing novel concepts.

Methods mAP on test set
Train 1A + 2B Train 1A
All 2A 4+ 1B Unseen | All 1B + 2A + 2B Unseen
Chance 0.55 ]0.49 0.55 |0.51
Triplet Siamese 17.61 |16.40 10.38 | 7.76
SES 18.39 |13.00 11.69 | 7.19
DEM 12.26 1 11.33 8.32 16.06
VP 13.96 |10.83 - -
CC 20.92 |15.98 - -
GCNCL-I+NV +A | 21.40  16.99 11.51 |6.92
GCNCL+NV+A |21.04 |16.35 11.94 | 7.50
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Table 3. Results (mAP) on Visual Genome HOI. This is a very challenging dataset
with many action classes and few samples per class.

Methods mAP on test set
Train 1A + 2B Train 1A
All |2A+1B Unseen | All | 1B+ 2A 4 2B Unseen
Chance 0.28 |0.25 0.28 10.32
Triplet Siamese | 5.68 | 4.61 2.55 | 1.67
SES 2.74 11.91 2.07 |0.96
DEM 3.82 | 3.73 2.26 | 1.5
VP 3.84 | 2.34 - -
CcC 6.35 | 5.74 - -
GCNCL-I+A [6.48 |5.10 4.00 |2.63
GCNCL+ A 6.63 | 5.42 4.07 | 2.44

Visual Genome. Our model worked the best except for unseen categories on
our first task. We note that this dataset is very challenging as there are more
action classes than HICO and many of them have only a few instances. We
want to highlight our results on task 2, where our results show a relative gap of
more than 50% when compared to the best of previous method. These results
show that our method has the ability to generalize to completely novel concepts
(Table4).

Table 4. Results (mAP) on Charades dataset. This is our attempt to recognize novel
interactions in videos. While the gap is small, our method still works the best.

Methods mAP on test set
Train 1A + 2B Train 1A
ALL |2A 4 1B Unseen | ALL |1B+ 2A + 2B Unseen
Chance 1.37 | 1.45 1.37 |1.00
Triplet Siamese | 14.23 | 10.1 10.41 | 7.82
SES 13.12 | 9.56 10.14 | 7.81
DEM 11.78 | 8.97 9.57 |7.74
VP 13.66 |9.15 - -
CcC 14.31 |10.13 - -
GCNCL-I+ A |14.32|10.34 10.48 |7.95
GCNCL+ A 14.32 | 10.48 10.53 | 8.09
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Charades. Finally, we report results on Charades—a video action dataset. This
experiment provides our first step towards recognizing realistic interactions in
videos. Again, our method worked the best among all baselines. However, the
gap is smaller on this dataset. Comparing to image datasets, Charades has less
number of samples and thus less diversity. Methods can easily over-fit on this
dataset. Moreover, building video representations is still an open challenge. It
might be that our performance is limited by the video features.

5 Conclusion

We address the challenging problem of compositional learning of human object
interactions. Specifically, we explored using external knowledge for learning to
compose novel actions. We proposed a novel graph based model that incor-
porates knowledge representation into a deep model. To test our method, we
designed careful evaluation protocols for zero shot compositional learning. We
tested our method on three public benchmarks, including both image and video
datasets. Our results suggested that using external knowledge can help to better
recognize novel interactions and even novel concepts of verbs and nouns. As a
consequence, our model outperformed state-of-the-art methods on recognizing
novel combination of seen concepts on all datasets. Moreover, our model demon-
strated promising ability to recognize novel concepts. We believe that our model
brings a new perspective to zero shot learning, and our exploration of using
knowledge provides an important step for understanding human actions.
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