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Abstract. Intrinsic image decomposition—decomposing a natural
image into a set of images corresponding to different physical causes—is
one of the key and fundamental problems of computer vision. Previ-
ous intrinsic decomposition approaches either address the problem in a
fully supervised manner, or require multiple images of the same scene as
input. These approaches are less desirable in practice, as ground truth
intrinsic images are extremely difficult to acquire, and requirement of
multiple images pose severe limitation on applicable scenarios. In this
paper, we propose to bring the best of both worlds. We present a two
stream convolutional neural network framework that is capable of learn-
ing the decomposition effectively in the absence of any ground truth
intrinsic images, and can be easily extended to a (semi-)supervised setup.
At inference time, our model can be easily reduced to a single stream
module that performs intrinsic decomposition on a single input image.
We demonstrate the effectiveness of our framework through extensive
experimental study on both synthetic and real-world datasets, showing
superior performance over previous approaches in both single-image and
multi-image settings. Notably, our approach outperforms previous state-
of-the-art single image methods while using only 50% of ground truth
supervision.
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1 Introduction

In a scorching afternoon, you walk all the way through the sunshine and finally
enter the shading. You notice that there is a sharp edge on the ground and the
appearance of the sidewalk changes drastically. Without a second thought, you
realize that the bricks are in fact identical and the color difference is due to the
variation of scene illumination. Despite merely a quick glance, humans have the
remarkable ability to decompose the intricate mess of confounds, which our visual

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11218, pp. 211–229, 2018.
https://doi.org/10.1007/978-3-030-01264-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01264-9_13&domain=pdf


212 W.-C. Ma et al.

world is, into simple underlying factors. Even though most people have never
seen a single intrinsic image in their lifetime, they can still estimate the intrinsic
properties of the materials and reason about their relative albedo effectively
[6]. This is because human visual systems have accumulated thousands hours
of implicit observations which can serve as their priors during judgment. Such
an ability not only plays a fundamental role in interpreting real-world imaging,
but is also a key to truly understand the complex visual world. The goal of
this work is to equip computational visual machines with similar capabilities
by emulating humans’ learning procedure. We believe by enabling perception
systems to disentangle intrinsic properties (e.g. albedo) from extrinsic factors
(e.g. shading), they will better understand the physical interactions of the world.
In computer vision, such task of decomposing an image into a set of images each
of which corresponds to a different physical cause is commonly referred to as
intrinsic decomposition [4].

Despite the inverse problem being ill-posed [1], it has drawn extensive atten-
tion due to its potential utilities for algorithms and applications in computer
vision. For instance, many low-level vision tasks such as shadow removal [14] and
optical flow estimation [27] benefit substantially from reliable estimation of albedo
images. Advanced image manipulation applications such as appearance editing
[48], object insertions [24], and image relighting [49] also become much easier if
an image is correctly decomposed into material properties and shading effects.
Motivated by such great potentials, a variety of approaches have been proposed
for intrinsic decomposition [6,17,28,62]. Most of them focus on monocular case,
as it often arises in practice [13]. They either exploit manually designed priors
[2,3,31,41], or capitalize on data-driven statistics [39,48,61] to address the ambi-
guities. The models are powerful, yet with a critical drawback—requiring ground
truth for learning. The ground truth for intrinsic images, however, are extremely
difficult and expensive to collect [16]. Current publicly available datasets are either
small [16], synthetic [9,48], or sparsely annotated [6], which significantly restricts
the scalability and generalizability of this task. To overcome the limitations, multi-
image based approaches have been introduced [17,18,28,29,55]. They remove the
need of ground truth and employ multiple observations to disambiguate the prob-
lem. While the unsupervised intrinsic decomposition paradigm is appealing, they
require multi-image as input both during training and at inference, which largely
limits their applications in real world.

In this work, we propose a novel approach to learning intrinsic decomposition
that requires neither ground truth nor priors about scene geometry or lighting
models. We draw connections between single image based methods and multi-
image based approaches and explicitly show how one can benefit from the other.
Following the derived formulation,we design an unifiedmodelwhose training stage
can be viewed as an approach to multi-image intrinsic decomposition. While at
test time it is capable of decomposing arbitrary single image. To be more spe-
cific, we design a two stream deep architecture that observes a pair of images
and aims to explain the variations of the scene by predicting the correct intrinsic
decompositions. No ground truth is required for learning. The model reduces to a
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single stream network during inference and performs single image intrinsic decom-
position. As the problem is under-constrained, we derive multiple objective func-
tions based on image formation model to constrain the solution space and aid the
learning process. We show that by regularizing the model carefully, the intrinsic
images emerge automatically. The learned representations are not only compara-
ble to those learned under full supervision, but can also serve as a better initial-
ization for (semi-)supervised training. As a byproduct, our model also learns to
predict whether a gradient belongs to albedo or shading without any labels. This
provides an intuitive explanation for the model’s behavior, and can be used for
further diagnoses and improvements (Fig. 1).

Fig. 1. Novelties and advantages of our approach: Previous works on intrinsic
image decomposition can be classified into two categories, (a) single imaged based and
(b) multi-image based. While single imaged based models are useful in practice, they
require ground truth (GT) for training. Multi-image based approaches remove the need
of GT, yet at the cost of flexibility (i.e., always requires multiple images as input). (c)
Our model takes the best of both world. We do not need GT during training (i.e.,
training signal comes from input images), yet can be applied to arbitrary single image
at test time.

We demonstrate the effectiveness of our model on one large-scale synthetic
dataset and one real-world dataset. Our method achieves state-of-the-art per-
formance on multi-image intrinsic decomposition, and significantly outperforms
previous deep learning based single image intrinsic decomposition models using
only 50% of ground truth data. To the best of our knowledge, we are the first
attempt to bridge the gap between the two tasks and learn an intrinsic network
without any ground truth intrinsic image.
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2 Related Work

Intrinsic Decomposition. The work in intrinsic decomposition can be roughly
classified into two groups: approaches that take as input only a single image
[3,31,37,39,48,50,61,62], and algorithms that require addition sources of input
[7,11,23,30,38,55]. For single image based methods, since the task is completely
under constrained, they often rely on a variety of priors to help disambiguate
the problem. [5,14,31,50] proposed to classify images edges into either albedo or
shading and use [19] to reconstruct the intrinsic images. [34,41] exploited texture
statistics to deal with the smoothly varying textures. While [3] explicitly mod-
eled lighting conditions to better disentangle the shading effect, [42,46] assumed
sparsity in albedo images. Despite many efforts have been put into designing
priors, none of them has succeeded in including all intrinsic phenomenon. To
avoid painstakingly constructing priors, [21,39,48,61,62] propose to capitalize
on the feature learning capability of deep neural networks to learn the statistical
priors directly from data. Their method, however, requires massive amount of
labeled data, which is expensive to collect. In contrast, our deep learning based
method requires no supervision. Another line of research in intrinsic decomposi-
tion leverages additional sources of input to resolve the problem, such as using
image sequences [20,28–30,55], multi-modal input [2,11], or user annotations
[7,8,47]. Similar to our work, [29,55] exploit a sequence of images taken from a
fixed viewpoint, where the only variation is the illumination, to learn the decom-
position. The critical difference is that these frameworks require multiple images
for both training and testing, while our method rely on multiple images only
during training. At test time, our network can perform intrinsic decomposition
for an arbitrary single image.

Unsupervised/Self-supervised Learning from Image Sequences/
Videos. Leveraging videos or image sequences, together with physical con-
straints, to train a neural network has recently become an emerging topic of
research [15,32,44,51,52,56–59]. Zhou et al. [60] proposed a self-supervised app-
roach to learning monocular depth estimation from image sequences. Vijaya-
narasimhan et al. [53] extended the idea and introduced a more flexible structure
from motion framework that can incorporate supervision. Our work is concep-
tually similar to [53,60], yet focusing on completely different tasks. Recently,
Janner et al. [21] introduced a self-supervised framework for transferring intrin-
sics. They first trained their network with ground truth and then fine-tune with
reconstruction loss. In this work, we take a step further and attempt to learn
intrinsic decomposition in a fully unsupervised manner. Concurrently and inde-
pendently, Li and Snavely [33] also developed an approach to learning intrinsic
decomposition without any supervision. More generally speaking, our work is
in spirit similar to visual representation learning whose goal is to learn generic
features by solving certain pretext tasks [22,43,54].
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3 Background and Problem Formulation

In this section, we first briefly review current works on single image and multi-
image intrinsic decomposition. Then we show the connections between the two
tasks and demonstrate that they can be solved with a single, unified model under
certain parameterizations.

3.1 Single Image Intrinsic Decomposition

The single image intrinsic decomposition problem is generally formulated as:

Â, Ŝ = fsng(I;Θsng), (1)

where the goal is to learn a function f that takes as input a natural image I,
and outputs an albedo image Â and a shading image Ŝ. The hat sign ·̂ indicates
that it is the output of the function rather than the ground truth. Ideally, the
Hadamard product of the output images should be identical to the input image,
i.e. I = Â�Ŝ. The parameter Θ and the function f can take different forms. For
instance, in traditional Retinex algorithm [31], Θ is simply a threshold used to
classify the gradients of the original image I and fsng is the solver for Poisson
equation. In recent deep learning based approaches [39,48], fsng refers to a
neural network and Θ represents the weights. Since these models require only a
single image as input, they potentially can be applied to various scenarios and
have a number of use cases [13]. The problem, however, is inherently ambiguous
and technically ill-posed under monocular setting. Ground truths are required
to train either the weights for manual designed priors [6] or the data-driven
statistics [21]. They learn by minimizing the difference between the GT intrinsic
images and the predictions.

3.2 Multi-image Intrinsic Decomposition

Another way to address the ambiguities in intrinsic decomposition is to exploit
multiple images as input. The task is defined as:

Â, Ŝ = fmul(I;Θmul), (2)

where I = {Ii}Ni=1 is the set of input images of the same scene, and Â = {Âi}Ni=1,
Ŝ = {Ŝi}Ni=1 are the corresponding set of intrinsic predictions. The input images
I can be collected with a moving camera [27], yet for simplicity they are often
assumed being captured with a static camera pose under varying lighting con-
ditions [29,36]. The extra constraint not only gives birth to some useful priors
[55], but also open the door to solving the problem in an unsupervised manner
[18]. For example, based on the observation that shadows tend to move and a
pixel in a static scene is unlikely to contain shadow edges in multiple images,
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Weiss [55] assumed that the median gradients across all images belong to albedo
and solve the Poisson equation. The simple algorithm works well on shadow
removal, and was further extend by [36] to combine with Retinex algorithm
(W+Ret) to produce better results. More recently, Laffont and Bazin [29] derived
several energy functions based on image formation model and formulate the task
as an optimization problem. The goal simply becomes finding the intrinsic images
that minimize the pre-defined energy. Ground truth data is not required under
many circumstances [18,29,55]. This addresses one of the major difficulties in
learning intrinsic decomposition. Unfortunately, as a trade off, these models rely
on multi-image as input all the time, which largely limits their applicability in
practice.

3.3 Connecting Single and Multi-image Based Approaches

The key insight is to use a same set of parameters Θ for both single image
and multi-image intrinsic decomposition. Multi-image approaches have already
achieved impressive results without the need of ground truth. If we can transfer
the learned parameters from multi-image model to single image one, then we will
be able to decompose arbitrary single image without any supervision. Unfortu-
nately, previous works are incapable of doing this. The multi-image parameters
Θmul or energy functions are often dependent on all input images I, which makes
them impossible to be reused under single image setting. With such motivation
in mind, we design our model to have the following form:

fmul(I;Θ) = g(fsng(I1;Θ), fsng(I2;Θ), ..., fsng(IN ;Θ)), (3)

where g denotes some parameter-free, pre-defined constraints applied to the
outputs of single image models. By formulating the multi-image model fmul

as a composition function of multiple single image model fsng, we are able to
share the same parameters Θ and further learn the single image model through
multi-image training without any ground truth. The high-level idea of sharing
parameters has been introduced in W+Ret [36]; however, our work exists three
critical differences: first and foremost, their approach requires ground truth for
learning, while ours does not. Second, they encode the information across several
observations at the input level via some heuristics. In contrast, our aggregation
function g is based on image formation model, and operates directly on the
intrinsic predictions. Finally, rather than employing the relatively simple Retinex
model, we parameterize fsng as a neural network, with Θ being its weight, and g
being a series of carefully designed, parameter-free, and differentiable operations.
The details of our model are discussed in Sect. 4 and the differences between our
method and several previous approaches are summarized in Table 1.
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Table 1. Summary of different intrinsic decomposition approaches.

Methods Supervision Training input Inference input Learnable parameter Θ

Retinex [31] � Single image Single image Gradient threshold

CNN [21,39,48] � Single image Single image Network weights

CRF [6,61] � Single image Single image Energy weights

Weiss [55] ✕ Multi-image Multi-image None

W+RET [36] � Multi-image Multi-image Gradient threshold

Hauagge et al. [18] ✕ Multi-image Multi-image None

Laffont et al. [29] ✕ Multi-image Multi-image None

Our method ✕ Multi-image Single image Network weights

4 Unsupervised Intrinsic Learning

Our model consists of two main components: the intrinsic network fsng, and
the aggregation function g. The intrinsic network fsng produces a set of intrinsic
representations given an input image. The differentiable, parameter-free aggre-
gation function g constrains the outputs of fsng, so that they are plausible and
comply to the image formation model. As all operations are differentiable, the
errors can be backpropagated all the way through fsng during training. Our
model can be trained even no ground truth exists. The training stage is hence
equivalent to performing multi-image intrinsic decomposition. At test time, the
trained intrinsic network fsng serves as an independent module, which enables
decomposing an arbitrary single image. In this work, we assume the input images
come in pairs during training. This works well in practice and an extension to
more images is trivial. We explore three different setups of the aggregation func-
tion. An overview of our model is shown in Fig. 2.

4.1 Intrinsic Network fsng

The goal of the intrinsic network is to produce a set of reliable intrinsic represen-
tations from the input image and then pass them to the aggregation function for
further composition and evaluation. To be more formal, given a single image I1,
we seek to learn a neural network fsng such that (Â1, Ŝ1,M̂1) = fsng(I1;Θ),
where A denotes albedo, S refers to shading, and M represents a soft assignment
mask (details in Sect. 4.2).

Following [12,45,48], we employ an encoder-decoder architecture with skip
links for fsng. The bottom-up top-down structure enables the network to effec-
tively process and consolidate features across various scales [35], while the skip
links from encoder to decoder help preserve spatial information at each reso-
lution [40]. Since the intrinsic components (e.g. albedo, shading) are mutual
dependent, they share the same encoder. In general, our network architecture is
similar to the Mirror-link network [47]. We, however, note that this is not the
only feasible choice. Other designs that disperse and aggregate information in
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different manners may also work well for our task. One can replace the current
structure with arbitrary network as long as the output has the same resolution
as the input. We refer the readers to supp. material for detailed architecture.

Fig. 2. Network architecture for training: Our model consists of intrinsic networks
and aggregation functions. (a) The siamese intrinsic network takes as input a pair
of images with varying illumination and generate a set of intrinsic estimations. (b)
The aggregation functions compose the predictions into images whose ground truths
are available via pre-defined operations (i.e. the orange, green, and blue lines). The
objectives are then applied to the final outputs, and the errors are backpropagated all
the way to the intrinsic network to refine the estimations. With this design, our model
is able to learn intrinsic decomposition without a single ground truth image. Note that
the model is symmetric and for clarity we omit similar lines. The full model is only
employed during training. At test time, our model reduces to a single stream network
fsng (pink) and performs single image intrinsic decomposition. (Color figure online)

4.2 Aggregation Functions g and Objectives

Suppose now we have the intrinsic representations predicted by the intrinsic net-
work. In order to evaluate the performance of these estimations, whose ground
truths are unavailable, and learn accordingly, we exploit several differentiable
aggregation functions. Through a series of fixed, pre-defined operations, the
aggregation functions re-compose the estimated intrinsic images into images
which we have ground truth for. We can then compute the objectives and use it
to guide the network learning. Keeping such motivation in mind, we design the
following three aggregation functions as well as the corresponding objectives.
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Naive Reconstruction. The first aggregation function simply follows the def-
inition of intrinsic decomposition: given the estimated intrinsic tensors Â1 and
Ŝ1, the Hadamard product Îrec

1 = Â1�Ŝ1 should flawlessly reconstruct the orig-
inal input image I1. Building upon this idea, we employ a pixel-wise regression
loss Lrec

1 = ‖Îrec
1 −I1‖2 on the reconstructed output, and constrain the network

to learn only the representations that satisfy this rule. Despite such objective
greatly reduce the solution space of intrinsic representations, the problem is still
highly under-constrained—there exists infinite images that meet I1 = Â1 � Ŝ1.
We thus employ another aggregation operation to reconstruct the input images
and further constrain the solution manifold.

Disentangled Reconstruction. According to the definition of intrinsic images,
the albedo component should be invariant to illumination changes. Hence given
a pair of images I1, I2 of the same scene, ideally we should be able to perfectly
reconstruct I1 even with Â2 and Ŝ1. Based on this idea, we define our second
aggregation function to be Îdis

1 = Â2�Ŝ1. By taking the albedo estimation from
the other image yet still hoping for perfect reconstruction, we force the network
to extract the illumination invariant component automatically. Since we aim to
disentangle the illumination component through this reconstruction process, we
name the output as disentangled reconstruction. Similar to naive reconstruction,
we employ a pixel-wise regression loss Ldis

1 for Îdis
1 .

One obvious shortcut that the network might pick up is to collapse all infor-
mation from input image into Ŝ1, and have the albedo decoder always output
a white image regardless of input. In this case, the albedo is still invariant to
illumination, yet the network fails. In order to avoid such degenerate cases, we
follow Jayaraman and Grauman [22] and incorporate an additional embedding
loss Lebd

1 for regularization. Specifically, we force the two albedo predictions Â1

and Â2 to be as similar as possible, while being different from the randomly
sampled albedo predictions Âneg.

Gradient. As natural images and intrinsic images exhibit stronger correlations
in gradient domain [25], the third operation is to convert the intrinsic estimations
to gradient domain, i.e. ∇Â1 and ∇Ŝ1. However, unlike the outputs of the
previous two aggregation function, we do not have ground truth to directly
supervise the gradient images. We hence propose a self-supervised approach to
address this issue.

Our method is inspired by the traditional Retinex algorithm [31] where each
derivative in the image is assumed to be caused by either change in albedo or that
of shading. Intuitively, if we can accurately classify all derivatives, we can then
obtain ground truths for ∇Â1 and ∇Ŝ1. We thus exploit deep neural network
for edge classification. To be more specific, we let the intrinsic network predict a
soft assignment mask M1 to determine to which intrinsic component each edge
belongs. Unlike [31] where a image derivative can only belong to either albedo
or shading, the assignment mask outputs the probability that a image derivative
is caused by changes in albedo. One can think of it as a soft version of Retinex
algorithm, yet completely data-driven without manual tuning. With the help
of the soft assignment mask, we can then generate the “pseudo” ground truth
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∇I � M̂1 and ∇I � (1 − M̂1) to supervise the gradient intrinsic estimations.
The Retinex loss1 is defined as follows:

Lretinex
1 = ‖∇Â1 − ∇I � M̂1‖2 + ‖∇Ŝ1 − ∇I � (1 − M̂1)‖2 (4)

The final objective thus becomes:

Lfinal
1 = Lrec

1 + λdLdis
1 + λrLretinex

1 + λeLebd
1 , (5)

where λ’s are the weightings. In practice, we set λd = 1, λr = 0.1, and λe = 0.01.
We select them based on the stability of the training loss. Lfinal

2 is completely
identical as we use a siamese network structure.

Fig. 3. Single image intrinsic decomposition: Our model (Ours-U) learns the
intrinsic representations without any supervision and produces best results after fine-
tuning (Ours-F).

4.3 Training and Testing

Since we only supervise the output of the aggregation functions, we do not
enforce that each decoder in the intrinsic network solves its respective subprob-
lem (i.e. albedo, shading, and mask). Rather, we expect that the proposed net-
work structure encourages these roles to emerge automatically. Training the
1 In practice, we need to transform all images into logarithm domain before computing

the gradient and applying Retinex loss. We omit the log operator here for simplicity.
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network from scratch without direction supervision, however, is a challenging
problem. It often results in semantically meaningless intermediate representa-
tions [49]. We thus introduce additional constraints to carefully regularize the
intrinsic estimations during training. Specifically, we penalize the L1 norm of the
gradients for the albedo and minimize the L1 norm of the second-order gradients
for the shading. While ‖∇Â‖ encourages the albedo to be piece-wise constant,
‖∇2Ŝ‖ favors smoothly changing illumination. To further encourage the emer-
gence of the soft assignment mask, we compute the gradient of the input image
and use it to supervise the mask for the first four epochs. The early supervi-
sion pushes the mask decoder towards learning a gradient-aware representation.
The mask representations are later freed and fine-tuned during the joint self-
supervised training process. We train our network with ADAM [26] and set the
learning rate to 10−5. We augment our training data with horizontal flips and
random crops.

Extending to (Semi-)supervised Learning. Our model can be easily
extended to (semi-)supervised settings whenever a ground truth is available.
In the original model, the objectives are only applied to the final output of the
aggregation functions and the output of the intrinsic network is left without
explicit guidance. Hence, a straightforward way to incorporate supervision is to
directly supervise the intermediate representation and guide the learning pro-
cess. Specifically, we can employ a pixel-wise regression loss on both albedo and
shading, i.e. LA = ‖Â − A‖2 and LS = ‖Ŝ − S‖2.

5 Experiments

5.1 Setup

Data. To effectively evaluate our model, we consider two datasets: one larger-
scale synthetic dataset [21,48], and one real world dataset [16]. For synthetic
dataset, we use the 3D objects from ShapeNet [10] and perform rendering in
Blender2. Specifically, we randomly sample 100 objects from each of the following
10 categories: airplane, boat, bottle, car, flowerpot, guitar, motorbike, piano,
tower, and train. For each object, we randomly select 10 poses, and for each pose
we use 10 different lightings. This leads to in total of 100×10×10×C10

2 = 450K
pairs of images. We split the data by objects, in which 90% belong to training
and validation and 10% belong to test split.

The MIT Intrinsics dataset [16] is a real-world image dataset with ground
truths. The dataset consists of 20 objects. Each object was captured under 11
different illumination conditions, resulting in 220 images in total. We use the
same data split as in [39,48], where the images are split into two folds by objects
(10 for each split).

2 We follow the same rendering process as [21]. Please refer to their paper for more
details.
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Metrics. We employ two standard error measures to quantitatively evaluate
the performance of our model: the standard mean-squared error (MSE) and the
local mean-squared error (LMSE) [16]. Comparing to MSE, LMSE provides a
more fine-grained measure. It allows each local region to have a different scaling
factor. We set the size of the sliding window in LSME to 12.5% of the image in
each dimension.

5.2 Multi-image Intrinsic Decomposition

Since no ground truth data has been used during training, our training process
can be viewed as an approach to multi-image intrinsic decomposition.

Baselines. For fair analysis, we compare with methods that also take as input a
sequence of photographs of the same scene with varying illumination conditions.
In particular, we consider three publicly available multi-image based approaches:
Weiss [55], W+Ret [36], and Hauagge et al. [17].

Table 2. Comparison against multi-
image based methods.
Methods Average LMSE

MIT ShapeNet

Weiss [55] 0.0215 0.0632

W+Ret [36] 0.0170 0.0525

Hauagge et al. [18] 0.0155 -

Hauagge et al. [17] 0.0115 0.0240

Laffont et al. [29] 0.0138 -

Our method 0.0097 0.0049

Results. Following [16,29], we use LMSE
as the main metric to evaluate our multi-
image based model. The results are shown
in Table 2. As our model is able to effec-
tively harness the optimization power
of deep neural network, we outper-
form all previous methods that rely on
hand-crafted priors or explicit lighting
modelings.

5.3 Single Image Intrinsic Decomposition

Baselines. We compare our approach against three state-of-the-art methods:
Barron et al. [3], Shi et al. [48], and Janner et al. [21]. While Barron et al. hand-
craft priors for shape, shading, albedo and pose the task as an optimization
problem. Shi et al. [48], and Janner et al. [21] exploit deep neural network to

Table 3. Comparison against single image-based methods on ShapeNet: Our
unsupervised intrinsic model is comparable to [3]. After fine-tuning, it achieves state-
of-the-art performances.

Methods Supervision MSE LMSE

Amount Albedo Shading Average Albedo Shading Average

Barron et al. [3] 100% 0.0203 0.0232 0.0217 0.0066 0.0043 0.0055

Janner et al. [21] 100% 0.0119 0.0145 0.0132 0.0028 0.0037 0.0032

Shi et al. [48] 100% 0.0076 0.0122 0.0099 0.0018 0.0032 0.0024

Our method (U) 0% 0.0174 0.0310 0.0242 0.0050 0.0070 0.0060

Our method (F) 100% 0.0064 0.0100 0.0082 0.0016 0.0025 0.0020
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learn natural image statistics from data and predict the decomposition. All three
methods require ground truth for learning.

Results. As shown in Tables 3 and 4, our unsupervised intrinsic network fsng,
denoted as Ours-U, achieves comparable performance to other deep learning
based approaches on MIT Dataset, and is on par with Barron et al. on ShapeNet.
To further evaluate the learned unsupervised representation, we use it as ini-
tialization and fine-tune the network with ground truth data. The fine-tuned
representation, denoted as Ours-F, significantly outperforms all baselines on
ShapeNet and is comparable with Barron et al. on MIT Dataset. We note that
MIT Dataset is extremely hard for deep learning based approaches due to its
scale. Furthermore, Barron et al. employ several priors specifically designed for
the dataset. Yet with our unsupervised training scheme, we are able to overcome
the data issue and close the gap from Barron et al. Some qualitative results are
shown in Fig. 3. Our unsupervised intrinsic network, in general, produces reason-
able decompositions. With further fine-tuning, it achieves the best results. For
instance, our full model better recovers the albedo of the wheel cover of the car.
For the motorcycle, it is capable of predicting the correct albedo of the wheel
and the shading of the seat.

Table 4. Comparison against single image-based methods on MIT Dataset:
Our unsupervised intrinsic model achieves comparable performance to fully supervised
deep models. After fine-tuning, it is on par with the best performing method that
exploits specialized priors.

Methods Supervision MSE LMSE

Amounts Albedo Shading Average Albedo Shading Average

Barron et al. [3] 100% 0.0147 0.0083 0.0115 0.0061 0.0039 0.0050

Janner et al. [39] 100% 0.0336 0.0195 0.0265 0.0210 0.0103 0.0156

Shi et al. [48] 100% 0.0323 0.0156 0.0239 0.0132 0.0064 0.0098

Our method (U) 0% 0.0313 0.0207 0.0260 0.0116 0.0095 0.0105

Our method (F) 100% 0.0168 0.0093 0.0130 0.0074 0.0052 0.0063

(Semi-)supervised Intrinsic Learning. As mentioned in Sect. 4.3, our net-
work can be easily extended to (semi-)supervised settings by exploiting ground
truth images to directly supervise the intrinsic representations. To better under-
stand how well our unsupervised representation is and exactly how much ground
truth data we need in order to achieve comparable performance to previous meth-
ods, we gradually increase the degree of supervision during training and study
the performance variation. The results on ShapeNet are plotted in Fig. 4. Our
model is able to achieve state-of-the-art performance with only 50% of ground
truth data. This suggests that our aggregation function is able to effectively con-
strain the solution space and capture the features that are not directly encoded
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in single images. In addition, we observe that our model has a larger performance
gain with less ground truth data. The relative improvement gradually converges
as the amount of supervision increases, showing our utility in low-data regimes.

Fig. 4. Performance vs Supervision on ShapeNet: The performance of our model
improves with the amount of supervision. (a) (b) Our results suggest that, with just
50% of ground truth, we can surpass the performance of other fully supervised models
that used all of the labeled data. (c) The relative improvement is larger in cases with
less labeled data, showing the effectiveness of our unsupervised objectives in low-data
regimes.

5.4 Analysis

Ablation Study. To better understand the contribution of each component
in our model, we visualize the output of the intrinsic network (i.e. Â and Ŝ)
under different network configurations in Fig. 5. We start from the simple auto-
encoder structure (i.e. using only Lrec) and sequentially add other components
back. At first, the model splits the image into arbitrary two components. This is
expected since the representations are fully unconstrained as long as they satisfy
I = Â � Ŝ. After adding the disentangle learning objective Ldis, the albedo
images becomes more “flat”, suggesting that the model starts to learn that
albedo components should be invariant of illumination. Finally, with the help of
the Retinex loss Lretinex, the network self-supervises the gradient images, and
produces reasonable intrinsic representations without any supervision. The color
is significantly improved due to the information lying in the gradient domain.
The quantitative evaluations are shown in Table 5.

Table 5. Ablation studies: The performance of
our model when employing different objectives.

Employed objectives MSE LMSE

Lrec Ldis Lretinex Albedo Shading Albedo Shading

� 0.0362 0.0240 0.0158 0.0108

� � 0.0346 0.0224 0.0141 0.0098

� � � 0.0313 0.0207 0.0116 0.0095

Table 6. Degree of illumination
invariance of the albedo image.
Lower is better.

Methods MPRE (×10−4)

Barron et al. [3] 2.6233

Janner et al. [39] 4.8372

Shi et al. [48] 5.1589

Our method (U) 3.2341

Our method (F) 2.4151
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Fig. 5. Contributions of each objectives: Initially the model separates the image
into two arbitrary components. After adding the disentangled loss Ldis, the network
learns to exclude illumination variation from albedo. Finally, with the help of the
Retinex loss Lretinex, the albedo color becomes more saturated.

Natural Image Disentangling. To demonstrate the generalizability of our
model, we also evaluate on natural images in the wild. Specifically, we use our
full model on MIT Dataset and the images provided by Barron et al. [3]. The
images are taken by a iPhone and span a variety of categories. Despite our model
is trained purely on laboratory images and have never seen other objects/scenes
before, it still produces good quality results (see Fig. 6). For instance, our model
successfully infers the intrinsic properties of the banana and the plants. One
limitation of our model is that it cannot handle the specularity in the image. As
we ignore the specular component when formulating the task, the specular parts
got treated as sharp material changes and are classified as albedo. We plan to
incorporate the idea of [48] to address this issue in the future.

Fig. 6. Decomposing unseen natural images: Despite being trained on laboratory
images, our model generalizes well to real images that it has never seen before.

Fig. 7. Network interpretation: To understand how our model sees an edge in
the input image, we visualize the soft assignment mask M predicted by the intrinsic
network. An edge has a higher probability to be assigned to albedo when there is a
drastic color change. (Color figure online)
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Robustness to Illumination Variation. Another way to evaluate the effec-
tiveness of our approach is to measure the degree of illumination invariance of
our albedo model. Following Zhou et al. [61], we compute the MSE between the
input image I1 and the disentangled reconstruction Îdis

1 to evaluate the illumi-
nation invariance. Since our model explicitly takes into account the disentangled
objective Ldis, we achieve the best performance. Results on MIT Dataset are
shown in Table 6.

Interpreting the Soft Assignment Mask. The soft assignment mask predicts
the probability that a certain edge belongs to albedo. It not only enables the self-
supervised Retinex loss, but can also serve as a probe to our model, helping us
interpret the results. By visualizing the predicted soft assignment mask M, we
can understand how the network sees an edge—an edge caused by albedo change
or variation of shading. Some visualization results of our unsupervised intrinsic
network are shown in Fig. 7. The network believes that drastic color changes are
most of the time due to albedo edges. Sometimes it mistakenly classify the edges,
e.g. the variation of the blue paint on the sun should be due to shading. This
mistake is consistent with the sun albedo result in Fig. 3, yet it provides another
intuition of why it happens. As there is no ground truth to directly evaluate the
performance of the predicted assignment map, we instead measure the pixel-wise
difference between the ground truth gradient images ∇A,∇S and the “pseudo”
ground truths ∇I �M,∇I � (1−M) that we used for self-supervision. Results
show that our data-driven assignment mask (1.7×10−4) better explains the real
world images than traditional Retinex algorithm (2.6 × 10−4).

6 Conclusion

An accurate estimate of intrinsic properties not only provides better under-
standing of the real world, but also enables various applications. In this paper,
we present a novel method to disentangle the factors of variations in the image.
With the carefully designed architecture and objectives, our model automatically
learns reasonable intrinsic representations without any supervision. We believe
it is an interesting direction for intrinsic learning and we hope our model can
facilitate further research in this path.
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