
RIDI: Robust IMU Double Integration

Hang Yan1(B), Qi Shan2, and Yasutaka Furukawa3

1 Washington University in St. Louis, St. Louis, USA
yanhang@wustl.edu

2 Zillow Group, Seattle, USA
qis@zillowgroup.com

3 Simon Fraser University, Burnaby, Canada
furukawa@sfu.ca

Abstract. This paper proposes a novel data-driven approach for iner-
tial navigation, which learns to estimate trajectories of natural human
motions just from an inertial measurement unit (IMU) in every smart-
phone. The key observation is that human motions are repetitive and
consist of a few major modes (e.g., standing, walking, or turning). Our
algorithm regresses a velocity vector from the history of linear accel-
erations and angular velocities, then corrects low-frequency bias in the
linear accelerations, which are integrated twice to estimate positions. We
have acquired training data with ground truth motion trajectories across
multiple human subjects and multiple phone placements (e.g., in a bag
or a hand). The qualitatively and quantitatively evaluations have demon-
strated that our simple algorithm outperforms existing heuristic-based
approaches and is even comparable to full Visual Inertial navigation to
our surprise. As far as we know, this paper is the first to introduce
supervised training for inertial navigation, potentially opening up a new
line of research in the domain of data-driven inertial navigation. We will
publicly share our code and data to facilitate further research (Project
website: https://yanhangpublic.github.io/ridi).

1 Introduction

Accurate position estimation from an Inertial Measurement Unit (IMU) has long
been a dream in academia and industry. IMU double integration is an approach
with a simple principle: given a device rotation (e.g., from IMU), one measures
an acceleration, subtracts the gravity, integrates the residual acceleration once to
get velocities, and integrates once more to get positions. Dead-reckoning or step
counting is another approach, which detects foot-steps to estimate the distance
of travel and utilizes device rotations to estimate motion directions. IMU is in
every smart-phone, is very energy-efficient (i.e., capable of running 24 h a day),
and works anywhere even inside a bag or a pocket. A robust inertial navigation
would be an ultimate anytime anywhere navigation system.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01261-8 38) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11217, pp. 641–656, 2018.
https://doi.org/10.1007/978-3-030-01261-8_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01261-8_38&domain=pdf
https://yanhangpublic.github.io/ridi
https://doi.org/10.1007/978-3-030-01261-8_38
https://doi.org/10.1007/978-3-030-01261-8_38


642 H. Yan et al.

Unfortunately, the current state-of-the-art suffers from severe limitations.
First, IMU double integration does not work unless one uses a million dollar
military-grade IMU unit in a submarine, because small sensor errors and biases
explode quickly in the double integration process. Second, dead-reckoning typi-
cally assumes that device rotations are exactly aligned with motion directions.
This assumption almost always breaks in daily activities, as we move around
devices from a hand to a pocket to a bag.

This paper proposes a simple data-driven approach that learns to estimate
natural human motions only from IMU. Our key idea is that human motions are
repetitive and consist of a small number of major modes. Our algorithm, dubbed
Robust IMU Double Integration (RIDI), learns to regress walking velocities from
IMU signals, while compensating for arbitrary device rotations with respect to
the body. More precisely, RIDI regresses a velocity vector from the history of
linear accelerations and angular velocities, then corrects low-frequency errors in
the linear accelerations such that their integration matches the regressed veloci-
ties. A standard double integration is then used to estimate the trajectory from
the corrected linear accelerations.

We have acquired IMU sensor data across 10 human subjects with 4 popular
smartphone placements. The ground truth trajectories are obtained by a Visual
Inertial Odometry system (i.e., a Google Tango phone, Lenovo Phab2 Pro) [12].
Our datasets consist of various motion trajectories over 150 min at 200 Hz. Our
experiments have shown that RIDI produces motion trajectories comparable to
the ground truth, with mean positional errors below 3%.

To our knowledge, this paper is the first to introduce supervised training
for inertial navigation. Our algorithm is surprisingly simple, yet outperforms
existing heuristic-based algorithms, and is even comparable to Visual Inertial
Odometry. This paper could start a new line of research in data-driven Inertial
Navigation. Commercial implications of the proposed research are also signifi-
cant. IMUs are everywhere on the market, inside smartphones, tablets, or emerg-
ing wearable devices (e.g., Fitbit or Apple Watch). Almost everybody always
carries one of these devices, for which RIDI could provide precise motion infor-
mation with minimal additional energy consumption, a potential to enable novel
location-aware services in broader domains. We will publicly share our code and
data to facilitate further research.

2 Related Work

Motion tracking has long been a research focus in the Computer Vision and
Robotics communities. Visual SLAM (V-SLAM) has made remarkable progress
in the last decade [5,7,8,16,22,23], enabling a robust real-time system for indoors
or outdoors up to a scale ambiguity. Visual-inertial SLAM (VI-SLAM) combines
V-SLAM and IMU sensors, resolving the scale ambiguity and making the system
further robust [13,18]. VI-SLAM has been used in many successful products
such as Google Project Tango [12], Google ARCore [10], Apple ARKit [2] or
Microsoft Hololens [21]. While being successful, the system suffers from two



RIDI: Robust IMU Double Integration 643

Fig. 1. Smartphones with motion sensors are ubiquitous in modern life. This paper
proposes a novel data-driven approach for inertial navigation, which uses Inertial Mea-
surement Unit (IMU) in every smartphone to estimate trajectories of natural human
motions. IMU is energy-efficient and works anytime anywhere even for smartphones in
your pockets or bags.

major drawbacks: (1) a camera must have a clear light-of-sight under well-lit
environments all the time, and (2) the recording and processing of video data
quickly drain a battery (Fig. 1).

IMU-only motion tracking has been successful in 3 DOF rotation estimation
and been used in many recent Virtual Reality applications, such as Google Card-
board VR [11] or Samsung Gear VR [25]. While position estimation from IMU
sensors has been a challenge due to sensor bias in the accelerometers, successful
approaches exist for pedestrian motion tracking. The first family of these meth-
ods count foot-steps from accelerometers and multiply predefined step-lengths to
estimate the translation [4,27]. Most these methods assume that the device orien-
tation is aligned with the walking direction. Several methods seek to loosen this
assumption by principal component analysis [15], forward-lateral modeling [6],
or frequency domain analysis [17]. However, as shown in our experiments, these
methods are based on heuristics and cannot handle more complex and varying
motions in our database. Our approach is data-driven with supervised learning
and makes significant improvements over these methods with a simple algorithm.

Another family of IMU-only pedestrian tracking methods use a foot-mounted
IMU sensor and rely on the fact that the foot comes to a complete stop at every
step [28]. The sensor drifts are eliminated through a zero-velocity constraint at
each foot-step, producing impressive results. Our approach shares the idea of
enforcing velocity constraints, but does not require a foot-mounted sensor.

WiFi signals are another information source for motion tracking without
cameras in indoor environments [3,9,14,20]. A particle filter is applied on IMU,
WiFi, and the map data to enable reliable motion tracking [19,24]. Inertial navi-
gation is a critical component of WiFi based tracking. Our research is orthogonal
and directly benefits these techniques.

3 Inertial Motion Trajectory Database

One contribution of the paper is a database of IMU sensor measurements
and motion trajectories across multiple human subjects and multiple device



644 H. Yan et al.

placements. We have used a Google Tango phone, Lenovo Phab2 Pro, to record
linear accelerations, angular velocities, gravity directions, device orientations (via
Android APIs), and 3D camera poses. The camera poses come from the Visual
Inertial Odometry system on Tango, which is accurate enough for our purpose
(less than 1 m positional error after 200 m tracking). We make sure that the
camera has a clear field-of-view all the time (See Fig. 2). This is only required
when recording the ground truth trajectories for training and evaluation. Our
method estimates motion trajectories solely from IMU data.

Fig. 2. We place a Tango phone in four popular configurations to collect training data.
The ground truth motions come from Visual Inertial Odometry, and we have carefully
designed the placements to make the camera always visible. From left to right: (1) in
a leg pocket, (2) in a bag, (3) held by a hand, or (4) on a body (e.g., for officers).

We have collected more than 150 min of data at 200 Hz from ten human
subjects under four popular smartphone placements with various motion types
including walking forward/backward, side motion, or acceleration/deceleration.
Asynchronous signals from various sources are synchronized into the time-stamps
of Tango poses via linear interpolation. At total, our database consists of approx-
imately two million samples.

4 Algorithm

The proposed algorithm, dubbed Robust IMU Double Integration (RIDI), con-
sists of two steps. First, it regresses velocity vectors from angular velocities
and linear accelerations (i.e., accelerometer readings minus gravity). Second, it
estimates low-frequency corrections in the linear accelerations so that their inte-
grated velocities match the regressed values. Corrected linear accelerations are
double-integrated to estimate positions. We assume subjects walk on a flat floor.
The regression and the position estimation are conducted on a 2D horizontal
plane. We now explain a few coordinate frames and the details of the two steps.



RIDI: Robust IMU Double Integration 645

Fig. 3. Left: our cascaded regression model consists of one SVM and eight SVRs. SVM
classifies the phone placement from the four types. Two type-specific SVRs predict a
2D velocity vector in the stabilized-IMU frame, ignoring the vertical direction. Right:
we leverage the classifier output to handle transition periods. For the sample marked
with the vertical dash line, the classifier output changes 4 times in the past 1.5 s, thus
is identified to be within the transition period.

4.1 Coordinate Frames

The arbitrary device orientations with respect
to the body makes it hard to infer the motion
direction, being one of the core challenges
of heuristic-based methods. Such arbitrariness
also poses challenges to the regression task.
With the assumption that the subject walks
on a horizontal plane, we eliminate the device
pitch and roll ambiguities by utilizing gravity
estimations. We define a rectified coordinate frame, in which we train a velocity
regressor to handle the remaining yaw ambiguity.

More precisely, we consider three coordinate frames in our algorithm. The
first one is the world coordinate frame W , in which the output positions are
estimated. W is set to be the global coordinate frame from the Android API at
the first sample. The second one is the IMU/device coordinate frame I (marked
with blue arrows in the right figure) in which IMU readings are provided by
the Android APIs. Lastly, we leverage the gravity direction from the system to
define our stabilized-IMU frame S, where the device pitch and roll are eliminated
from I by aligning its y-axis with the gravity vector (see the green arrows in the
right figure). This coordinate frame makes our regression task easier, since the
regression becomes independent of the device pitching and rolling.

4.2 Learning to Regress Velocities

We learn to regress velocities in the stabilized IMU frame S. For each train-
ing sequence, we transform device poses (in W ), and IMU readings (angular
velocities and linear accelerations, in I) into S. The central difference gener-
ates velocity vectors from the transformed device poses (ignoring the vertical
direction). To suppress high-frequency noise, we apply Gaussian smoothing with
σ = 2.0 samples to 6 IMU channels, and with σ = 30.0 samples to 2 velocity



646 H. Yan et al.

Fig. 4. Robust IMU double integration process. Our approach directly models the
errors (green on the left) in the linear acceleration as a piecewise linear (thus low-
frequency) function. We estimate parameters of this correction function so that the inte-
gration of the corrected linear accelerations (blue on the right) matches the regressed
velocities (brown on the right). (Color figure online)

Table 1. Hyper-parameters for SVRs are found by the grid search: (1) C within a
range of [0.1, 100.0] with a multiplicative increment of 10; and (2) ε within a range of
[0.001, 1.0] with a multiplicative increment of 10.

Leg Bag Hand Body

C 1.0 10.0 10.0 1.0

ε 0.001 0.01 0.001 0.001

channels, respectively. We concatenate smoothed angular velocities and linear
accelerations from the past 200 samples (i.e., 1 s) to construct a 1200 dimen-
sional feature vector (Fig. 4).

People carry smartphones in different ways, exhibiting different IMU signal
patterns. We assume that a phone is either (1) in a leg pocket, (2) in a bag,
(3) held by a hand, or (4) on a body, and exploit this knowledge to propose a
cascaded regression model (See Fig. 3). More precisely, a Support Vector Machine
(SVM) first classifies the placement to be one of the above four types, then two
type-specific ε-insensitive Support Vector Regression (SVR) [26] models estimate
two velocity values independently (ignoring the vertical direction). The hyper-
parameters for each model are tuned independently by the grid search and 3-fold
cross validation, based on the mean squared error on the regressed velocities.
The grid-search finds the soft-margin parameter C = 10.0 for SVM. Table 1
summarizes the chosen parameters for SVR models.

The above model assumes a phone being in the same placement all the time.
To handle users switching a phone from one placement to another (e.g., picking
up a phone from a leg pocket to a hand), we use a simple heuristic to identify
transition periods, during which we specify the target velocity to be 0 without
regression. Our observation is that the classifier makes near random predictions
during transition periods. We inspect 10 contiguous classifier outputs in the past



RIDI: Robust IMU Double Integration 647

1.5 s (i.e., one classification per 0.15 s) and declare the current sample to be in
a transition if the classification results changed more than twice in the period
(See Fig. 3 right).

4.3 Correcting Acceleration Errors

Predicted velocities provide effective cues in removing sensor noises and biases.1

The errors come from various sources (e.g., IMU readings, system gravities, or
system rotations) and interact in a complex way. We make a simplified assump-
tion and model all the errors as a low-frequency bias in the linear acceleration.
This approach is not physically grounded, but bypasses explicit noise/bias mod-
eling and turns our problem into simple linear least squares.

We model the bias in the linear acceleration in the IMU/device coordinate
frame I. To enforce the low-frequency characteristics, we represent the bias as
linear interpolation of correction terms xf

I at sub-sampled samples (F1), in par-
ticular, one term every 50 samples [29]. With abuse of notation, we also use xf

I

to denote interpolated acceleration correction (e.g., x11
I = 0.8x1

I + 0.2x51
I ).

Our goal is to estimate {xf
I } at F1 by minimizing the discrepancy between

the corrected velocities (vf
C) and the regressed velocities (vf

R) at sub-sampled
samples F2 (once every 50 samples, to avoid evaluating SVRs at every sample
for efficiency). The discrepancy is measured in the stabilized IMU frame S.

min
{x1

I ,x
51
I ,··· }

∑

f∈F2

∥∥∥vf
C − vf

R

∥∥∥
2

+ λ
∑

f∈F1

∥∥∥xf
I

∥∥∥
2

,

vf
C = Rf

SW

f∑

f ′=1

Rf ′
WI

(
af ′
I + xf ′

I

)
Δt.

(1)

af
I denotes the raw linear acceleration in I. RAB denotes the rotation that trans-

forms a vector from coordinate frame B to A. RWI is the IMU orientation pro-
vided by the Android API. Suppose RSI is the rotation that aligns the gravity
vector to (0, 1, 0), RSW can be then computed by left-multiplying RSI to RIW .
Δt is the time interval between samples, which is roughly 0.005 s under 200 Hz
sampling rate.

The first term minimizes the discrepancy between the regressed (vf
R) and the

corrected (vf
C) velocities. The corrected velocity (V f

C ) in the stabilized coordinate
frame S is computed by (1) transforming each corrected linear acceleration into
frame W by RWI ; (2) integrating them in W ; and (3) transforming to S by
RSW .2 Note that our regressor estimates the horizontal velocity, namely only
the two entries in vf

R without the vertical direction. We assume that subjects
walk on the flat surface, and hence, fix the vertical component of vf

R to be 0.
1 Direct integration of the predicted velocities would produce positions but perform

worse (See Sect. 6 for comparisons).
2 We assume zero-velocity at the first sample, which is the case for our datasets.

Relaxing this assumption is our future work.



648 H. Yan et al.

The second term enforces l2 regularization on the correction terms, which
allows us to balance the velocity regression and the raw IMU signals. When
λ is 0, the system simply integrates the regressed velocities without using raw
IMU data. When λ is infinity, the system ignores the regressed velocities and
performs the naive IMU double integration. We have used λ = 0.1 in our exper-
iments. Double integration of the corrected accelerations produces our position
estimations.

5 Implementation Details

We have implemented the proposed system in C++ with third party libraries
including OpenCV, Eigen and Ceres Solver [1]. Note that our optimization prob-
lem (1) has a closed form solution, but we use Ceres for the ease of implemen-
tation. We have used a desktop PC with a Intel I7-4790 CPU and 32 GB RAM.

We have presented the algorithm as an offline batch method for clarity. It
is fairly straightforward to implement an online algorithm, which has been used
in all our experiments. Given sample i, the system returns the position at i by
using corrected linear acceleration up to i − 1. It also initializes the correction
term for i as 0. Meanwhile, a second thread is launched once per 200 samples
to solve for corrections within the last 1000 samples (with overlapping). In this
way, the error is accumulated for no more than 1 s. The two expensive steps
are the velocity regression and the optimization, which takes 26 ms and 17 ms on
average, respectively. Our system processes 10,000 samples within 10 s, effectively
achieving 1,000 fps on a desktop PC.

6 Experimental Results

We have acquired 74 motion sequences over 8 human subjects (marked as S1–S8),
4 different phone placements, and a variety of motion types. We have randomly
selected 49 sequences for training and the remaining 25 sequences for testing.
We have created one training/testing sample per 10 IMU samples, resulting in
109,365 training samples and 46,173 testing samples. We have also acquired 8
sequences from two unseen human subjects (S9, S10) and 4 sequences from an
unseen device (Google Pixel XL) for testing.

6.1 Position Evaluations

Baseline Comparisons: Table 2 summarizes the quantitative evaluations on
the accuracy of the final positions over 8 testing sequences (marked as T1–T8).
We compared our method against 5 competing methods:

• RAW denotes the naive double integration with uncorrected linear acceler-
ations (with system-level calibration and filtering).

• STEP-ENH denotes a recent step counting method [27]. The step length is
set to the average of the ground truth step lengths over the whole training set.



RIDI: Robust IMU Double Integration 649

• STEP-FRQ denotes another recent step counting method that uses fre-
quency domain analysis to infer misalignment between the device orientation
and the motion direction [17].3 The step detection is provided by the Android
API. The ground truth is used to set the step length as in STEP-ENH.

• RIDI-MAG is a variant of the proposed method. The regressed velocity
vector consists of the magnitude and direction information. RIDI-MAG keeps
the velocity magnitude, while replacing its direction by the system rotation
through the Android API. RIDI-MAG cannot compensate for the device rota-
tions with respect to the body.

• RIDI-ORI is another variant of RIDI that keeps the regressed velocity direc-
tion, while replacing the regressed velocity magnitude by the average of the
ground truth values for each sequence.

Table 2. Positional accuracy evaluations. Each entry shows the mean positional error
(in meters) and its percentage (inside parentheses) with respect to the trajectory length.
The blue and the brown numbers show the best and the second best results.

For all the experiments, we align each motion trajectory to the ground truth
by computing a 2D rigid transformation that minimizes the sum of squared dis-
tances for the first 10 s (2,000 samples). Table 2 shows that RIDI outperforms all
the other baselines in most sequences, and achieves mean positional errors (MPE)
less than 3.0% of the total travel distance, that is, a few meters after 150 m of
walking. Figure 5 illustrates a few representative examples with regressed veloc-
ities. In T1, the phone is mounted over the leg pocket, where STEP-FRQ fails
to infer correct motion direction due to abrupt leg movements. T5 is a case,
in which the subject frequently changes the walking speeds. Both STEP-FRQ
and RIDI-ORI fail for assuming a constant step frequency or velocity. In T7,
the subject mixes different walking patterns, including backward motions. Only
RIDI, STEP-FRQ and RIDI-ORI, which infer motion directions, perform well.
Please visit our project website for more results and visualizations.

3 Their algorithm has a heuristic to resolve the 180◦ ambiguity in the frequency anal-
ysis, but did not work well with our data. Our implementation favors this method
by resolving the 180◦ ambiguity with the ground truth direction.



650 H. Yan et al.

Fig. 5. Left: Motion trajectories from Tango, competing methods and RIDI. Short
green segments indicate headings of device’s X axis. Right: Regressed velocity vectors
and their mean squared errors (MSE). In T1 (top row), the device is in a leg pocket
and STEP-FRQ fails to infer correct orientation. In T5 (middle row), the subject
frequently changes the speed, where STEP-FRQ and RIDI-ORI produce large errors for
inaccurate motion frequencies and speed magnitudes. In T7 (bottom row), the subject
mixes different walking patterns including 4 backward motions (the black rectangle is
one place), where STEP-ENH and RIDI-MAG fails for not inferring velocity directions.
Trajectories from the naive double integration(RAW) quickly diverge in all examples.



RIDI: Robust IMU Double Integration 651

Fig. 6. Overlaying the trajectories with the online digital map (from Google Maps) or
the floorplan image with the estimated scale. The red line marks the trajectory given
by the Tango system and the blue line marks the trajectory given by our system. The
accuracy of the Tango system degrades at outdoors in our experiments, so we manually
drew the actual walking path with the black line at the left. (Color figure online)

Scale Consistency: One of the key advantages of the inertial or visual-inertial
navigation is that the reconstruction is up to a metric-scale, which is not the
case for image-only techniques such as visual-SLAM. Figure 6 shows that our
trajectories are well aligned over a satellite or a floorplan image. We adjusted
the scales (meters per pixel) based on the scale rulers, and manually specified
the starting point and the initial orientation.

Parameter λ: Table 3 shows the impact of the parameter λ in Eq. 1, suggest-
ing that it is important to integrate the velocity regression with the raw IMU
acceleration data. Neither the regressed velocities (small λ) nor the naive double
integration (large λ) performs well alone. We set λ = 0.1 in all experiments.

Table 3. The average MPE (as a ratio against the trajectory distance) over the testing
sequences with different λ.

λ 0.0001 0.001 0.1 1.0 10,000

MPE 11.62% 1.49% 1.45% 1.47% 33.98%

Real-World Evaluation: we have qualitatively evaluated our system in a real
world setting. A subject starts walking with the phone held by the hand. Along
the route inside a large building, the subject performs several complex motions
including putting the phone inside a bag, resting at a table, walking sideways
and putting the phone into the leg pocket. Our method is able to estimate the
trajectory under nature motions. The camera is blocked inside bag or pocket,
therefore we omit the ground truth trajectory. See Fig. 7. Please visit our project
website for detailed visualization.



652 H. Yan et al.

Fig. 7. Real-world example with natural motions. The subject carries the phone with
different placements (marked with colored lines) and performs several complex motions
(marked with stars) along the route. Our method is able to estimate accurate trajectory
only from IMU data. (Color figure online)

6.2 Velocity Evaluations

Our cascaded velocity regression achieves the mean squared errors of 0.017
[m2/s2] and 0.017 [m2/s2] on the X and Z axes on the testing set, respectively.
We have also calculated the accuracy of the SVM classifier on the placement
types, where the training and the testing accuracies are 97.00% and 96.22%,
respectively. Lastly, we have evaluated the SVR regression model without the
placement classification. The mean squared errors on the X and Z axes are
0.028 [m2/s2] and 0.032 [m2/s2], respectively, which are worse than our cas-
caded model. Acquiring more training data and evaluating the accuracy of more
data-hungry methods such as deep neural networks is one of our future works.

6.3 Generalization

Unseen Devices: Considering the impact to commercial applications, the gen-
eralization capability to unseen devices is of great importance. We have used
another device (Google Pixel XL) to acquire additional testing sequences. The
subjects also carried the Tango phone to obtain ground truth trajectories. The
sequence contains a quick rotation motion at the beginning to generate distinc-
tive peaks in the gyroscope signals, which are used to synchronize data from the



RIDI: Robust IMU Double Integration 653

two devices. We register the estimated trajectories to the ground truth by the
same process as before. Figure 8 shows that our system generalizes reasonably
well under all placement types, in particular, still keeping the mean positional
errors below 3%.

Fig. 8. Generalization to an unseen device (Google Pixel XL).

Fig. 9. Generalization to unseen subjects. We varied the number of human subjects
in the training data and evaluated two RIDI models for unseen testing subjects. RIDI
(single) uses training data only from 1 subject, while RIDI (Full) uses training data
from the 8 subjects.



654 H. Yan et al.

Unseen Subjects: The last experiment evaluates the generalization capability
to unseen subjects (marked as S9 and S10). These two subjects have no prior
knowledge of our project and we asked them to walk in their own ways. We have
trained two RIDI models with different training sets. RIDI (Single) is trained on
data only from 1 subject (S1). RIDI (Full) is trained on data from the 8 subjects
(S1–S8). For fair comparisons, we have down-sampled the larger training set
so that both sets contain around 28,000 training samples. Figure 9 and Table 4
demonstrate that the Full model generalizes well, in particular, below 4% MPE
in most cases. However, the system performs worse in some sequences. Another
important future work is to push the limit of the generalization capability by
collecting more data and designing better regression machineries.

Table 4. Generalization to unseen subjects. The forth and fifth columns are the mean
squared errors on the regressed velocities along the two horizontal axes. Last two
columns are the mean positional errors (MPE) in meter and their percentage w.r.t.
trajectory lengths (inside parentheses). The model trained on more subjects general-
izes better.

7 Conclusion

The paper proposes a novel data-driven approach for inertial navigation that
robustly integrates linear accelerations to estimate motions. Our approach
exploits patterns in natural human motions, learns to regress a velocity vector,
then corrects linear accelerations via simple linear least squares, which are inte-
grated twice to estimate positions. Our IMU-only navigation system is energy
efficient and works anywhere even inside a bag or a pocket, yet achieving com-
parable accuracy to a full visual inertial navigation system to our surprise. Our
future work is to collect a lot more training data across more human subjects
on more devices, and learn a universal velocity regressor that works for any-
body on any device. Another important future work is to deploy the system
on computationally less powerful mobile devices. The impact of the paper to
both scientific and industrial communities could be profound. This paper has a
potential to open up a new line of learning based inertial navigation research.
Robust anytime-anywhere navigation system could immediately benefit a wide



RIDI: Robust IMU Double Integration 655

range of industrial applications through location-aware services including online
advertisements, digital mapping, navigation, and more.

Acknowledgement. This research is partially supported by National Science Foun-
dation under grant IIS 1540012 and IIS 1618685, Google Faculty Research Award, and
Zillow gift fund.

References

1. Agarwal, S., Mierle, K., et al.: Ceres solver. http://ceres-solver.org
2. Apple: Apple arkit. https://developer.apple.com/arkit/
3. Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location

and tracking system. In: Proceedings of Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies, INFOCOM 2000, vol. 2, pp.
775–784. IEEE (2000)

4. Brajdic, A., Harle, R.: Walk detection and step counting on unconstrained smart-
phones. In: Proceedings of the 2013 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing, pp. 225–234. ACM (2013)

5. Cadena, C., et al.: Past, present, and future of simultaneous localization and map-
ping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332
(2016)

6. Chowdhary, M., Sharma, M., Kumar, A., Dayal, S., Jain, M.: Method and appara-
tus for determining walking direction for a pedestrian dead reckoning process. US
Patent App. 13/682,684, 22 May 2014

7. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: real-time single
camera slam. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

8. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern
Anal. Mach. Intell. 40(3), 611–625 (2018)

9. Ferris, B., Fox, D., Lawrence, N.: WiFi-SLAM using Gaussian process latent vari-
able models. In: Proceedings of IJCAI 2007, pp. 2480–2485 (2007)

10. Google: Arcore. https://developers.google.com/ar/
11. Google: Cardboard. https://vr.google.com/cardboard/
12. Google: Project tango. https://get.google.com/tango/
13. Hesch, J.A., Kottas, D.G., Bowman, S.L., Roumeliotis, S.I.: Camera-IMU-based

localization: observability analysis and consistency improvement. Int. J. Robot.
Res. 33(1), 182–201 (2014)

14. Huang, J., Millman, D., Quigley, M., Stavens, D., Thrun, S., Aggarwal, A.: Effi-
cient, generalized indoor wifi graphslam. In: IEEE International Conference on
Robotics and Automation, pp. 1038–1043 (2011)

15. Janardhanan, J., Dutta, G., Tripuraneni, V.: Attitude estimation for pedestrian
navigation using low cost mems accelerometer in mobile applications, and process-
ing methods, apparatus and systems. US Patent 8,694,251, 8 April 2014

16. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In:
ISMAR, pp. 225–234. IEEE (2007)

17. Kourogi, M., Kurata, T.: A method of pedestrian dead reckoning for smartphones
using frequency domain analysis on patterns of acceleration and angular velocity.
In: 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014,
pp. 164–168. IEEE (2014)

http://ceres-solver.org
https://developer.apple.com/arkit/
https://developers.google.com/ar/
https://vr.google.com/cardboard/
https://get.google.com/tango/


656 H. Yan et al.

18. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based
visual–inertial odometry using nonlinear optimization. Int. J. Robot. Res. 34(3),
314–334 (2015)

19. Li, F., Zhao, C., Ding, G., Gong, J., Liu, C., Zhao, F.: A reliable and accurate
indoor localization method using phone inertial sensors. In: Proceedings of the
2012 ACM Conference on Ubiquitous Computing, pp. 421–430. ACM (2012)

20. Lim, C.H., Wan, Y., Ng, B.P., See, C.M.S.: A real-time indoor WiFi localization
system utilizing smart antennas. IEEE Trans. Consum. Electron. 53(2), 618–622
(2007)

21. Microsoft: Hololens. https://www.microsoft.com/microsoft-hololens/en-us
22. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accu-

rate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)
23. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and map-

ping in real-time. In: ICCV. pp. 2320–2327. IEEE (2011)
24. Racko, J., Brida, P., Perttula, A., Parviainen, J., Collin, J.: Pedestrian dead reckon-

ing with particle filter for handheld smartphone. In: 2016 International Conference
on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–7. IEEE (2016)

25. Samsung: Samsung gear VR. http://www.samsung.com/global/galaxy/gear-vr/
26. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput.

14(3), 199–222 (2004)
27. Tian, Q., Salcic, Z., Kevin, I., Wang, K., Pan, Y.: An enhanced pedestrian dead

reckoning approach for pedestrian tracking using smartphones. In: 2015 IEEE
Tenth International Conference on Intelligent Sensors, Sensor Networks and Infor-
mation Processing (ISSNIP), pp. 1–6. IEEE (2015)

28. Yun, X., Bachmann, E.R., Moore, H., Calusdian, J.: Self-contained position track-
ing of human movement using small inertial/magnetic sensor modules. In: 2007
IEEE International Conference on Robotics and Automation, pp. 2526–2533. IEEE
(2007)

29. Zhou, Q.Y., Koltun, V.: Simultaneous localization and calibration: self-calibration
of consumer depth cameras. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 454–460 (2014)

https://www.microsoft.com/microsoft-hololens/en-us
http://www.samsung.com/global/galaxy/gear-vr/

	RIDI: Robust IMU Double Integration
	1 Introduction
	2 Related Work
	3 Inertial Motion Trajectory Database
	4 Algorithm
	4.1 Coordinate Frames
	4.2 Learning to Regress Velocities
	4.3 Correcting Acceleration Errors

	5 Implementation Details
	6 Experimental Results
	6.1 Position Evaluations
	6.2 Velocity Evaluations
	6.3 Generalization

	7 Conclusion
	References




