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Abstract. Perceiving a visual concept as a mixture of learned ones is
natural for humans, aiding them to grasp new concepts and strengthen-
ing old ones. For all their power and recent success, deep convolutional
networks do not have this ability. Inspired by recent work on universal
representations for neural networks, we propose a simple emulation of
this mechanism by purposing batch normalization layers to discriminate
visual classes, and formulating a way to combine them to solve new tasks.
We show that this can be applied for 2-way few-shot learning where we
obtain between 4% and 17% better accuracy compared to straightfor-
ward full fine-tuning, and demonstrate that it can also be extended to
the orthogonal application of style transfer.
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1 Introduction

Human visual cognition is remarkable. One of the many things humans do natu-
rally is linking visual concepts to a combination of other concepts. For example,
after being shown images of a dog, a cat, and a fox, a child could say that the fox
looks like a cross between a cat and a dog (Fig. 1). Furthermore, the child will
understand much about the concept of a fox given prior knowledge of what cats
and dogs look like. A loose mathematical analogy can be expressed as follows:
if visual representations of cats and dogs can be encapsulated in the form of
functions φcat and φdog, respectively, it should also be possible to build from
them a representation for foxes φfox = f(φcat, φdog, α), where f represents how
the functions should be combined as parameterized by α. Additionaly, it should
be easier to deduce the value of α than φfox directly.

In this paper we ask if the same ideas can be adapted to deep convolu-
tional neural networks to enable more efficient learning. This is desirable as,
despite generally being powerful state-of-the-art models [11,16,22], deep net-
works require a tremendous amount of data to tune millions of parameters that
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allow it to work so well, limiting its application to tasks where data is plenty or
inexpensive.

Recent works [3,20] have reported that it is possible to prepare a single net-
work that is able to perform visual recognition in multiple domains. This is
achieved by training the network to produce universal image representations,
relying on (i) the convolutional kernels to extract domain-agnostic information
about the world and on (ii) the batch normalization (BN) layers to transform
the internal representations to the relevant target domains. Analogously, within
the application domain of style transfer, [6] shows that a single network can be
equipped with multiple distinct styles by encoding the style information in the
network’s instance normalization (IN) layers, after which each style can selec-
tively be applied to a target image. These discoveries seem to provide evidence
for the ability of normalization layers to encode transforms that can be used to
express visual concepts.

In line with our opening exposition, we propose and wish to test the following
intuition in this paper: given that normalization layers (e.g. BN) can be trained
to discriminate specific visual classes, it should be possible to combine these
normalization layers and interpolate within them to efficiently learn new, unseen
classes. In particular, since we will only be manipulating the normalization layers
within a network, the number of parameters that we need to tweak will be much
lower than full fine-tuning. Fewer parameters also means less tendency to overfit,
enabling training with smaller amounts of data. Focusing on binary classification
tasks, we summarize our contributions in this paper as follows:

1. Defining a procedure that specifies how component networks that discriminate
specific classes are generated and interpolated to discriminate new, unseen
classes.

2. Demonstrating how interpolation of component BN layers can be applied to
the problem of few-shot visual recognition.

3. Showing that the same interpolation process (using IN) can be adapted to
the orthogonal task of style transfer.

Fig. 1. The fox can be seen as a mix between this cat and this dog.

The remainder of the paper proceeds as follows: we first mention several
works that are related to our method in Sect. 2. Afterwards, we describe and
elaborate procedures for creating and interpolating between component BNs in
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Sect. 3. We validate the key idea of interpolating BNs on CIFAR10 [15], apply
the same procedures to few-shot learn ImageNet32 [5] using CIFAR10-trained
kernels, and also apply it to the orthogonal task of style transfer (by replacing
BNs with INs) in Sect. 4. Finally, we conclude our paper in Sect. 5.

2 Related Work

To our knowledge, we are the first to tackle the problem of neural network
interpolation. Our main reason for attempting this is to reduce the number of
parameters required to train the neural network and to achieve faster conver-
gence with fewer images. We therefore believe our approach is most related to
other works that (i) try to reduce the number of trained/tested parameters, (ii)
dictionary learning, and (iii) few-shot learning/meta-learning approaches.

Parameter Reduction. Within the realm of parameter reduction, there have
been attempts to compress and distill knowledge in neural networks [12], and
novel designs for efficient architectures which reduce the number of parameters
during inference [4,9]. These assume the neural network is trained in a traditional
way and provide methods by which the post-training parameters can be reduced,
e.g. through some form of sparsity. Reduction of training parameters is however
much less studied, with the traditional approach looking at training only a subset
of the complete network, e.g. the last few layers. However, recent work has shown
an alternative strategy of training a neural network (rather than just retuning the
last layers): to adapt the network’s batch normalization parameters. This proved
to be effective when training and adapting domain-agnostic neural networks in
[3,20] and, relatedly, when aiming to adapt existing neural networks to new types
of style transfer as in [6].

Dictionary Learning. The aim of dictionary learning [21] is to learn funda-
mental representations from data that can be combined linearly to construct
sparse codings of the data. A collection of these fundamental representations
(atoms) form a dictionary. A few well-known algorithms that perform dictio-
nary learning include the method of optimal directions [7] and K-SVD [1].

Few-Shot Learning/Meta-Learning. The application of deep convolutional
networks for few-shot learning has recently seen a resurgence. Naming just a few
methods, Koch et al. [14] used Siamese networks to quantify distances between
samples, and then used a non-parametric classifier such as k-nearest neighbours
to perform one-shot learning. Bertinetto et al. [2] modified the Siamese archi-
tecture to enable the first network to predict suitable weights for the other in
the one-shot regime. Hariharan and Girschick [10] proposed the SGM loss and
hallucination as data augmentation to perform n-way few-shot learning where
n is large. Luo et al. [18] suggested a network framework that is able to learn
transferrable representations in a label-efficient manner.
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Within the framework of meta-learning, Vinyals et al. [25] introduced the
concept of episodic training to ensure few-shot training and testing conditions
match, and used a cosine similarity metric on network embeddings to peform the
classification. Ravi and Larochelle [19] used an LSTM meta-learner to directly
perform episodic weight updates on a few-shot learner network, made possible
by the similarity between LSTM and gradient descent update formulation. Snell
et al. [23] utilized a network to learn embeddings which cluster classes around
prototypes, which then classifies new examples by proximity to learned proto-
types. Finn et al. [8] proposed a simple meta-learning training algorithm that
aims to generate good initialization parameters for a classifier network, which
was then able to achieve good performance after a single parameter update step.

3 Method

First, we briefly review the batch normalizing (BN) transform [13]. Let xi be the
activations of a single example i inside a mini-batch of size m. The BN transform
is defined as the operation

BN(xi) ≡ γx̂i + β, (1)

given the mean μB = 1
m

∑m
i=1 xi, variance σ2

B = 1
m

∑m
i=1(xi − μB)2, and the

normalized input x̂i = (xi − μB)/
√

σ2
B + ε. The scale γ and shift β parameters

are learnable, while ε is a small positive constant to prevent division by zero.
Next, we will show how component BNs are constructed, and detail two ways

of combining them for the purpose of interpolating new classes. This section
focuses on the binary classification scenario, but the principles presented can
translate to other application domains, as we show later in Sect. 4.

3.1 Component Generation

Given that component BNs are purposed to be discriminative towards a partic-
ular object class, a straightforward way to generate them for that object class
would be to extract BNs from a network trained on a corresponding binary
classification task.

More specifically, we start from a base pretrained network which we refer to
as the template network. To create BN layers that detect the concept of e.g. cat,
we fine-tune the network on a dataset containing examples of cats and non-cats
by adjusting only the BN and last classification layer parameters. This fine-tuned
network is now a component network that detects cats. We repeat this procedure
for other object classes, always starting from the same template network, until
the desired number of component networks is obtained.

The number of component networks is a function of the task at hand and
the quantity of available data and classes. For example, for our experiments, we
create 9 component networks for CIFAR10 and 200 for ImageNet.
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3.2 Binary Dataset Creation

It is beneficial to generate a number of component BNs so that a good cover-
age of the target task is achievable. Large multiclass datasets are naturally a
suitable source. However, they need to be binarized before they can be used for
component generation.

We formalize this as follows. Suppose we have a set of N labelled images
D = {(x1, y1), . . . , (xN , yN )} where yn ∈ {1, . . . , K} are the labels. Binarizing
D for class k means randomly copying S/2 elements of D where yn = k and
another S/2 where yn �= k to form a new set Dk = {(x1, y1), . . . , (xS , yS)} where
ys ∈ {0, 1} after applying the binary label transform

φ(yn) = ys =

{

1 if yn = k,

0 if yn �= k.
(2)

3.3 Component Selection

Once a number of component BNs have been generated, it is important to select
the components that will be relevant for the task at hand (e.g. airplanes are prob-
ably not a good component to include when trying to detect foxes). Although
there may exist sophisticated selection methods, we propose two straightforward
criteria which we demonstrate in more detail in Sect. 4.2. The first criterion
involves selecting m component networks with the lowest cross-entropy loss on
the target binary task. The second criterion does the same thing, except that it
ranks based on highest accuracy on the target binary task. Naturally, the first
criterion is more amenable to tasks with few examples to evaluate.

3.4 Interpolating Component Networks

After the BN components have been computed and selected for a specific novel
target class, we propose two approaches for interpolation:

1. Composite Batch Normalization (ComBN), providing a linear combination of
BN components.

2. Principal Component Batch Normalization (PCBN), providing a PCA-based
latent space interpolation.

The interpolation weights for both approaches are learned through standard
neural network optimization techniques, i.e. backpropagation and stochastic gra-
dient descent (SGD).

Other methods could be used to interpolate the BN components, such as more
complex non-linear dimensionality reduction techniques like Gaussian Process
Latent Variable Models [17], but, as we show in the results section, the simpler
linear models already achieve very good results.
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Composite Batch Normalization (ComBN). Using a similar notation to
the one above, we propose the ComBN transform as a linear combination of
generated BN components,

ComBNα(xi) ≡
J

∑

j=1

αjBNj(xi), (3)

where J is the number of BN components that make up a ComBN, and αj are
learnable scalar coefficients that represent the interpolation weights, all initial-
ized to 1/J .

In practice, after the component networks have been generated, each BN
layer in the original template network is replaced with a ComBN, which is con-
structed from BN layers of selected component networks originating from the
same depth-wise layer position. Afterwards, we train the ComBN network by
optimizing αj and the last layer to the target task using standard techniques
(i.e. backpropagation and SGD).

Note that the component BNs in the ComBN network are always utilized in
inference mode; i.e. their γ, β, running mean, and running variance are frozen,
and the running mean and variance are used in place of the mini-batch mean μB
and variance σ2

B when evaluating Eq. 1.
Additionally, this formulation typically enables a large reduction of the num-

ber of parameters, which is helpful in reducing overfitting when the training data
is scarce.

Principal Component Batch Normalization (PCBN). An alternative way
to exploit information contained in BN components is to first use them to learn
a latent space mapping for its parameters, and then perform optimization in the
latent space.

To achieve this using PCA, we first stack row vectors of γ and β parameters
that originate from each BN component j to form J × C matrices Γ and B,
respectively, where J is the number of components and C is the number of chan-
nels in each component BN layer. We then mean-center Γ and B by subtracting
from them their column-wise mean vectors μγ and μβ , resulting in Xγ = Γ−μγ

and Xβ = B−μβ . Afterwards, we apply singular value decomposition to obtain
principal axes matrices V�

γ and V�
β ,

UγSγV�
γ ← Xγ , (4)

UβSβV�
β ← Xβ . (5)

The number of dimensions of our latent space is set to the maximum possible,
i.e. min(J,C). We then train latent space parameter vectors g and b (initialized
by transforming existing BN weights of the template network to latent space),
and transform these back to parameter space using the principal axes matrices,
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γ = gV�
γ + μγ , (6)

β = bV�
β + μβ . (7)

This is then finally applied in a similar fashion to ComBN by replacing BN layers
in the original template network with PCBN (i.e. substituting Eqs. 6 and 7 into
Eq. 1). In essence, this is like using standard BN except for the optimization of
parameters in latent space.

In contrast to ComBN where interpolation is directly performed in the
parameter space of the original component class (in the form of frozen BN com-
ponents), here we attempt to first distill the concepts of class into principal
classes in latent space before optimizing them.

4 Experiments

In this section, we show results for two application domains: visual classification
and style transfer.

We choose to constrain our experiments to binary classification so that the
same protocol can be used for both component generation and evaluation. To
highlight the contribution of BN layers, we utilize a template network trained
on a different dataset to the one we are testing with; first using ImageNet for
the template and CIFAR10 for the testing of our approach, and second using
CIFAR10 to train the template network and ImageNet32 for testing.

We chose style transfer because (i) we view this as an orthogonal (i.e. related
but highly distinct) task to binary classification since it requires utilization of full
encoder-decoder networks and replacement of batch normalization with instance
normalization, and (ii) it allows us to produce qualitative results.

4.1 Learning CIFAR10 from ImageNet Template

Here we validate the idea of using BN components for training networks on
new, unseen tasks. Lastly, for the experiments in this section, we base our tem-
plate network on an ILSVRC2012-pretrained ResNet34 [11], and use binarized
CIFAR10 datasets to generate our BN components and evaluate the performance
of ComBN and PCBN networks.

We begin by creating master training/validation/test splits. These master
training/validation splits are created by partitioning the original CIFAR10 train-
ing set 40,000/10,000, while the master test split is the same as the original
CIFAR10 test set. Afterwards, we generate binarized splits by applying the
method in Sect. 3.2 to each of the master splits. Specifically, for each target class,
the binary training split is formed by sequentially sampling 1000 positive and
1000 negative examples from the master split, while the binary validation/test
splits are formed by sequentially and exhaustively sampling all available exam-
ples from their respective master splits such that a balanced dataset is obtained.
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Table 1. Percentage test accuracies on binary CIFAR10 datasets. Asterix (*) indicates
results that were based on a random template network. Best results are in bold.

Positive class Last Full BN ComBN PCBN BN* ComBN* PCBN*

airplane 90.1 96.1 95.8 81.9 93.8 76.8 77.2 95.4

car 92.0 98.0 97.3 97.7 97.4 77.7 79.8 97.1

bird 87.5 95.5 94.5 93.8 91.4 66.7 68.3 93.5

cat 84.3 91.7 89.6 91.9 90.3 70.6 69.8 88.9

deer 86.0 96.6 94.8 94.3 94.0 71.7 73.1 93.5

dog 89.1 93.1 93.3 93.9 93.7 71.4 70.9 93.1

frog 92.3 97.3 95.9 97.4 96.0 77.6 77.8 97.0

horse 91.2 96.8 96.0 96.2 95.3 67.4 68.5 95.1

ship 91.2 97.3 96.9 97.0 95.8 77.8 78.7 96.0

truck 92.9 97.3 96.5 90.1 96.2 76.4 73.7 95.9

All experiments pertaining to a particular target class use identical binary train-
ing/validation/test splits.

All networks (except the template, which naturally follows [11]) are trained
on random batches of size of 8 using SGD with a momentum of 0.9 for 30 epochs.
The learning rate is set initially to 10−3 and decayed by 0.1 after epoch 20.
Images fed into the networks are upscaled to 224 by 224 using bilinear interpola-
tion and normalized without any additional augmentation. We did not perform
hyperparameter tuning and while this choice of hyperparameters is arbitrary, we
believe it suffices for the tasks at hand as all networks were able to converge.

To generate and evaluate a component network pertaining to a target class,
we fine-tune the BN and last layers (BN) of the template network on its binary
training set. We then select the network that has the best validation accuracy
and finally report on the test set accuracy. This is repeated for each target class
in CIFAR10, resulting in 10 component networks. To generate and evaluate the
ComBN/PCBN networks, we replace the BN layers in the template network
with ComBN/PCBN layers built from the BNs of the 9 component networks
that were not trained on the target class, and then apply the same evaluation
procedure. One might object to the fact that the 9 component networks might
have seen a few examples of the target class as negative examples during their
original training, but we find the difference to be negligible even after carefully
omitting them. Finally, for completeness, we also report on results of performing
full (Full) and last layer (Last) fine-tuning on the same tasks. The results are
summarized in Table 1.

For this initial set of experiments, we find that in comparison with other
methods, fine-tuning just the last layer results in the lowest accuracy. We also
find that results obtained by ComBN and PCBN were comparable, if not just
slightly worse, with BN and full fine-tuning, suggesting that ComBN and PCBN
are potentially valid methods for training networks.
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To better understand the role of BN components, we also performed the
Comp, ComBN and PCBN experiments using a template network that has ran-
domized (according to [11]) convolutional layer weights. Surprisingly, this config-
uration still manages to achieve respectable accuracies, suggesting that random
weights can still manage to map the inputs to representations which can be dis-
criminated by the BN tranformations, while also attesting the representational
power of BN layers. Even more surprising is the performance that random PCBN
obtained, which we leave for future investigation.

4.2 Few-Shot Learning ImageNet32 from CIFAR10 Template

Motivated by the results in Sect. 4.1, we now attempt the more challenging task
of evaluating ComBN and PCBN on ImageNet using a CIFAR10-pretrained
template network. Owing to constraints on computational resources, we switch
to testing on ImageNet32 [5] (which is ImageNet downsampled to 32×32 images)
and use ResNet32 [11] as the template network. Additionally, to align ourselves
with the original goal, we will perform the evaluations in terms of 2-way few-shot
tasks.

Unlike the previous experiments, we forego the creation of a test split and
will instead report on validation accuracy. We use the original ImageNet train-
ing/validation sets as our master training/validation splits, and then create bina-
rized splits from the master splits using the same procedure outlined in Sect. 3.2.
In order to ensure evaluation is performed on unseen classes, we first randomly
sample 200 target classes to construct our component networks and reserve the
remaining 800 for few-shot tuning and evaluation. The training/validation splits
of these 200 binary datasets exhaust all available positive and negative examples
from the master splits that result in a balanced dataset (i.e. about 2000 exam-
ples in the training split, and exactly 100 in the validation split). The remaining
800 binary datasets will have training/validation splits that respectively possess
2n/100 examples per split, where n refers to a particular n-shot task.

Unless stated otherwise, all results are trained on random batches of size 128
(2n during few-shot) using SGD with a momentum of 0.9 for 60 epochs and
weight decay of 10−4. The learning rate is set initially to 0.01, and is decayed by
0.1 after epochs 30 and 45. The model with the best validation accuracy during
the training procedure is selected. No data augmentation is performed, and this
choice of hyperparameters is again not optimized. The template network was
trained following [11].

The following discussions refer to Table 2, where we report the mean valida-
tion accuracy of various networks trained in the few-shot training regime on the
800 binary datasets (except for Max, which uses all training data and is there-
fore not few-shot; we include this to illustrate a peformance upper bound). As
in Sect. 4.1, we also report on the results of fine-tuning the last layer (Last), all
layers (Full), and only BN + last layers (BN) of the template network to serve
as baselines.
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Table 2. Mean percentage validation accuracies μ on the 800 binary ImageNet32
datasets and their differences relative to full fine-tuning Δ = μ − μFull. Asterix (*)
indicates evaluation towards a subset (of about 400) of the 800 binary datasets that
fulfill the 75% threshold criterion.

Setup Component selection No. of components 1-shot 5-shot

μ Δ μ Δ

Max — — 87.6 25.1 87.6 17.6

Last — — 63.0 0.5 69.3 −0.7

Full — — 62.5 — 70.1 —

BN — — 62.9 0.4 69.6 −0.5

PCBN — 200 58.2 −4.3 65.3 −4.8

ComBN Few-shot loss 3 66.3 3.8 73.6 3.5

ComBN Few-shot loss 5 65.8 3.3 73.3 3.2

ComBN Few-shot loss 10 65.7 3.2 71.5 1.4

ComBN Max-shot accuracy 3 77.2 14.7 78.3 8.3

ComBN Max-shot accuracy 5 76.3 13.8 78.0 7.9

ComBN Max-shot accuracy 10 72.2 9.7 75.0 4.9

ComBN Max-shot accuracy 75% threshold* 80.0 17.5 81.6 11.5

PCBN Few-shot loss 3 64.5 2.0 71.3 1.3

PCBN Few-shot loss 5 63.3 0.7 70.6 0.5

PCBN Few-shot loss 10 62.8 2.6 68.4 −1.7

PCBN Max-shot accuracy 3 71.2 8.7 74.4 4.4

PCBN Max-shot accuracy 5 70.8 8.3 74.5 4.4

PCBN Max-shot accuracy 10 67.5 5.0 71.4 1.3

PCBN Max-shot accuracy 75% threshold* 73.0 10.5 77.5 7.4

SGM — — 64.8 2.3 70.6 0.5

L2 — — 57.0 −5.5 59.7 −10.4

Afterwards, we proceed to generating the 200 component networks by fine-
tuning the BN and last layers of the template network using the aforementioned
200 binary datasets, and use all 200 components to construct a PCBN network.
However, as we can see from the results, this construction performs worse than
the baselines in both 1-shot and 5-shot tasks. This drop in performance might be
attributed to the presence of components that are irrelelvant for the target task.
Furthermore, it is not feasible to create a ComBN network using 200 components
due to memory constraints, making it apparent that we need to selectively reduce
the number of components used in ComBN/PCBN.

To do so, and as previously hinted in Sect. 3.3, we propose to evalute the
cross-entropy loss of each component network on the training split of one of the
800 datasets that correspond to the unknown target class. We then rank and
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select m component networks with the lowest loss and use these m networks to
construct our ComBN/PCBN networks (i.e. few-shot loss component selection).
The results from Table 2 seem to indicate that this strategy works, with both
ComBN and PCBN outpeforming the baselines by about 4%, and m = 3 leading
to the best results overall.

Furthermore, we also considered the case of having an ideal selection of com-
ponents by assuming we were able to binarize all available training data from
the master split for component selection (i.e. max-shot accuracy component
selection). From here, we (i) selected m component networks with the highest
validation accuracy on the target task and (ii) selected 3–10 component networks
that perform above 75% in terms of validation accuracy on the target task. This
resulted in a marked performance increase of about 14–17% when compared to
the baseline, suggesting that component selection is an important procedure that
warrants further study. Again, m = 3 seems to lead to the best results overall.
An illustration of (i) for 3-component ComBN in the 1-shot regime for other as
a function of dataset size is plotted in Fig. 2.

Fig. 2. Mean 1-shot validation accuracy of 3-component ComBN as a function of num-
ber of positive examples in training split used in 1-shot loss component selection.

Additionally if we plot the validation accuracies of 75% threshold components
and ComBN/PCBN networks constructed from them (Fig. 3), we notice that for
some classes ComBN/PCBN does worse than any of the components. This seems
odd given that we know for ComBN, a solution consisting of αj = 1 if j = 1, and
αj = 0 if j �= 1 should result in an accuracy above 75%. This anomaly might
be caused by the tendency of SGD to avoid this particular solution, although
further work is necessary to better understand this.

As an extra benchmark, we also attempted to compare our results to [10],
which is one of the few works which attempted to tackle few-shot tasks with-
out resorting to meta-learning. We do this by training two additional template
networks using SGM and L2 loss functions as described in that work, which are
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theorized to create features better suited for few-shot learning. As before, we then
subjected the two template networks to fine-tuning in the few-shot regime, and
reported their mean validation accuracies. Set up this way, our best-performing
method (3-component ComBN) outperformed theirs (SGM) by a margin of 2–
3% with the few-shot loss selection, which could go up to 8–13% assuming ideal
component selection.

Fig. 3. 75% threshold component, ComBN, and PCBN network validation accuracies.
The filled plot represents the minimum, mean, and maximum accuracies for each set
of component networks. Each plot has been independently sorted by mean accuracy to
aid visualization.

4.3 Style Transfer

To demonstrate a completely orthogonal application of our framework and gen-
erate qualitative results, we took the network proposed by [6] and used it as a
template. As the network uses instance normalization (IN) layers [24], we will
need to replace BNs in our method formulation with INs, resulting in compos-
ite instance normalization (ComIN) and principal component instance normal-
ization (PCIN). The bases are formed by 32 IN parameters that were already
present in the original network, and are used to learn new styles, some of which
are shown in Fig. 4.
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Fig. 4. Results on style transfer. Images on the top row are styles that are applied on
the leftmost content image. Images on each consecutive row below are stylized images
obtained from utilizing the original training procedure of Dumoulin et al. [6], PCIN,
and ComIN, respectively.
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5 Conclusions

Based on a recent idea that batch normalization modules could transform inputs
to encode class-specific representations, we propose an interpolation method
within learned BN layers to efficiently learn new classes. We show that this
works for few-shot learning by implementing it as a linear combination of BNs
(ComBN) or PCA on BN paramaters (PCBN), obtaining an accuracy between
4% to 17% over standard full fine-tuning. We have also shown that good per-
formance is dependent on careful selection of the BN modules, and proposed a
simple criterion to achieve this. Source code for the experiments can be down-
loaded from http://bninterp.avlcode.org/.
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