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Abstract. Semantic segmentation requires both rich spatial informa-
tion and sizeable receptive field. However, modern approaches usually
compromise spatial resolution to achieve real-time inference speed, which
leads to poor performance. In this paper, we address this dilemma with
a novel Bilateral Segmentation Network (BiSeNet). We first design a
Spatial Path with a small stride to preserve the spatial information and
generate high-resolution features. Meanwhile, a Context Path with a fast
downsampling strategy is employed to obtain sufficient receptive field.
On top of the two paths, we introduce a new Feature Fusion Module
to combine features efficiently. The proposed architecture makes a right
balance between the speed and segmentation performance on Cityscapes,
CamVid, and COCO-Stuff datasets. Specifically, for a 2048× 1024 input,
we achieve 68.4% Mean IOU on the Cityscapes test dataset with speed
of 105 FPS on one NVIDIA Titan XP card, which is significantly faster
than the existing methods with comparable performance.

Keywords: Real-time semantic segmentation
Bilateral Segmentation Network

1 Introduction

The research of semantic segmentation, which amounts to assign semantic labels
to each pixel, is a fundamental task in computer vision. It can be broadly applied
to the fields of augmented reality devices, autonomous driving, and video surveil-
lance. These applications have a high demand for efficient inference speed for
fast interaction or response.
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Fig. 1. Illustration of the architectures to speed up and our proposed approach. (a)
presents the cropping or resizing operation on the input image and the lightweight
model with pruning channels or dropping stages. (b) indicates the U-shape structure.
(c) demonstrates our proposed Bilateral Segmentation Network (BiSeNet). The black
dash line represents the operations which damage the spatial information, while the red
dash line represents the operations which shrink the receptive field. The green block is
our proposed Spatial Path (SP). In the network part, each block represents the feature
map of different down-sampling size. And the length of the block represents the spatial
resolution, while the thickness is on behalf of the number of channels. (Color figure
online)

Recently, the algorithms [1,17,25,39] of real-time semantic segmentation have
shown that there are mainly three approaches to accelerate the model. (1) [34,39]
try to restrict the input size to reduce the computation complexity by cropping
or resizing. Though the method is simple and effective, the loss of spatial details
corrupts the predication especially around boundaries, leading to the accuracy
decrease on both metrics and visualization. (2) Instead of resizing the input
image, some works prune the channels of the network to boost the inference
speed [1,8,25], especially in the early stages of the base model. However, it
weakens the spatial capacity. (3) For the last case, ENet [25] proposes to drop
the last stage of the model in pursuit of an extremely tight framework. Never-
theless, the drawback of this method is obvious: since the ENet abandons the
downsampling operations in the last stage, the receptive field of the model is not
enough to cover large objects, resulting in a poor discriminative ability. Overall,
all of the above methods compromise the accuracy to speed, which is inferior in
practice. Figure 1(a) gives the illustration.

To remedy the loss of spatial details mentioned above, researchers widely
utilize the U-shape structure [1,25,35]. By fusing the hierarchical features of the
backbone network, the U-shape structure gradually increases the spatial resolu-
tion and fills some missing details. However, this technique has two drawbacks.
(1) The complete U-shape structure can reduce the speed of the model due to
the introduction of extra computation on high-resolution feature maps. (2) More
importantly, most spatial information lost in the pruning or cropping cannot be
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easily recovered by involving the shallow layers as shown in Fig. 1(b). In other
words, the U-shape technique is better to regard as a relief, rather than an
essential solution.

Based on the above observation, we propose the Bilateral Segmentation Net-
work (BiSeNet) with two parts: Spatial Path (SP) and Context Path (CP). As
their names imply, the two components are devised to confront with the loss
of spatial information and shrinkage of receptive field respectively. The design
philosophy of the two paths is clear. For Spatial Path, we stack only three con-
volution layers to obtain the 1/8 feature map, which retains affluent spatial
details. In respect of Context Path, we append a global average pooling layer on
the tail of a lightweight model [8], where the receptive field is the maximum of
the backbone network. Figure 1(c) shows the structure of these two components.

In pursuit of better accuracy without loss of speed, we also research the
fusion of two paths and refinement of final prediction and propose Feature Fusion
Module (FFM) and Attention Refinement Module (ARM) respectively. As our
following experiments show, these two extra components can further improve
the overall semantic segmentation accuracy on both Cityscapes [9], CamVid [2],
and COCO-Stuff [3] benchmarks.

Our main contributions are summarized as follows:

– We propose a novel approach to decouple the function of spatial information
preservation and receptive field offering into two paths. Specifically, we pro-
pose a Bilateral Segmentation Network (BiSeNet) with a Spatial Path (SP)
and a Context Path (CP).

– We design two specific modules, Feature Fusion Module (FFM) and Attention
Refinement Module (ARM), to further improve the accuracy with acceptable
cost.

– We achieve impressive results on the benchmarks of Cityscapes, CamVid,
and COCO-Stuff. More specifically, we obtain the results of 68.4% on the
Cityscapes test dataset with the speed of 105 FPS.

2 Related Work

Recently, lots of approaches based on FCN [22] have achieved the state-of-the-art
performance on different benchmarks of the semantic segmentation task. Most
of these methods are designed to encode more spatial information or enlarge the
receptive field.
Spatial Information: The convolutional neural network (CNN) [16] encodes
high-level semantic information with consecutive down-sampling operations.
However, in the semantic segmentation task, the spatial information of the image
is crucial to predicting the detailed output. Modern existing approaches devote
to encode affluent spatial information. DUC [32], PSPNet [40], DeepLab v2 [5],
and Deeplab v3 [6] use the dilated convolution to preserve the spatial size of
the feature map. Global Convolution Network [26] utilizes the “large kernel” to
enlarge the receptive field.



BiSeNet 337

U-Shape Method: The U-shape structure [1,10,22,24,27] can recover a cer-
tain extent of spatial information. The original FCN [22] network encodes differ-
ent level features by a skip-connected network structure. Some methods employ
their specific refinement structure into U-shape network structure. [1,24] create
a U-shape network structure with the usage of deconvolution layers. U-net [27]
introduces the useful skip connection network structure for this task. Global
Convolution Network [26] combines the U-shape structure with “large kernel”.
LRR [10] adopts the Laplacian Pyramid Reconstruction Network. RefineNet [18]
adds multi-path refinement structure to refine the prediction. DFN [36] designs a
channel attention block to achieve the feature selection. However, in the U-shape
structure, some lost spatial information cannot be easily recovered.
Context Information: Semantic segmentation requires context information to
generate a high-quality result. The majority of common methods enlarge the
receptive field or fuse different context information. [5,6,32,37] employ the dif-
ferent dilation rates in convolution layers to capture diverse context information.
Driven by the image pyramid, multi-scale feature ensemble is always employed
in the semantic segmentation network structure. In [5], an “ASPP” module is
proposed to capture context information of different receptive field. PSPNet [40]
applies a “PSP” module which contains several different scales of average pooling
layers. [6] designs an “ASPP” module with global average pooling to capture the
global context of the image. [38] improves the neural network by a scale adap-
tive convolution layer to obtain an adaptive field context information. DFN [36]
adds the global pooling on the top of the U-shape structure to encode the global
context.
Attention Mechanism: Attention mechanism can use the high-level informa-
tion to guide the feed-forward network [23,31]. In [7], the attention of CNN
depends on the scale of the input image. In [13], they apply channel attention to
recognition task and achieve the state-of-the-art. Like the DFN [36], they learn
the global context as attention and revise the features.
Real Time Segmentation: Real-time semantic segmentation algorithms
require a fast way to generate the high-quality prediction. SegNet [1] utilizes
a small network structure and the skip-connected method to achieve a fast
speed. E-Net [25] designs a lightweight network from scratch and delivers an
extremely high speed. ICNet [39] uses the image cascade to speed up the seman-
tic segmentation method. [17] employs a cascade network structure to reduce
the computation in “easy regions”. [34] designs a novel two-column network and
spatial sparsity to reduce computation cost. Differently, our proposed method
employs a lightweight model to provide sufficient receptive field. Furthermore,
we set a shallow but wide network to capture adequate spatial information.

3 Bilateral Segmentation Network

In this section, we first illustrate our proposed Bilateral Segmentation Net-
work (BiSeNet) with Spatial Path and Context Path in detail. Furthermore,
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Fig. 2. An overview of the Bilateral Segmentation Network. (a) Network Architecture.
The length of block indicates the spatial size, while the thickness represents the number
of channels. (b) Components of the Attention Refinement Module (ARM). (c) Com-
ponents of the Feature Fusion Module (FFM). The read line represents we take this
process only when testing.

we elaborate on the effectiveness of these two paths correspondingly. Finally, we
demonstrate how to combine the features of these two paths with Feature Fusion
Module and the whole architecture of our BiSeNet.

3.1 Spatial Path

In the task of semantic segmentation, some existing approaches [5,6,32,40]
attempt to preserve the resolution of the input image to encode enough spa-
tial information with dilated convolution, while a few approaches [5,6,26,40] try
to capture sufficient receptive field with pyramid pooling module, atrous spatial
pyramid pooling or “large kernel”. These methods indicate that the spatial infor-
mation and the receptive field are crucial to achieving high accuracy. However, it
is hard to meet these two demands simultaneously. Especially, in the case of real-
time semantic segmentation, existing modern approaches [1,25,39] utilize small
input image or lightweight base model to speed up. The small size of the input
image loses the majority of spatial information from the original image, while
the lightweight model damages spatial information with the channel pruning.

Based on this observation, we propose a Spatial Path to preserve the spatial
size of the original input image and encode affluent spatial information. The Spa-
tial Path contains three layers. Each layer includes a convolution with stride = 2,
followed by batch normalization [15] and ReLU [11]. Therefore, this path extracts
the output feature maps that is 1/8 of the original image. It encodes rich spatial
information due to the large spatial size of feature maps. Figure 2(a) presents
the details of the structure.
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3.2 Context Path

While the Spatial Path encodes affluent spatial information, the Context Path
is designed to provide sufficient receptive field. In the semantic segmentation
task, the receptive field is of great significance for the performance. To enlarge
receptive field, some approaches have taken advantage of the pyramid pooling
module [40], atrous spatial pyramid pooling [5,6] or “large kernel” [26]. However,
these operations are computation demanding and memory consuming, which
result in the low speed.

With the consideration of the large receptive field and efficient computa-
tion simultaneously, we propose the Context Path. The Context Path utilizes
lightweight model and global average pooling [5,6,21] to provide large receptive
field. In this work, the lightweight model, like Xception [8], can downsample
the feature map fast to obtain large receptive field, which encodes high level
semantic context information. Then we add a global average pooling on the tail
of the lightweight model, which can provide the maximum receptive field with
global context information. Finally, we combine the up-sampled output feature
of global pooling and the features of the lightweight model. In the lightweight
model, we deploy U-shape structure [1,25,35] to fuse the features of the last
two stages, which is an incomplete U-shape style. Figure 2(c) shows the overall
perspective of the Context Path.

Attention Refinement Module: In the Context Path, we propose a specific Atten-
tion Refinement Module (ARM) to refine the features of each stage. As Fig. 2(b)
shows, ARM employs global average pooling to capture global context and com-
putes an attention vector to guide the feature learning. This design can refine the
output feature of each stage in the Context Path. It integrates the global context
information easily without any up-sampling operation. Therefore, it demands
negligible computation cost.

3.3 Network Architecture

With the Spatial Path and the Context Path, we propose BiSeNet for real-time
semantic segmentation as illustrated in Fig. 2(a).

We use the pre-trained Xception model as the backbone of the Context Path
and three convolution layers with stride as the Spatial Path. And then we fuse
the output features of these two paths to make the final prediction. It can achieve
real-time performance and high accuracy at the same time. First, we focus on the
practical computation aspect. Although the Spatial Path has large spatial size,
it only has three convolution layers. Therefore, it is not computation intensive.
As for the Context Path, we use a lightweight model to down-sample rapidly.
Furthermore, these two paths compute concurrently, which considerably increase
the efficiency. Second, we discuss the accuracy aspect of this network. In our
paper, the Spatial Path encodes rich spatial information, while the Context Path
provides large receptive field. They are complementary to each other for higher
performance.
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Feature Fusion Module: The features of the two paths are different in level of
feature representation. Therefore, we can not simply sum up these features. The
spatial information captured by the Spatial Path encodes mostly rich detail
information. Moreover, the output feature of the Context Path mainly encodes
context information. In other words, the output feature of Spatial Path is low
level, while the output feature of Context Path is high level. Therefore, we pro-
pose a specific Feature Fusion Module to fuse these features.

Given the different level of the features, we first concatenate the output fea-
tures of Spatial Path and Context Path. And then we utilize the batch normal-
ization [15] to balance the scales of the features. Next, we pool the concatenated
feature to a feature vector and compute a weight vector, like SENet [13]. This
weight vector can re-weight the features, which amounts to feature selection and
combination. Figure 2(c) shows the details of this design.

Loss Function: In this paper, we also utilize the auxiliary loss function to super-
vise the training of our proposed method. We use the principal loss function
to supervise the output of the whole BiSeNet. Moreover, we add two specific
auxiliary loss functions to supervise the output of the Context Path, like deep
supervision [35]. All the loss functions are Softmax loss, as Eq. 1 shows. Further-
more, we use the parameter α to balance the weight of the principal loss and
auxiliary loss, as Eq. 2 presents. The α in our paper is equal to 1. The joint loss
makes optimizer more comfortable to optimize the model.

loss =
1
N

∑

i

Li =
1
N

∑

i

−log

(
epi

∑
j epj

)
(1)

where p is the output prediction of the network.

L(X;W ) = lp(X;W ) + α

K∑

i=2

li(Xi;W ) (2)

where lp is the principal loss of the concatenated output. Xi is the output feature
from stage i of Xception model. li is the auxiliary loss for stage i. The K is equal
to 3 in our paper. The L is the joint loss function. Here, we only use the auxiliary
loss in the training phase.

4 Experimental Results

We adopt a modified Xception model [8], Xception39, into the real-time semantic
segmentation task. Our implementation code will be made publicly available.

We evaluate our proposed BiSeNet on Cityscapes [9], CamVid [2] and COCO-
Stuff [3] benchmarks. We first introduce the datasets and the implementation
protocol. Next, we describe our speed strategy in comparison with other meth-
ods in detail. And then we investigate the effects of each component of our
proposed approach. We evaluate all performance results on the Cityscapes val-
idation set. Finally, we report the accuracy and speed results on Cityscapes,
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CamVid and COCO-Stuff datasets compared with other real-time semantic seg-
mentation algorithms.

Cityscapes: The Cityscapes [9] is a large urban street scene dataset from a car
perspective. It contains 2,975 fine annotated images for training and another
500 images for validation. In our experiments, we only use the fine dataset. For
testing, it offers 1,525 images without ground-truth for fair comparison. These
images all have a resolution of 2,048× 1,024, in which each pixel is annotated to
pre-defined 19 classes.

CamVid: The CamVid [2] is another street scene dataset from the perspective of
a driving automobile. It contains 701 images in total, in which 367 for training,
101 for validation and 233 for testing. The images have a resolution of 960× 720
and 11 semantic categories.

COCO-Stuff: The COCO-Stuff [3] augments all 164,000 images of the popular
COCO [20] dataset, out of which 118,000 images for training, 5,000 images for
validation, 20,000 images for test-dev and 20,000 images for test-challenge. It
covers 91 stuff classes and 1 class ‘unlabeled’.

4.1 Implementation Protocol

In this section, we elaborate our implementation protocol in detail.

Network: We apply three convolutions as Spatial Path and Xception39 model for
Context Path. And then we use Feature Fusion Module to combine the features
of these two paths to predict the final results. The output resolution of Spatial
Path and the final prediction are 1/8 of the original image.

Training Details: We use mini-batch stochastic gradient descent (SGD) [16]
with batch size 16, momentum 0.9 and weight decay 1e−4 in training. Similar
to [5,6,21], we apply the “poly” learning rate strategy in which the initial rate
is multiplied by (1 − iter

max iter )power each iteration with power 0.9. The initial
learning rate is 2.5e−2.

Data Augmentation: We employ the mean subtraction, random horizontal flip
and random scale on the input images to augment the dataset in training process.
The scales contains {0.75, 1.0, 1.5, 1.75, 2.0}. Finally, we randomly crop the
image into fix size for training.

4.2 Ablation Study

In this subsection, we detailedly investigate the effect of each component in
our proposed BiSeNet step by step. In the following experiments, we use Xcep-
tion39 as the base network and evaluate our method on the Cityscapes validation
dataset [9].
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Table 1. Accuracy and parameter analysis of our baseline model: Xception39 and
Res18 on Cityscapes validation dataset. Here we use FCN-32s as the base structure.
FLOPS are estimated for input of 3 × 640 × 360.

Method BaseModel FLOPS Parameters Mean IOU (%)

FCN-32s Xception39 185.5M 1.2M 60.78

FCN-32s Res18 8.3G 42.7M 61.58

Baseline: We use the Xception39 network pretrained on ImageNet dataset [28]
as the backbone of Context Path. And then we directly up-sample the output of
the network as original input image, like FCN [22]. We evaluate the performance
of the base model as our baseline, as shown in Table 1.

Table 2. Speed analysis of the U-shape-8s and the U-shape-4s on one NVIDIA Titan
XP card. Image size is W×H.

Method NVIDIA Titan XP Mean IOU (%)

640×360 1280×720 1920×1080

ms fps ms fps ms fps

U-shape-8s 3 413.7 6 189.8 12 86.7 66.01

U-shape-4s 4 322.9 9 114 17 61.1 66.13

Ablation for U-shape: We propose the Context Path to provide sufficient recep-
tive field, where we use a lightweight model, Xception39, as the backbone of
Context Path to down-sample quickly. Simultaneously, we use the U-shape struc-
ture [1,25,35] to combine the features of the last two stage in Xception39 net-
work, called U-shape-8s, rather than the standard U-shape structure, called U-
shape-4s. The number represents the down-sampling factor of the output feature,
as shown in Fig. 2. The reason to use U-shape-8s structure is twofold. First, the
U-shape structure can recover a certain extent of spatial information and spatial
size. Second, the U-shape-8s structure is faster compared to the U-shape-4s, as
shown in Table 2. Therefore, we use the U-shape-8s structure, which improves
the performance from 60.79% to 66.01%, as shown in Table 2.

Ablation for Spatial Path: As Sect. 1 stated, existing modern approaches of real-
time semantic segmentation task face the challenge of lost of spatial informa-
tion. Therefore, we propose a Spatial Path to preserve the spatial size and cap-
ture rich spatial information. The Spatial Path contains three convolutions with
stride = 2, followed by batch normalization [15] and ReLU [11]. This improves
the performance from 66.01% to 67.42%, as shown in Table 3. The Spatial Path
encodes abundant details of spatial information. Figure 3 shows that the BiSeNet
can obtain more detailed spatial information, e.g. some traffic signs.
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Fig. 3. Example results of the output before adding the Spatial Path and after adding
the Spatial Path. The output BiSeNet has more detail information than the output of
U-shape.

Table 3. Detailed performance comparison of each component in our proposed
BiSeNet. CP: Context Path; SP: Spatial Path; GP: global average pooling; ARM:
Attention Refinement Module; FFM: Feature Fusion Module.

Method Mean IOU (%)

CP 66.01

CP+SP(Sum) 66.82

CP+SP(FFM) 67.42

CP+SP(FFM)+GP 68.42

CP+SP(FFM)+ARM 68.72

CP+SP(FFM)+GP+ARM 71.40

Ablation for Attention Refinement Module: For further improving the perfor-
mance, we specially design an Attention Refinement Module (ARM). This mod-
ule contains a global average pooling to encode a ouput feature into a vector.
Then we utilize a convolution, batch normalization [15] and ReLU unit [11] to
compute the attention vector. The original feature will be re-weighted by the
attention vector. For the original feature, it is easy to capture the global context
information without the complex up-sample operation. The effect of the ARM
is presented in Table 3.

Ablation for Feature Fusion Module: Based on the Spatial Path and Context
Path, we need to fuse the output features of these two paths. With the consid-
eration of the different levels of the features, low level for the features of Spatial
Path and high level for the Context Path, we propose the Feature Fusion Module
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to combine these features effectively. First, we evaluate the effect of a straightfor-
ward sum of these features and our proposed Feature Fusion Module, as shown
in Table 3. The gap of the comparison performance explains the features of the
two paths belong to different levels in turn.

Ablation for Global Average Pooling: We expect the Context Path can provide
sufficient receptive field. Although the original Xception39 model can cover the
most region of input image theoretically, we still enlarge the receptive field fur-
ther with global average pooling [21]. This can ensure the valid receptive field is
large enough. In this paper, we add the global average pooling at the tail of the
Xception39 model. Then, we up-sample the output of the global average pooling
and sum up this feature with the output of the last stage in the Xception39
model, like DFN [36]. This improves the performance from 67.42% to 68.42%,
which indicates the effect of this design, as shown in Table 3.

Table 4. Accuracy and parameter analysis of our baseline model: Xception39 and
Res18 on Cityscapes validation dataset. Here we use FCN-32s as the base structure.
FLOPS are estimated for input of 3 × 640 × 360.

Method BaseModel GFLOPS Parameters

SegNet [1] VGG16 [29] 286.0 29.5M

ENet [25] From scratch 3.8 0.4M

Ours Xception39 2.9 5.8M

Ours Res18 10.8 49.0M

Table 5. Speed comparison of our method against other state-of-the-art methods.
Image size is W×H. The Ours1 and Ours2 are the BiSeNet based on Xception39 and
Res18 model.

Method NVIDIA Titan X NVIDIA Titan XP

640×360 1280×720 1920×1080 640×360 1280×720 1920×1080

ms fps ms fps ms fps ms fps ms fps ms fps

SegNet [1] 69 14.6 289 3.5 637 1.6 - - - - - -

ENet [25] 7 135.4 21 46.8 46 21.6 - - - - - -

Ours1 5 203.5 12 82.3 24 41.4 4 285.2 8 124.1 18 57.3

Ours2 8 129.4 21 47.9 43 23 5 205.7 13 78.8 29 34.4

4.3 Speed and Accuracy Analysis

In this section, we first analysis the speed of our algorithm. Then we report
our final results on Cityscapes [9], CamVid [2] and COCO-Stuff [3] benchmarks
compared with other algorithms.
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Speed Analysis: Speed is a vital factor of an algorithm especially when we apply
it in practice. We conduct our experiments on different settings for thorough
comparison. First, we show our status of FLOPS and parameters in Table 4. The
FLOPS and parameters indicate the number of operations to process images of
this resolution. For a fair comparison, we choose the 640× 360 as the resolution
of the input image. Meanwhile, Table 5 presents the speed comparison between
our method with other approaches on different resolutions of input images and
different hardware benchmarks. Finally, we report our speed and corresponding
accuracy results on Cityscapes test dataset. From Table 6, we can find out our
method achieves significant progress against the other methods both in speed and
accuracy. In the evaluation process, we first scale the input image of 2048× 1024
resolution into the 1536× 768 resolution for testing the speed and accuracy.
Meanwhile, we compute the loss function with the online bootstrapping strategy
as described in [33]. In this process, we don’t employ any testing technology, like
multi-scale or multi-crop testing.

Table 6. Accuracy and speed comparison of our method against other state-of-the-
art methods on Cityscapes test dataset. We train and evaluate on NVIDIA Titan
XP with 2048× 1024 resolution input. “-” indicates that the methods didn’t give the
corresponding speed result of the accuracy.

Method BaseModel Mean IOU (%) FPS

val test

SegNet [1] VGG16 - 56.1 -

ENet [25] From scratch - 58.3 -

SQ [30] SqueezeNet [14] - 59.8 -

ICNet [39] PSPNet50 [40] 67.7 69.5 30.3

DLC [17] Inception-ResNet-v2 - 71.1 -

Two-column Net [34] Res50 74.6 72.9 14.7

Ours Xception39 69.0 68.4 105.8

Ours Res18 74.8 74.7 65.5

Accuracy Analysis: Actually, our BiSeNet can also achieve higher accuracy result
against other non-real-time semantic segmentation algorithms. Here, we will
show the accuracy result on Cityscapes [9], CamVid [2] and COCO-Stuff [3]
benchmarks. Meanwhile, to ensure the validity of our method, we also employ
it on different base models, such as the standard ResNet18 and ResNet101 [12].
Next, we will elaborate on some training details.

Cityscapes: As shown in Table 7, our method also achieves an impressing
result on different models. For improving the accuracy, we take randomly take
1024× 1024 crop as input. The Fig. 4 presents some visual examples of our
results.
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Fig. 4. Example results of the BiSeNet based on Xception39, Res18, and Res101 model
on Cityscapes dataset.

Table 7. Accuracy comparison of our method against other state-of-the-art methods
on Cityscapes test dataset. “-” indicates that the methods didn’t give the corresponding
result.

Method BaseModel Mean IOU (%)

val test

DeepLab [4] VGG16 [29] - 63.1

FCN-8s [22] VGG16 - 65.3

Adelaide [19] VGG16 - 66.4

Dilation10 [37] VGG16 68.7 67.1

LRR [10] VGG16 70.0 69.7

DeepLab-v2+CRF [5] Res101 71.4 70.4

RefineNet [18] Res101 - 73.6

DUC [32] Res152 76.7 76.1

PSPNet [40] Res101 - 78.4

Ours Xception39 72.0 71.4

Ours Res18 78.6 77.7

Ours Res101 80.3 78.9

CamVid: The Table 8 shows the statistic accuracy result on CamVid dataset. For
testing, we use the training dataset and validation dataset to train our model.
Here, we use 960× 720 resolution for training and evaluation.

COCO-Stuff: We also report our accuracy results on COCO-Stuff validation
dataset in Table 9. In the training and validation process, we crop the input
into 640× 640 resolution. For a fair comparison, we don’t adopt the multi-scale
testing.



BiSeNet 347

Table 8. Accuracy result on CamVid test dataset. Ours1 and Ours2 indicate the model
based on Xception39 and Res18 network.

Method Building Tree Sky Car Sign Road Pedestrian Fence Pole Sidewalk Bicyclist Mean IOU (%)

SegNet-Basic 75.0 84.6 91.2 82.7 36.9 93.3 55.0 47.5 44.8 74.1 16.0 n/a

SegNet 88.8 87.3 92.4 82.1 20.5 97.2 57.1 49.3 27.5 84.4 30.7 55.6

ENet 74.7 77.8 95.1 82.4 51.0 95.1 67.2 51.7 35.4 86.7 34.1 51.3

Ours1 82.2 74.4 91.9 80.8 42.8 93.3 53.8 49.7 25.4 77.3 50.0 65.6

Ours2 83.0 75.8 92.0 83.7 46.5 94.6 58.8 53.6 31.9 81.4 54.0 68.7

Table 9. Accuracy result on COCO-Stuff validation dataset.

Method BaseModel Mean IOU (%) Pixel Accuracy (%)

Deeplab-v2 VGG-16 24.0 58.2

Ours Xception39 22.8 59.0

Ours Res18 28.1 63.2

Ours Res101 31.3 65.5

5 Conclusions

Bilateral Segmentation Network (BiSeNet) is proposed in this paper to improve
the speed and accuracy of real-time semantic segmentation simultaneously. Our
proposed BiSeNet contains two paths: Spatial Path (SP) and Context Path (CP).
The Spatial Path is designed to preserve the spatial information from original
images. And the Context Path utilizes the lightweight model and global average
pooling [6,21,40] to obtain sizeable receptive field rapidly. With the affluent
spatial details and large receptive field, we achieve the result of 68.4% Mean
IOU on Cityscapes [9] test dataset at 105 FPS.
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