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Abstract. Important gains have recently been obtained in object detec-
tion by using training objectives that focus on hard negative examples,
i.e., negative examples that are currently rated as positive or ambigu-
ous by the detector. These examples can strongly influence parameters
when the network is trained to correct them. Unfortunately, they are
often sparse in the training data, and are expensive to obtain. In this
work, we show how large numbers of hard negatives can be obtained
automatically by analyzing the output of a trained detector on video
sequences. In particular, detections that are isolated in time, i.e., that
have no associated preceding or following detections, are likely to be hard
negatives. We describe simple procedures for mining large numbers of
such hard negatives (and also hard positives) from unlabeled video data.
Our experiments show that retraining detectors on these automatically
obtained examples often significantly improves performance. We present
experiments on multiple architectures and multiple data sets, including
face detection, pedestrian detection and other object categories.
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1 Introduction

Detection is a core computer vision problem that has seen major advances in
the last few years due to larger training sets, improved architectures, end-to-end
training, and improved loss functions [13,41,42,67]. In this work, we consider
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Fig. 1. Detector flicker in videos. Three consecutive frames from a video are shown
for face and pedestrian detection. On the top row, the boxes show face detections
from the Faster R-CNN [42] (trained on WIDER face) [25,61]. On the bottom row are
detections from the same detector trained on the Caltech pedestrian dataset [12]. Yellow
boxes show true positives and red boxes show false positives. For the true positives, the
same object is detected in all three frames whereas for the false positives, the detection
is isolated – it occurs neither in the previous nor the subsequent frame. These detections
that are “isolated in time” frequently turn out to be false positives, and hence provide
important sources of hard negative training data for detectors. (Color figure online)

another direction for improving detectors – by dramatically expanding the num-
ber of hard examples available to the learner. We apply the method to several
different detection problems (including face and pedestrian), a variety of archi-
tectures, and multiple data sets, showing significant gains in a variety of settings.

Many discriminative methods are more influenced by challenging examples
near the boundary of a classifier than easy examples that have low loss. Some
classifiers, such as support vector machines, are completely determined by exam-
ples near the classifier boundary (the “support vectors”) [45]. More recent tech-
niques that emphasize examples near the boundary include general methods such
as active bias [8], which re-weights examples according to the variance of their
posteriors during training. In the context of class imbalance in training object
detectors, on-line hard example mining (OHEM) [46] and the focal loss [33] were
designed to emphasize hard examples.

In this paper, we introduce simple methods for automatically mining both
hard negatives and hard positives from videos using a previously trained detec-
tor. To illustrate, Fig. 1 shows a sequence of consecutive video frames from two
videos containing a face and a pedestrian respectively. The results of the Faster
R-CNN detector (trained for each class) run on each frame are marked as rectan-
gles, with true positives as yellow boxes and false positives as red boxes. Notice
that false positives are neither preceded nor followed by a detection. We refer to
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such isolated-in-time detections as detector flickers and postulate that these
are usually caused by false positives rather than true positives.1 This hypothesis
stems from the idea that a false positive, caused by something that usually does
not look like a face (or other target object), such as a hand, only momentarily
causes a detector network to respond positively, but that small deviations from
these hard negatives will likely not register as positives. Similar observations
can be found in the literature on adversarial examples, where many adversarial
examples have been shown to be “unstable” with respect to minute perturbations
of the image [3,36,37]. In addition, leveraging the continuity of labelling across
space and time has a long history in computer vision. Spatial label dependen-
cies are widely modeled by Markov random fields [18] and conditional random
fields [53], while the smoothness of labels across time is a staple of tracking
methods and other video processing algorithms [28,50,59].

As our experiments show, a large percentage of detector flickers are indeed
false positives, and more importantly, they are hard negatives, since they were
identified incorrectly as positives by the detector. Such an automatically gen-
erated training set of hard negatives can be used to fine-tune a detector, often
leading to improved performance. Similar benefits are gained from fine-tuning
with hard positives, which are obtained in an analogous fashion from cases where
a consistently detected object “flickers off” in an isolated frame. While these
flickers are relatively rare, it is inexpensive to run a modern detector on many
hours of unlabeled video, generating essentially unlimited numbers of hard exam-
ples. Being an unsupervised process, training sets gathered automatically in this
fashion do include some noise. Nevertheless, our experiments show that signif-
icant improvements can be gleaned by retraining detectors using these noisy
hard examples. An alternative to gathering such hard examples automatically
is, of course, to obtain them manually. However, the rarity of false positives for
modern detectors makes this process extremely expensive. Doing this manually
requires that every positive detection be examined for validity. With typical false
positive rates around one per 1000 images, this process requires the examination
of 1000 images per false positive, making it prohibitively expensive.

2 Related Work

Convolutional neural networks have recently been applied to achieve state-of-the-
art results in object detection [6,19–21,32,34,40,41]. Many of these object detec-
tors have been re-purposed for other tasks such as face detection [15,29,39,60],
[23,25,31,57,62,63,66] and pedestrian detection [6,7,14,22,30,64,65], achieving
impressive results [12,24,61].

Hard Negatives in Detection. Massive class imbalance is an issue with
sliding-window-style object detectors—being densely applied over an image, such
models see far more “easy” negative samples from background regions than

1 Note we are not claiming that most false positives will be isolated, but only that
flickers are likely to be false positives, a very different statement.
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positive samples from regions containing an object. Some form of hard neg-
ative mining is used by most successful object detectors to account for this
imbalance [10,11,16,19–21,33,46,51,55,64]. Early approaches include bootstrap-
ping [52] for training SVM-based object detectors [10,16], where false positive
detections were added to the set of background training samples in an incre-
mental fashion. Other methods [11,44] apply a pre-trained detector on a larger
dataset to mine false positives and then re-train.

Hard negative mining has also improved the performance of deep learning
based models [19,33,35,46,47,55,64]. Shrivastava et al. [46] proposed an Online
Hard Example Mining (OHEM) procedure,training using only high-loss region
proposals. This technique, originally applied to the Fast R-CNN detector [19],
yielded significant gains on the PASCAL and MS-COCO benchmarks. Lin et
al. [33] propose the focal loss to down-weight the contribution of easy exam-
ples and train a single-stage, multi-scale network [32]. The A-Fast-RCNN [56]
does adversarial generation of hard examples using occlusions and deformations.
While similar to our work, our model is trained with hard examples from real
images and variations are not limited to occlusion and spatial deformations.
Zhang et al. [64] show that effective bootstrapping of hard negatives, using a
boosted decision forest [2,17], significantly improves over a Faster R-CNN base-
line for pedestrian detection. Recent face detection methods, such as Wan et
al. [55] and Sun et al. [51], have also used the bootstrapping of hard negatives to
improve the performance of CNN-based detectors—a pre-trained Faster R-CNN
is used to mine hard negatives; then the model is re-trained. However, these
methods require a human-annotated dataset of suitable size. Our unsupervised
approach does not rely upon bounding-box annotations and thus can be trained
upon potentially unlimited data.

Semi-supervised Learning. Using mixtures of labeled and unlabeled data is
known as semi-supervised learning [4,9,58]. Rosenberg et al. [43] ran a trained
object detector on unlabeled data and then trained on a subset of this noisy labeled
data in an incremental re-training procedure. In Kalal et al. [27], constraints based
on video object trajectories are used to correct patch labels of a random forest
classifier; these corrected samples are used for re-training. Tang et al. [54] adapt
still-image object detectors to video by selecting training samples from unlabeled
videos, based on the consistency between detections and tracklets, and then fol-
low an iterative procedure that selects the easy examples from videos and hard
examples from images to re-train the detector. Rather than adapting to the video
domain, we seek to improve detector performance on the source domain by select-
ing hard examples from videos. Singh et al. [48] gather discriminative regions
from weakly-labeled images and then refine their bounding-boxes by incorporating
tracking information from weakly-labeled videos.

3 Mining Hard Examples from Videos

This section discusses methods for automatically mining hard examples from
videos, including data collection (Sect. 3.1), our hard negative mining algorithm
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Fig. 2. Mining hard negatives from detector-flicker. The solid boxes denote
detections, and the dashed boxes are associated with the tracking algorithm. Given
all of the high-confidence face detections in a video ( yellow boxes), the proposed

algorithm generates a tracklet ( blue dashed boxes) for the current detection

( red box in frame f ) by applying template matching within the search regions of
the adjacent frames ( cyan dashed boxes). As there are no matching detections in

adjacent frames for the current detection (i.e. no yellow box matches the blue dashed
boxes in frames f − 1 or f + 1), it is correctly considered to be an “isolated detection”
and added to the set of hard negatives. The remaining detections in frame f , which
are temporally consistent, are added to the set of pseudo-positives. (Color figure
online)

(Sect. 3.2), statistics of recovered hard negatives (Sect. 3.3) and extension to hard
positives (Sect. 3.4). Details of re-training the detector on these new samples are
in the Experiments section (Sect. 4.1).

3.1 Video Collection

To mine hard examples for face detection, we used 101 videos from sitcoms, each
with a duration of 21–25 min and a full-length movie of 1 h 47 min, “Hannah
and her sisters” [38]. Further, we performed YouTube searches with keywords
based on: public address, debate society, orchestra performance, choir practice
and courtroom, downloading 89 videos of durations ranging from 10 to 25 min.
We obtained videos that were expected to feature a large number of human faces
in various scenes, reflecting the everyday settings of our face benchmarks. Sim-
ilarly, for pedestrian detection, we collected videos from YouTube by searching
with the two key phrases: driving cam videos and walking videos. We obtained
40 videos with an average duration of about 30 min.

3.2 Hard Negative Mining

Running a pre-trained face detector on every frame of a video gives us a large set
of detections with noisy labels. We crucially differ here from recent bootstrapping
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approaches [51,55] by (a) using large amounts of unlabeled data available on the
web instead of relying only on the limited fully-supervised training data from
WIDER Face [61] or Caltech Pedestrians [12], and (b) having a novel filtering
criterion on the noisy labels obtained from the detector that retains the hard
negative examples and minimizes noise in the obtained labels.

The raw detections from a video were thresholded at a relatively high con-
fidence score of 0.8. For every detection in a frame, we formed a short tracklet
by performing template matching in adjacent frames, within a window of ±5
frames—the bounding box of the current detection was enlarged by 100 pix-
els and this region was searched in adjacent frames for the best match using
normalized cross correlation (NCC). To account for occlusions, we put a thresh-
old on the NCC similarity score (set as 0.5) to reject cases where there was a
lot of appearance-change between frames. Now in each frame, if the maximum
intersection-over-union (IoU) between the tracklet prediction and detections in
the adjacent frames was below 0.2, we considered it to be an isolated detec-
tion resulting from detector flicker. These isolated detections were taken as
hard negatives. The detections that were found to be consistent with adjacent
frames were considered to have a high probability of being true predictions and
were termed pseudo-positives. For the purpose of creating the re-training set,
we kept only those frames that had at least one pseudo-positive detection in
addition to one or more hard negatives. Illustrative examples of this procedure
are shown in Fig. 2, where we visualize only the previous and next frames for
simplicity.

3.3 Results of Automatic Hard Negative Mining

Our initial mining experiments were performed using a standard Faster R-CNN
detector trained on WIDER Face [61] for faces and Caltech [12] for pedestri-
ans. We collected 13,888 video frames for faces, where each frame contains at
least one pseudo-positive and one hard negative (detector flicker). To verify the
quality of our automatically mined hard negatives, we randomly sampled 511
hard negatives for inspection. 453 of them are true negatives, while 16 samples
are true positives, and 42 samples are categorized as ambiguous, which corre-
spond extreme head pose or severe occlusions. The precision for true negatives
is 88.65% and precision for true negatives plus ambiguous is 96.87%.

For pedestrians, we collected 14,967 video frames. We manually checked 328
automatically mined hard negatives, where 244 of them are true negatives and
21 belong to ambiguous. The precision for true negatives is 74.48% and precision
for true negatives plus ambiguous is 82.18%.

To further validate our method on an existing fully-annotated video dataset,
we used the Hannah dataset [38], which has every frame annotated with face
bounding boxes. Here, out of 234 mined hard negatives, 187 were true negatives,
resulting in a precision of 79.91%. We note that the annotations on the Hannah
movie are not always consistent and involve a significant domain shift from
WIDER. Considering the fact no human supervision is provided, the mined face
hard negatives are consistently of high quality across various domains.
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3.4 Extension to Hard Positive Mining

In principle, the same concept for using detector flickers can be directly applied
to obtaining hard positives. The idea is to look for “off-flickers” of a detector
in a video tracklet – given a series of detections of an object in a video, such as a
face, we can search for single frames that have no detections but are surrounded
by detections on either side. Of course, these could be caused by short-duration
occlusions, for example, but a large percentages of these “off-flickers” are hard
positives, as in Fig. 3. We generate tracklets using the method from [26] and
show results incorporating hard positives on pedestrian and face detection in the
experiments section. The manually calculated purity over 300 randomly sampled
frames was 94.46% for faces and 83.13% for pedestrians.

Fig. 3. Hard positive samples. Given a sequence of video frames, the face of the
actor is consistently detected except at frame f . Such isolated “off-flickers” can be
harvested in an unsupervised fashion to form a set of hard positives.

4 Experiments

We evaluate our method on face and pedestrian detection and perform ablation
studies analyzing the effect of the hard examples. For pedestrians, we show
results on the Caltech dataset [12], while for face detection, we show results on
the WIDER Face [61] dataset.

The Caltech Pedestrian Dataset [12] consists of videos taken from a vehicle
driving through urban traffic, with about 350k annotated bounding-boxes from
250k video frames.

The WIDER dataset consists of 32,203 images having 393,703 labeled faces in
challenging situations of scale, pose and occlusion. The evaluation set of WIDER
is divided into easy, medium, and hard sets according to the detection scores of
object proposals from EdgeBox [67]. From easy to hard, the faces get smaller
and more crowded.
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4.1 Retraining Detectors with Mined Hard Examples

We experimented with two ways to leverage our mined hard negative samples.
In our initial experiments, a single mini-batch is formed by including one image
from the original labeled training dataset and another image sampled from our
automatically-mined hard negative video frames. In this way, positive region pro-
posals are sampled from the original training dataset image, based on manual
annotation, while negative region proposals are sampled from both the original
dataset image and the mined hard negative video frame. Thus, we can explicitly
force the network to focus on the hard negatives from the mined video frame.
However, this method did not produce better results in our initial experiments.
An alternate approach was found to be more effective – we simply provided
the pseudo-positives in the mined video frames as true object annotations dur-
ing training and implicitly allowed the network to pick the hard-negatives. The
inclusion of video frames with hard positives is more straightforward – we can
simply treat them as additional images with object annotations at training time.
The models were fine-tuned with and without OHEM, and we consistently chose
the setting that gave the best validation results. While OHEM would increase
the likelihood of hard negatives being selected in a mini-batch, it would also
place extra emphasis on any mislabels in the hard examples. This would mag-
nify the effect of a small amount of label noise and can in some cases decrease
the overall performance.

4.2 Ablation Settings

In addition to the comparisons to the baseline Faster R-CNN detectors, we
conduct various ablation studies on the Caltech Pedestrian and WIDER Face
datasets to address the effectiveness of hard example mining.

Effect of Training Iterations. To account for the possible situation where
simply training the baseline model longer may result in a gain in performance, we
create another baseline by fine-tuning the original model for additional iterations
with a lower learning rate, matching the number of training iterations used in our
hard example trained models. We refer to this model as “w/ more iterations”.

Effect of Additional Video Frames. Unlike the baseline detector, our fine-
tuned models use additional video frames for training. It’s possible that just
using the high-confidence detection results on unlabeled video frames as pseudo-
groundtruths during training is sufficient to boost performance, without correct-
ing the hard negatives using our detector flicker approach. Therefore we train
another detector, “Flickers as Positives”, starting from the baseline model,
that takes exactly the same training set as our hard negative model, but where
all the high-confidence detections on the video frames are used as positive labels.

Effect of Automatically Mined Hard Examples. We include the results
from our proposed method of considering detector flickers as hard negatives and
hard positives separately – “Flickers as HN” and “Flickers as HP”. Finally,
we report results from fine-tuning the detector on the union of both types of
hard examples (Flickers as HN + HP).
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4.3 Pedestrian Detection

For our baseline model, we train the VGG16-based Faster R-CNN object
detector [42] with OHEM [46] for 150K iterations on the Caltech Pedestrian
training dataset [12]. We used all the frames from set00-set05 (which constitute
the training set), irrespective of whether they are flagged as “reasonable” or not
by the Caltech meta-data. Following Zhang et al. [64], we set the IoU ratio for
RPN training to 0.5, while all the other experimental settings are identical to [42].
The number of labeled Caltech images is 128,419 and our mining provides 14,967
hard negative and 42,914 hard positive frames. We fine-tune the baseline model
with hard examples and the annotated examples from the Caltech Pedestrian
training dataset, with a fixed learning rate of 0.0001 for 60K iterations, using
OHEM. We evaluate our model on the Caltech Pedestrian testing dataset under
the reasonable condition.

The ROC curves of various settings of our models are shown in Fig. 4(a).
Fine-tuning the existing detector for more iterations gives a modest reduction in
log average miss rate, from 23.83% to 22.4%. Using all detections without cor-
recting the hard negatives (Flickers as Pos) also gives a small improvement –
the extra training data, although noisy, still has some positive contribution dur-
ing fine-tuning. Our proposed model, fine-tuned with the mined hard negatives
(Flickers as HN), has a log average miss rate of 18.78%, which outperforms
the baseline model by 5.05%. Fine-tuning with hard positives (Flickers as
HP) also shows an improvement of 4.39% over the baseline. Combining both
hard positives and hard negatives results in the best performance of 18.72%
log average miss rate.

In Fig. 4(b) we report results using the state-of-the-art SDS-RCNN [5]
pedestrian detector2. Every 3rd frame is sampled from the Caltech dataset for
training the original detector [5], and we keep this setting in our experiments. For
SDS-RCNN, there are 42,782 labeled training images while the mining gives us
2,191 hard negative and 177,563 hard positive frames. The inclusion of hard neg-
atives in training (Flickers as HN) improves the performance of SDS-RCNN
in the low False Positives regime compared to the baseline – the detector learns
to eliminate a number of false detections, thereby increasing precision, but it
also ends up hurting the recall. Including mined hard positives (Flickers as
HP) we get the best performance of 8.71% log average miss rate, outperforming
the model using both the mined hard negative and positive samples (Flickers
as HP + HN), which gets 9.12%.

4.4 Face Detection

We adopt the Faster R-CNN framework, using VGG16 as the backbone network.
We first train a baseline detector starting from an ImageNet pre-trained model,
with a fixed learning rate of 0.001 for 80K iterations using the SGD optimizer,

2 Running the authors’ released code from https://github.com/garrickbrazil/SDS-
RCNN.

https://github.com/garrickbrazil/SDS-RCNN
https://github.com/garrickbrazil/SDS-RCNN
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Fig. 4. Results on the Caltech Pedestrian dataset [12] in reasonable condition.
(a) Faster R-CNN results: using hard negative samples (Flickers as HN) and hard
positive samples (Flickers as HP) improve the performance over the baseline in; using
a combination of both gives the best performance. (b) State-of-the-art SDS-RCNN
results: Flickers as HN improves the original SDS-RCNN results only in the low false
positive regime, while Flickers as HP gives the best results.

where the momentum is 0.9 and weight decay is 0.0005. For hard negatives, the
model is fine-tuned for 50k iterations with learning rate 0.0001. For hard posi-
tives, and the combination of both types of hard examples, we train longer for
150k iterations. Following the WIDER Face protocol, we report Average Pre-
cision (AP) values in Table 1 on the three splits – ‘Easy’, ‘Medium’ and ‘Hard’.
OHEM is not used as it was empirically observed to decrease performance.

Fine-tuning the baseline model for more iterations improves performance
slightly on the Easy and Medium splits. Naively considering all the high confidence
detections as true positives (Flickers as Positives) degrades performance sub-
stantially across all splits. Hard negative mining, Flickers as HN, slightly outper-
forms the baseline Faster R-CNN detector (w/ more iterations) on the Medium
and Hard splits, retaining the same performance of 0.907 AP on the Easy split.
Using the mined hard positives, Flickers as HP, we observe a significant gain
in performance on all three splits. Using both hard positives and hard negatives
jointly (Flickers as HP + HN) improves over using hard negatives and the baseline,
but the improvement is less than the gains from Flickers as HP.

For faces, we additionally experimented with the recent RetinaNet [33] detec-
tor as a second high-performance baseline model. Unfortunately, inclusion of the
unlabeled data hurt performance slightly using this model, despite the reason-
ably high purity of the mined examples. While the purity of our mined examples
is high, it is not perfect. These incorrect samples would be strongly emphasized
by the focal loss used in RetinaNet. Thus, it is possible that while RetinaNet
outperforms the Faster R-CNN on standard benchmarks, it may be more suscep-
tible to label noise and thus not a good candidate for our method. In the future,
we will investigate different values of the focal loss parameter to see whether this
can mitigate the effects of label noise.
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Table 1. Average precision (AP) on the validation set of the WIDER Face [61]
benchmark. Including hard examples improves performance over the baseline, with HP

and HP+HN giving the best results.

Easy Medium Hard

Faster R-CNN Baseline 0.907 0.850 0.492

w/ more iterations 0.910 0.852 0.493

Flickers as Positives 0.829 0.790 0.434

Ours: Flickers as HN 0.909 0.853 0.494

Ours: Flickers as HP 0.921 0.864 0.492

Ours: Flickers as HP + HN 0.921 0.864 0.497

Fig. 5. Examples of hard negatives. Visualization of mined hard negatives for faces
(top row) and pedestrians (bottom row). Red boxes denote the “detection-flicker cases”
among the high confidence detections (green boxes). (Color figure online)

5 Discussion

In this section, we discuss some further applications and extensions to our pro-
posed hard example mining method.

On the Entropy of the False Positive Distribution. In mining thousands
of hard negatives from unlabeled video, we noticed a striking pattern in the hard
negatives of face detectors. A large percentage of false positives were generated
by a few types of objects. Specifically, a large percentage of hard negatives in
face detectors seem to stem from human hands, ears, and the torso/chest area.
Since it appears that a large percentage of the false positives in face detection
are the result of a relatively small number of phenomena, this could explain the
significant gains realized by modeling hard negatives. In particular, characteriz-
ing the distribution of hard negatives, and learning to avoid them, may involve
a relatively small set of hard negatives (Figs. 5 and 6).
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Fig. 6. Qualitative comparison. Faster R-CNN detections for faces (F1-4) and
pedestrians (P1-4).The detector fine-tuned with hard negatives (HN) reduces false
positives compared to the Baseline (F-1,3,4; P-1,2,3), but can sometimes lower the
recall (P4). Hard positives (HP) increases recall (F2, P4) but can also introduce false
positives (F4). Using both (HP+HN) the detector is usually able to achieve a good
balance.

Effect of Domain Shift on FDDB. The FDDB dataset [24] is comprised of
5,171 annotated faces in a set of 2,845 images taken from a subset of the Face
in the Wild dataset. The images and the annotation style of FDDB have a sig-
nificant domain shift from WIDER Face, which are discussed in Jamal et al. [1].
Figure 7 compares our method with the Faster R-CNN baseline on FDDB, using
the trained models from our experiments on WIDER Face (Sect. 4.4). Although
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hard negatives reduce false positives (Fig. 7(b)) and hard positives increase recall
(Fig. 7(c)), the performance does not consistently improve over the baseline on
FDDB. We hypothesize that the large amounts of new training data result in
shifting the original detector further away from the target FDDB domain, and
this domain shift leads to a loss in performance. This may not have hurt our
performance as much on WIDER Face because the domain shift between the rel-
atively unconstrained WIDER images and our videos downloaded from YouTube
was not severe enough to subsume the advantages from the hard examples.

Fig. 7. Results on FDDB. (a) ROC curves comparing our hard example methods with
the baseline Faster R-CNN detector; (b–c) separate plots showing False Positives and
True Positive Rate with varying thresholds on detection score.

Extension to Other Classes. The simplicity of our approach makes it easily
extensible to other categories in a one-versus-rest setting. YouTube is a promis-
ing source of videos for various MS-COCO or PASCAL categories; mining hard
negatives after that is fully automatic. To demonstrate this, we selected cate-
gories from MS-COCO and ran experiments to check if inclusion of hard nega-
tives improves the baseline performance of a Faster R-CNN detector. We used
the training method deployed by Sonntag et al. [49], which allows for a conve-
nient fine-tuning of the VGG16-based Faster R-CNN model on specific object
classes of the MS-COCO dataset. The method was used to train a Faster R-CNN
detector for a specific class vs background, starting from a multi-class VGG16
classifier pre-trained on Image-Net categories. This baseline detector was then
used to mine hard negatives from downloaded YouTube videos of that category
and then re-trained on the union of the new data and the original labeled training
data. We show results for two categories: dogs and trains. A held out subset of
the MS-COCO validation set was used for validating training hyper-parameters
and the remainder of the validation data was used for evaluation.

For the dog category, the labeled data was divided into train/val/test splits of
3041/177/1521 images. We manually selected and downloaded about 22 h of dog
videos from YouTube. We used the baseline dog detector to obtain detections
on about 15 h (1,296,000 frames at 24 fps) of dog videos. The hard negative
mining algorithm was then run at a detector confidence threshold of 0.8. This
yielded 2611 frames with at least one hard negative and one positive detection.
The baseline model was then fine-tuned for 30k iterations on the union of the
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labeled MS-COCO data and the hard negatives. The hyper-parameters and best
model were selected using a validation set. Similar experiments with trains were
performed, with train/val/test splits of 2464/157/1281 images. The results are
summarized in the Table 2, where inclusion of hard negatives is observed to
improve the baseline detector in both cases.

Table 2. Results on augmenting Faster R-CNN detectors with hard negatives for ‘dog ’
and ‘train’ categories on MS-COCO.

Category Model Training
iterations

Training
hyperparams

Validation
set AP

Test set
AP

Dog Baseline 29000 LR : 1e-3 for 10k,
1e-4 for 10k-20k,
1e-5 for 20k-29k

26.9 25.3

Flickers as HN 22000 LR : 1e-4 for 15k,
1e-5 for 15k-22k

28.1 26.4

Train Baseline 26000 LR : 1e-3,
stepsize: 10k,
lr-decay: 0.1

33.9 33.2

Flickers as HN 24000 LR : 1e-3,
stepsize: 10k,
lr-decay: 0.1

35.4 33.7

6 Conclusion

This work leverages an existing phenomenon – detector flicker in videos – to
mine hard negatives and hard positives at scale in an unsupervised manner. The
usefulness of this method for improving an object detector is demonstrated on
standard benchmarks for two well-known tasks – face and pedestrian detection,
using various detector architectures and supported by several ablation studies.
The simplicity of our hard example mining approach makes it widely applicable
to a variety of practical scenarios – YouTube is a promising source of videos for
almost any category and mining hard examples is a fully automatic procedure.
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