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Abstract. Person re-identification (re-ID) poses unique challenges for
unsupervised domain adaptation (UDA) in that classes in the source
and target sets (domains) are entirely different and that image varia-
tions are largely caused by cameras. Given a labeled source training set
and an unlabeled target training set, we aim to improve the generaliza-
tion ability of re-ID models on the target testing set. To this end, we
introduce a Hetero-Homogeneous Learning (HHL) method. Our method
enforces two properties simultaneously: (1) camera invariance, learned
via positive pairs formed by unlabeled target images and their camera
style transferred counterparts; (2) domain connectedness, by regarding
source/target images as negative matching pairs to the target/source
images. The first property is implemented by homogeneous learning
because training pairs are collected from the same domain. The second
property is achieved by heterogeneous learning because we sample train-
ing pairs from both the source and target domains. On Market-1501,
DukeMTMC-reID and CUHK03, we show that the two properties con-
tribute indispensably and that very competitive re-ID UDA accuracy is
achieved. Code is available at: https://github.com/zhunzhong07/HHL.
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1 Introduction

Given a query, person re-identification (re-ID) aims to retrieve the same person
from a database collected by different cameras from the query. Despite the dra-
matic performance improvement obtained by the convolutional neural network
(CNN), it is reported that deep re-ID models trained on the source domain may
have a large performance drop on the target domain [7,10]. The main reason
is that the data distribution of the source domain is usually different from the
target domain. In this paper, we consider the setting of unsupervised domain
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adaptation (UDA), in which during training we are provided with labeled source
training images and unlabeled target training images. Performance is evaluated
on the target testing database.

Unsupervised domain adaptation [16,26,37], which has been studied exten-
sively in image classification, object detection and semantic segmentation, faces
new challenges in the context of person re-ID. On the one hand, the source and
target domains in person re-ID have entirely different classes (person identities),
while in generic UDA, the source and target share the same set of classes. On the
other hand, a critical factor that leads to domain variance in person re-ID can be
clearly identified, i.e., the disparities of cameras. Even in the unlabeled target
domain, camera information, i.e., the camera by which an image is captured, is
known. However, it remains unknown in the UDA community how to effectively
leverage the camera information for person re-ID.

In this paper, our design is motivated in two aspects, closely associated with
the new challenges mentioned above. First, a critical part of our motivation
arises from the intra-domain image variations caused by different camera con-
figurations. This perspective is largely overlooked in recent methods addressing
the UDA problem in person re-ID. These recent works either concentrate on
content-preserving source-target translation models [7,39] or employ both the
attribute and identity labels to learn a transferable model [38]. To our knowl-
edge, these methods only consider the overall inter-domain differences, but do
not explicitly consider the intra-domain image style variations caused by differ-
ent camera configurations. In fact, the intra-domain camera style difference is
a critical influencing factor for person re-ID, because during testing, the query
and its ground truth matches are captured by different cameras. Without consid-
ering the fine-grained intra-domain image variations, a transfer learning model
trained on the source set will probably only capture the overall data bias between
the two domains and have problems when encountering the large intra-domain
image variations in target domain testing set.

Second, we consider the prior that the source and target sets have entirely
different classes/identities, so a source image and a target image naturally form
a negative training pair. A similar idea has been explored by Deng et al. [7].
However, the two papers differ in the purpose of using this prior. In [7], Deng
et al. use the negative pairs to improve the image-image translation model, so
that the generated images will largely preserve their identity label, a desirable
property for UDA. In comparison, we directly use these negative pairs to learn
person embeddings within a triplet loss formulation.

With the two considerations, we propose a new unsupervised domain adap-
tation method, named Hetero-Homogeneous Learning (HHL), for the person re-
ID task. HHL is constructed without target supervision, i.e., we do not require
laborious manual annotations such as identities in the target set. In fact, the
construction of HHL requires a source set (identity labels given), a target set
(without identity labels), and the camera information for each image in the tar-
get set. Here, we emphasize that the camera ID for each target image can be
obtained along with the raw videos: it suffices to simply record the ID of the
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camera capturing the videos. Therefore, we call the construction of HHL “with-
out target supervision”, or in the most strict way “with extremely weak target
supervision”.

In our method, HHL underpins constraints at two properties. First, we con-
strain to learn person embeddings which are robust to camera variances in the
target domain. To achieve this camera invariance property in an unsupervised
fashion, positive training pairs are generated by image-image translation, viewing
each camera as an individual style. Second, in order to endow domain connected-
ness to the system, we learn the underlying structures between source and target
domains using negative training pairs sampled from the source and target sets,
respectively. In this paper, imposing the camera invariance property is a homo-
geneous learning process because training images are from the same domain.
Imposing the domain connectedness property implies a heterogeneous learning
procedure because the training samples are from two domains. The two proper-
ties produce a positive pair homogeneously and a negative pair heterogeneously,
which, bridged by an anchor image to be fed into a triplet loss training.

To summarize, this paper is featured in the three aspects. First, a Hetero-
Homogeneous Learning (HHL) scheme is introduced. Through a triplet loss, it
brings about camera invariance and domain connectedness to the system, which
are essential properties towards an effective UDA approach in person re-ID. Sec-
ond, HHL is a new method for training sample construction in UDA. It is robust
to parameter changes. The insights and indispensability of camera invariance
and domain connectedness are validated through experimental studies. Third,
we report new state-of-the-art UDA accuracy on the Market-1501, CUHK03 and
DukeMTMC-reID datasets.

2 Related Work

Unsupervised Domain Adaptation. Our work is closely related to unsuper-
vised domain adaptation (UDA) where the target domain is unlabeled. Most of
the previous methods try to align the source to the target domain by reduc-
ing the divergence of feature distributions [11,26,35–37,41]. These methods are
motivated by the theory stating that the error for the target domain is bounded
by the difference between domains [2]. CORAL [35] aligns the mean and covari-
ance of source domain and target domain distributions and achieves promising
results in various visual recognition tasks. Further, deep CORAL [36] extends the
approach by incorporating the CORAL loss into deep model. There exist many
methods which aim at providing pseudo-labels to unlabeled samples. Several
methods utilize similarity of features to give pseudo-labels to unlabeled target
samples [31,33]. In [33], an approach is presented to estimate the labels of unla-
beled samples by using the k-nearest neighbors. Then, the predicted labels are
leveraged to learn the optimal deep feature. Alternatively, many methods try
to predict labels to unlabeled samples by leveraging the predictions of a classi-
fier and retraining the classifier with both labeled samples and pseudo-labeled
samples, which is called co-training [50]. The underlying assumption of these
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methods is that high-confidence prediction is a mostly correct class for an unla-
beled sample. In [4], the idea of co-training is applied to domain adaptation by
gradually adding the target samples of high-confidence predictions to the train-
ing set. Saito et al. [32] propose to generate pseudo-labels for target domain
samples through three classifiers asymmetrically and train the final classifier
with predicted labels.

Recently, Many Generative Adversarial Networks (GAN) [12] based domain
adaptation approaches focus on learning a generator network that transforms
samples in the pixel space from one domain to another [3,16,24]. CyCADA
[16] adapts representations at both the pixel-level and feature-level via pixel
cycle-consistency and semantic losses, it achieves high performance on both digit
recognition and semantic segmentation. Most of existing unsupervised domain
adaptation methods assume that class labels are the same across domains, while
the person identities (classes) of different re-ID datasets are totally different.
Hence, the approaches mentioned above fail to be utilized directly for the prob-
lem of unsupervised domain adaptation in person re-ID.

Unsupervised Person re-ID. Hand-craft features can be directly applied for
unsupervised person re-ID, for example, ELF [13], LOMO [23], and SDALF
[1], which aim to design or learn robust feature for person re-ID. These meth-
ods often ignore the distribution of samples in the dataset and fail to perform
well on large-scale dataset. Benefit from the remarkable success of deep learn-
ing [8,9,14,21,27], recent works [10,25,40] attempt to predict pseudo-labels to
unlabeled samples based on the deep learning framework. Fan et al. [10] propose
an unsupervised re-ID approach for iteratively applying k-means clustering to
assign labels to unlabeled samples and fine-tuning the deep re-ID model on the
target domain. Liu et al. [25] estimate labels with k-reciprocal nearest neigh-
bors [29] and iteratively learn features for unsupervised video re-ID. Wu et al.
[40] propose a progressive sampling method to gradually predict reliable pseudo
labels and update deep model for one-shot video-based re-ID.

Few works [7,17,28,38,39] have studied on unsupervised domain adapta-
tion for re-ID. Peng et al. [28] propose to learn a discriminative representation
for target domain based on asymmetric multi-task dictionary learning. Deng
et al. [7] learn a similarity preserving generative adversarial network based on
CycleGAN [49] to translate images from source domain to target domain. The
translated images are utilized to train re-ID model in a supervised way. In [38],
a transferable model is proposed to jointly learn attribute-semantic and iden-
tity discriminative feature representation for target domain. These approaches
aim at reducing the gap between source domain and target domain on either
the image-level space [7,39] or feature-level space [17,28,38], while overlook the
image style variations caused by different cameras in target domain. In this work,
we explicitly consider the intra-domain image variations caused by cameras to
learn discriminative re-ID model for target domain.
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3 Proposed Method

Problem Definition. For unsupervised domain adaptation in person re-ID, we
have a labeled source set {Xs, Ys} consisting of Ns person images. Each image
xs corresponds to a label ys, where ys ∈ {1, 2, ...,Ms}, and Ms is the number
of identities. We also have Nt unlabeled target images from unlabeled target set
{Xt}. The identity of each target image xt in {Xt} is unknown. The goal of this
paper is to leverage both labeled source training images and unlabeled target
training images to learn discriminative embeddings for target testing set.

Fig. 1. The framework of the proposed approach. It consists of two loss functions: (1)
cross-entropy loss for classification, which learned by labeled source samples; (2) triplet
loss for similarity learning, which imposes camera invariance and domain connectedness
to the model and learned through labeled source samples, unlabeled target samples and
cameras style transferred samples.

3.1 Baseline Configuration

We use ResNet-50 [14] as backbone and follow the training strategy in [48] which
fine-tunes on the ImageNet [6] pre-trained model. We discard the last 1,000-dim
fully connected (FC) layer and add two FC layers. The output of the first FC
layer is 1,024-dim named as “FC-1024”, followed by batch normalization [18],
ReLU and Dropout [34]. The output of the second FC layer, named as “FC-
#ID” is Ms-dim, where Ms is the number of identities (classes) in the labeled
training set.

Given the labeled training images, an effective strategy is to learn the ID-
discriminative embedding (IDE) [44] for person re-ID. The cross-entropy loss is
employed by casting the training process as a classification problem. The cross-
entropy loss is written as,

LCross = − 1
ns

ns∑

i=1

log pi(y), (1)
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where ns is the number of labeled training images in a batch, pi(y) is the pre-
dicted probability of the input belonging to ground-truth class y. We name this
model as baseline throughout this paper.

The IDE-based methods [44,46,47] achieve good performance on fully labeled
datasets, but often fail to generalize to a new target set. Next, we will describe the
Hetero-Homogeneous Learning (HHL) approach to improve the transferability
of the baseline.

3.2 Network Architecture

The network used in this paper is shown in Fig. 1. It has two branches. The
first branch is the same with the baseline, which is an identification task. The
second branch is different from the first branch in two aspects: (1) a 128-dim
FC layer named “FC-128” is used instead of the “FC-#ID” layer; (2) a triplet
loss is used instead of the cross-entropy loss. Therefore, our network has two loss
functions, a cross-entropy loss for classification and a triplet loss for similarity
learning. For similarity learning, we employ the triplet loss used in [15], which
is formulated as,

LT (X) =
∑

xa,xp,xn

[m + Dxa,xp
− Dxa,xn

], ∀ xa, xp, xn ∈ X, (2)

where X represents images in a training batch, xa is an anchor point. xp is a
hardest (farthest) sample in the same class with xa, and xn is a hardest (closest)
sample of a different class to xa. m is a margin parameter and D(·) is the
Euclidean distance between two images in the embedding space. We use the
output of FC-128 as the embedding feature and set m to 0.3. Note that during
re-ID testing, we use the output of Pool-5 (2,048-dim) as person descriptor.

3.3 Camera Invariance Learning

The variation of image style caused by cameras is a critical influencing factor
during person re-ID testing procedure. To achieve the camera invariance property
in target domain, we impose the camera invariance constraint by learning with
both unlabeled target images and their counterparts containing the same person
but with different camera styles.

In order to generate new target images that more or less preserve the person
identity and reflect the style of another camera, we employ the CamStyle app-
roach [48] to learn camera style transfer model in the target set. Different from
[48] which uses CycleGAN [49] for image-image translation, we build CamStyle
based on StarGAN [5]. This is because StarGAN allows us to train multi-camera
image-image translation with a single model, while CycleGAN needs to train a
translation model for each pair of cameras. Suppose we have C cameras in the
target set. We first train a StarGAN model which enables image-image trans-
lation between every camera pair. With the learned StarGAN model, for a real
image xt,j collected by camera j (j ∈ 1, 2, ..., C) in the target set, we gener-
ate C fake (camera style transferred) images xt∗,1, xt∗,2,..., xt∗,C which more or
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less contain the same person with xt,j but whose styles are similar to camera
1, 2, ..., C, respectively. Note that the C images include the one transferred to
the style of camera j, that is, the style of the real image xt,j . Examples of real
images and fake images generated by CamStyle [48] are shown in Fig. 2.

Fig. 2. Examples of camera style transfer on Market-1501 and DukeMTMC-reID. An
image collected by a certain camera is transferred to the style of other cameras. In this
process, the identity information is preserved to some extent. The real image and its
corresponding fake images are assumed to belong to the same class during training.

To learn camera invariant person embeddings for the target set, we view
xt,j and its corresponding fake images xt∗,1, xt∗,2,..., xt∗,C as belonging to the
same class. We view all the other images as belonging to a different class with
xt,j . For simplicity, we omit the subscript of camera. Specifically, we compute
a triplet loss through the unlabeled target domain samples {xi

t}nt
i=1 and their

corresponding camera transferred samples {xi
t∗}n∗

t
i=1. The loss function of camera

invariance learning can be written as,

LC = LT ({xi
t}nt

i=1 ∪ {xi
t∗}n∗

t
i=1), (3)

where nt is the number of real target images in a training batch, and n∗
t is the

number of camera style transferred samples. In our experiment, we generate C
fake images for each real target image, i.e. n∗

t /nt = C, where C is the number
of cameras. In a training batch, xi

t is randomly selected from the target set,
and we assume that x1

t , x2
t , ..., xnt

t as belonging to different classes. Technically
speaking, this assumption is incorrect, because each target training class has
several images, and it may well be the case that two images of the same class
are selected into the training batch. That being said, we will show in Sect. 3.6
and Fig. 3 that our assumption does not affect the performance noticeably.

3.4 Domain Connectedness Learning

In person re-ID, different domains have completely different classes/identities,
so a source image and a target image naturally form a negative training pair.
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With this prior, we propose to endow domain connectedness to the system by
regarding source/target images as negative matching pairs to the target/source
images. Given an anchor image from the source, we use source domain labels
to construct a positive pair. We then choose a target domain image to form a
negative pair with the anchor. Formally, given the labeled source domain samples
{xi

s}ns
i=1 and the unlabeled target domain samples {xi

t}nt
i=1, the loss function of

domain connectedness learning can be defined as,

LD = LT ({xi
s}ns

i=1 ∪ {xi
t}nt

i=1), (4)

where ns is the number of source images, and nt is the number of target images.
In this loss function, since the identities of target images do not overlap with
the identities in source domain, each source image and each target image form a
negative pair. Therefore, the relationship between the source and target samples
is considered, so that the communication and the underlying structures between
two domains can be achieved to some extent.

3.5 Hetero-Homogeneous Learning

In this paper, we argue that camera invariance and domain connectedness are
complementary properties towards an effective UDA system for person re-ID. To
this end, we propose to jointly learn camera invariance and domain connected-
ness using a single loss in a training batch. Specifically, a training batch contains
labeled source images {xi

s}ns
i=1, unlabeled real target images {xi

t}nt
i=1, and their

corresponding fake images {xi
t∗}n∗

t
i=1. The triplet loss function of camera invari-

ance learning and domain connectedness learning can be written as,

LCD = LT ({xi
s}ns

i=1 ∪ {xi
t}nt

i=1 ∪ {xi
t∗}n∗

t
i=1). (5)

In this loss function, we enforce two properties simultaneously: (1) camera invari-
ance, learned through real target images and its corresponding fake images;
(2) domain connectedness, mapping the source and target samples into shared
feature space by regarding source/target samples (including their camera style
transferred samples) as negative matching pairs to the target/source samples.

Finally, the overall loss function (Fig. 1) in a training batch is expressed as,

LHHL = LCross + βLCD, (6)

where β is the weight of the joint camera invariance and domain connected-
ness loss. We name this learning method “Hetero-Homogeneous learning (HHL)”
because of the heterogeneous sample selection scheme of domain connectedness
learning, and because of the homogeneous sample selection scheme of camera
invariance learning. Also, we note that the cross-entropy loss is indispensable in
Eq. 6, which provides a basic discriminative ability learned on the source only.
Without the cross-entropy loss, the system will be harmed significantly.
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3.6 Discussion

Why Use Camera Style Transfer? In Table 1, we compare the distance
between images that undergoes different data augmentation method, i.e. random
cropping, random flipping and camera style transfer. It is clearly that, the re-ID
model trained on source set is robust to random cropping and random flipping
on target set, but is sensitive to image variations caused by cameras. Therefore,
the change of image style caused by different cameras on target set is a key
influencing factor that should be explicitly considered in person re-ID UDA.

Table 1. The average distance between two images that undergo different data aug-
mentation techniques. We use the baseline re-ID model (Sect. 3.1) trained on the source
set to extract image descriptors (Pool-5, 2,048-dim) on the target set.

Source Target Random Crop Random Flip CamStyle Transfer

Duke Market-1501 0.049 0.034 0.485

Market-1501 Duke 0.059 0.044 0.614

Fig. 3. Comparison of different sampling strategies on the target set, including random
sampling, cluster-based sampling and supervised sampling. Rank-1 accuracy and mAP
are reported. We set β = 0.5, nt = 16. We find that different sampling methods achieve
very similar results. So for simplicity, we use random sampling throughout the paper.

How to Sample Training Images from Target Domain? We compare three
sampling strategies, (1) random sampling, we randomly sample nt target images
in each mini-batch and assign non-overlap randomly identity for each image, i.e.
each image has a different identity in a mini-batch; (2) cluster-based sampling,
at begin of each training epoch, we apply k-means to cluster target images into
nt clusters based on currently learned re-ID model, and sample one image from
each cluster to compose training data of target domain in a mini-batch. The
cluster-based sampling strategy could effectively avoid to sample the same iden-
tity in a mini-batch; (3) supervised sampling, assume that we are provided with
labeled target set, we randomly select nt images in a supervised way ensuring
that each target image comes from a different identity. The comparison of dif-
ferent sampling strategies is shown in Fig. 3. It is clearly that random sampling
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yields quite approximate results with the other two strategies. It is because of
the probability of images to be the same identities is very low when sampling
few images from target set including a large number of images and identities.
Therefore, we use random sampling in this paper.

4 Experiment

4.1 Datasets

We evaluate our method on three re-ID datasets which are considered as large-
scale in the community, i.e., Market-1501 [43], DukeMTMC-reID [30,45], and
CUHK03 [22]. Market-1501 [43] contains 32,668 labeled images of 1,501 iden-
tities collected from 6 cameras. For evaluation, 12,936 images from 751 identities
are used for training, and 19,732 images from 750 identities plus some distrac-
tors form the gallery/database. Moreover, 3,368 hand-drawn bounding boxes
from 750 identities are used as queries to retrieve the corresponding person
images in the database. We use the single-query evaluation in our experiment.
DukeMTMC-reID [45] has 8 cameras and 36,411 labeled images belonging
to 1,404 identities. Similar to the division of Market-1501, the dataset contains
16,522 training images from 702 identities, 2,228 query images from another 702
identities and 17,661 gallery images. CUHK03 [22] contains 14,096 images of
1,467 identities. Each identity is captured from two cameras. The dataset has
two train/test settings: using labeled bounding boxes and using DPM detected
bounding boxes. We use the detected setting because it is more challenging and
closer to practical scenarios. Note that images in CUHK03 do not have camera
labels, so we cannot perform camera invariance learning. Therefore, we only use
CUHK03 as the source domain instead of the target domain. We use the con-
ventional rank-n accuracy and mean average precision (mAP) for evaluation on
all datasets. Example persons of different re-ID datasets are shown in Fig. 4.

Fig. 4. Example images of the Market-1501, DukeMTMC-reID and CUHK03 datasets.
Images in each column represent the same identity/class collected from different cam-
eras. We observe that the image style of the three datasets is very different and that
within each dataset, the image style of different cameras is different as well.
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4.2 Experiment Settings

Camera Style Transfer Model. Given a target set collected by C cameras, we
use StarGAN [5] to train an image-image translation model to transfer images
between every camera pair. We follow the same architecture as [5]. Specifically,
the generator contains 2 convolutional layer, 6 residual blocks and 2 transposed
convolution layers, while the discriminator is the same as PatchGANs [19]. The
input images are resized to 128 × 64. In training, we use the Adam optimizer
[20] with β1 = 0.5 and β2 = 0.999. Two data augmentation methods, random
flipping and random cropping, are employed. The learning rate is 0.0001 for both
generator and discriminator at the first 100 epochs and linearly decays to zero in
the remaining 100 epochs. In camera style transfer, for each image in the target
set, we generate C style-transferred images (including the one transferred to the
camera style of the original real image). These C fake images are regarded as
containing the same person with original real image.

Re-ID Model Training. To train the re-ID model, we employ the training
strategy in [48]. Specifically, we keep the aspect ratio of input images and resize
them to 256×128. For data augmentation, random cropping and random flipping
are applied. Dropout probability is set to 0.5. Learning rate is initialized to 0.1
for the classification layer and to 0.01 for the rest of the layers. Learning rate
is divided by 10 after 40 epochs. We set the mini-batch size of source images to
128 and 64 for IDE and triplet loss, respectively. The model is trained with the
SGD optimizer in a total of 60 epochs. In testing, we extract the output of the
2,048-dim Pool-5 layer as the image descriptor and use the Euclidean distance
to compute the similarity between the query and database images.

4.3 Important Parameters

We evaluate two important parameters, i.e. the weight of the triplet loss β and
the number of real target images nt in a batch. When evaluating one parameter,
we fix the other one. Results are shown in Figs. 5 and 6, respectively.

Weight of the Triplet Loss. When β = 0, our method reduces to the baseline
(with cross-entropy loss only, Sect. 3.1). It is clearly shown that, our approach
significantly improves the baseline at all values. The rank-1 accuracy and mAP
improve with the increase of β and achieve the best results when β is between
0.4 to 0.8.

Number of the Real Target Images in a Training Batch. When nt = 0,
only source images are used for training the re-ID model with IDE and triplet
loss, so our method reduces to “baseline+LT ”. From Fig. 5, we observe that when
increasing the number of real target images and their corresponding camera style
transferred samples in a training batch, our method consistently outperforms
“baseline+LT ”. Performance becomes stable after nt = 16.

Based on the above analysis, our method is robust to parameters changes.
In the following experiment, we set β = 0.5 and nt = 16.
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Fig. 5. Sensitivity to parameter β (weight of the triplet loss) in Eq. 6. We fix nt = 16.

Fig. 6. Sensitivity to the number of real target images nt in a batch. β is fixed to 0.5.

4.4 Evaluation

Baseline Accuracy. We present results of the baselines (see Sect. 3.1) in
Tables 2 and 3. When trained and tested both on the target set, high accu-
racy can be observed. However, performance drops significantly when the model
is trained on the source set and directly deployed on the target set. For example,
the baseline model trained and tested on Market-1501 yields a rank-1 accuracy
of 83.8%, but drops to 44.6% when trained on DukeMTMC-reID and tested on
Market-1501. The reason is the data distribution bias among datasets.

Effectiveness of Domain Connectedness Learning Over Baseline.
Because the loss function of domain connectedness learning in Eq. 4 includes
both source labeled samples and unlabeled target samples, we first add triplet
loss with source samples into baseline (Basel.+LT ). As shown in Tables 2 and 3,

Table 2. Methods comparison using Duke/Market as source, and using Market/Duke
as target. S: labeled source set, T: labeled target set, Tu: unlabeled target set.

Methods Train set Duke → Market-1501 Market-1501 → Duke

R-1 R-5 R-10 R-20 mAP R-1 R-5 R-10 R-20 mAP

Basel. T 83.8 93.3 95.6 97.1 66.3 72.3 84.1 88.1 90.9 53.5

Basel. S 44.6 62.5 69.6 76.5 20.6 32.9 49.5 54.8 61.7 16.9

Basel.+LT S 48.6 66.4 73.3 78.9 23.5 35.1 50.7 57.6 64.0 20.5

Basel.+LD S+Tu 49.8 67.8 74.5 80.5 23.8 36.8 52.3 59.1 64.9 21.1

Basel.+LC S+Tu 60.6 77.1 83.0 87.6 28.5 42.5 56.8 62.9 67.9 22.1

Basel.+LCD S+Tu 62.2 78.8 84.0 88.3 31.4 46.9 61.0 66.7 71.9 27.2
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Table 3. Comparison of various methods on unsupervised domain adaptation from
CUHK03 to Market-1501 and DukeMTMC-reID (Duke).

Methods Train set CUHK03 → Market-1501 CUHK03 → Duke

R-1 R-5 R-10 R-20 mAP R-1 R-5 R-10 R-20 mAP

Basel. T 83.8 93.3 95.6 97.1 66.3 72.3 84.1 88.1 90.9 53.5

Basel. S 42.2 59.1 66.1 73.8 20.3 24.3 38.2 45.0 51.9 12.3

Basel.+LT S 46.1 63.8 71.1 78.1 22.5 28.4 43.4 49.6 55.9 14.8

Basel.+LD S+Tu 48.9 66.7 74.6 79.6 23.3 29.2 44.5 50.7 57.5 15.7

Basel.+LC S+Tu 53.6 71.0 77.6 82.7 25.6 40.9 55.9 60.9 66.2 20.8

Basel.+LCD S+Tu 56.8 74.7 81.4 86.3 29.8 42.7 57.5 64.2 69.1 23.4

the performance of “Basel.+LT ” is consistently improved in all settings. Spe-
cially, the rank-1 accuracy of “Basel.+LT ” is increased from 42.2% to 46.1%
when using CUHK03 as the source set and tested on Market-1501. Then, we
inject domain connectedness learning into “Basel.+LT ” by adding unlabeled
target samples into triplet loss. Comparison to “Basel.+LT ”, when tested on
Market-1501, “Basel.+LD” leads to +1.2% and +2.8% improvement in rank-1
accuracy when using Duke and CUHK03 as the source set, respectively.

Effectiveness of Camera Invariance Learning Over Baseline. We verify
the effectiveness of camera invariance learning over baseline in Tables 2 and 3. It
is clear that, “Basel.+LC” significantly outperforms the baseline in all settings.
For example, when tested on Market-1501, “Basel.+LC” gives rank-1 accuracy
of 60.6% when using Duke as source set. This is +16% higher than the baseline in
rank-1 accuracy. Similar improvement is observed when tested on DukeMTMC-
reID. The consistent improvement indicates that camera invariance learning is
critical for improving the discriminate ability in target domain.

Benefit of Hetero-Homogeneous Learning. We study the benefit of hetero-
homogeneous learning in Tables 2 and 3. The “Basel.+LCD” achieves higher
performance than the model trained independently with camera invariance learn-
ing (Basel.+LC) or domain connectedness learning (Basel.+LD). For example,
when Market-1501 is the target set, the “Basel.+LCD” obtains rank-1 accu-
racy in 56.8% by using CUHK03 as source set, surpassing the “Basel.+LD”
and “Basel.+LC” by +7.9% and +3.2%, respectively. Similar improvement is
observed in other settings, indicating that camera invariance and domain con-
nectedness are indispensable to improve the transferability of the re-ID model
in UDA.

4.5 Comparison with the State-of-the-Art Methods

We compare our method with the state-of-the-art unsupervised learning meth-
ods. Table 4 presents the comparison when Market-1501/Duke is the source set
and Duke/Market-1501 is the target. We compare with two hand-crafted fea-
tures, i.e. BoW [43] and LOMO [23], three unsupervised methods, including
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Table 4. Unsupervised person re-ID performance comparison with state-of-the-art
methods.

Methods Duke → Market-1501 Market-1501 → Duke

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

LOMO [23] 27.2 41.6 49.1 8.0 12.3 21.3 26.6 4.8

Bow [43] 35.8 52.4 60.3 14.8 17.1 28.8 34.9 8.3

UMDL [28] 34.5 52.6 59.6 12.4 18.5 31.4 37.6 7.3

PTGAN [39] 38.6 - 66.1 - 27.4 - 50.7 -

PUL [10] 45.5 60.7 66.7 20.5 30.0 43.4 48.5 16.4

SPGAN [7] 51.5 70.1 76.8 22.8 41.1 56.6 63.0 22.3

CAMEL [42] 54.5 - - 26.3 - - - -

SPGAN+LMP [7] 57.7 75.8 82.4 26.7 46.4 62.3 68.0 26.2

TJ-AIDL [38] 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0

HHL 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2

Table 5. Unsupervised person re-ID performance comparison with state-of-the-art
methods when trained on CUHK03.

Methods CUHK03 → Market-1501 CUHK03 → Duke

R-1 R-5 R-10 R-20 mAP R-1 R-5 R-10 R-20 mAP

PTGAN [39] 31.5 - 60.2 - - 17.6 - 38.5 - -

PUL [10] 41.9 57.3 64.3 70.5 18.0 23.0 34.0 39.5 44.2 12.0

SPGAN [7] 42.3 - - - 19.0 - - - - -

HHL 56.8 74.7 81.4 86.3 29.8 42.7 57.5 64.2 69.1 23.4

CAMEL [42], PUL [10], and UMDL [28], and three unsupervised domain adapta-
tion approaches, including PTGAN [39], SPGAN [7] and TJ-AIDL [38]. The two
hand-crafted features are directly applied on target testing set without training.
Both features fail obtain competitive results. With training on target set, unsu-
pervised methods obtain higher results than hand-crafted features. For example,
CAMEL [42] achieves 54.4% rank-1 accuracy when using DukeMTMC-reID as
source set and tested on Market-1501 (multi-query setting). Comparing with
unsupervised domain adaptation methods, our method is superior. Specifically,
when tested on Market-1501, our results are higher than all the competing meth-
ods, achieving rank-1 accuracy = 62.2% and mAP = 31.4%. For exam-
ple, comparing with the recently published TJ-AIDL method [38], our results
are higher by +4.0% in rank-1 accuracy and +4.9% in mAP. When tested on
DukeMTMC-reID, our method achieves rank-1 accuracy = 46.9% and mAP
= 27.2%, higher than previous methods as well. So this paper sets a new state of
the art on Duke → Market-1501 and yields competitive results on Market-1501
→ Duke.
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Table 5 presents comparisons of methods using CUHK03 as the source set.
Our method outperforms the state-of-the-art methods by a large margin. Specif-
ically, HHL yields an mAP of 29.8% when Market-1501 is the target set. This is
higher than SPGAN [7] (19.0%) by +10.8%.

5 Conclusion

In this paper, we present Hetero-Homogeneous Learning (HHL), a new unsuper-
vised domain adaptation approach for person re-identification (re-ID). Taking
advantage of the unique challenges of UDA approaches in the context of person
re-ID, we propose to learn camera invariance and domain connectedness simul-
taneously to obtain more generalized person embeddings on the target domain.
Experiment conducted on Market-1501, DukeMTMC-reID and CUHK03 con-
firms that our approach achieves very competitive performance compared with
the state of the art.

Acknowledgements. This work is supported by the National Nature Science Foun-
dation of China (No. 61572409, No. U1705286 & No. 61571188), Fujian Province
2011Collaborative Innovation Center of TCM Health Management, Collaborative Inno-
vation Center of Chinese Oolong Tea Industry-Collaborative Innovation Center (2011)
of Fujian Province, Fund for Integration of Cloud Computing and Big Data, Innovation
of Science and Education, the Data to Decisions CRC (D2D CRC) and the Cooperative
Research Centres Programme. Zhun Zhong thanks Wenjing Li for encouragement.

References

1. Bazzani, L., Cristani, M., Murino, V.: Symmetry-driven accumulation of local fea-
tures for human characterization and re-identification. CVIU (2013)

2. Ben-David, S., et al.: A theory of learning from different domains. Mach. Learn.
79, 151–175 (2010)

3. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised
pixel-level domain adaptation with generative adversarial networks. In: CVPR
(2017)

4. Chen, M., Weinberger, K.Q., Blitzer, J.: Co-training for domain adaptation. In:
Advances in Neural Information Processing Systems, pp. 2456–2464 (2011)

5. Choi, Y., et al.: Stargan: unified generative adversarial networks for multi-domain
image-to-image translation. In: CVPR (2018)

6. Deng, J., et al.: Imagenet: a large-scale hierarchical image database. In: CVPR
(2009)

7. Deng, W., et al.: Image-image domain adaptation with preserved self-similarity
and domain-dissimilarity for person re-identification. In: CVPR (2018)

8. Dong, X., Yan, Y., Ouyang, W., Yang, Y.: Style aggregated network for facial
landmark detection. In: CVPR (2018)

9. Dong, X., et al.: Supervision-by-Registration: an unsupervised approach to improve
the precision of facial landmark detectors. In: CVPR (2018)

10. Fan, H., Zheng, L., Yang, Y.: Unsupervised person re-identification: Clustering and
fine-tuning. arXiv preprint arXiv:1705.10444 (2017)

http://arxiv.org/abs/1705.10444


Generalizing a Person Retrieval Model Hetero- and Homogeneously 191

11. Ganin, Y., et al.: Domain-adversarial training of neural networks. JMLR (2016)
12. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)
13. Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble

of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008.
LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88682-2 21

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

15. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-
identification. arXiv preprint arXiv:1703.07737 (2017)

16. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. arXiv
preprint arXiv:1711.03213 (2017)

17. Hu, J., Lu, J., Tan, Y.P.: Deep transfer metric learning. In: CVPR (2015)
18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by

reducing internal covariate shift. In: ICML (2015)
19. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-

tional adversarial networks. In: CVPR (2017)
20. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-

volutional neural networks. In: NIPS (2012)
22. Li, W., Zhao, R., Xiao, T., Wang, X.: Deepreid: deep filter pairing neural network

for person re-identification. In: CVPR (2014)
23. Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occur-

rence representation and metric learning. In: CVPR (2015)
24. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: NIPS (2016)
25. Liu, Z., Wang, D., Lu, H.: Stepwise metric promotion for unsupervised video person

re-identification. In: ICCV (2017)
26. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep

adaptation networks. In: ICML (2015)
27. Luo, Y., Zheng, Z., Zheng, L., Guan, T., Yu, J., Yang, Y.: Macro-micro adversarial

network for human parsing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss,
Y. (eds.) ECCV 2018, Part IX. LNCS, vol. 11217, pp. 424–440. Springer, Cham
(2018)

28. Peng, P., et al.: Unsupervised cross-dataset transfer learning for person re-
identification. In: CVPR (2016)

29. Qin, D., Gammeter, S., Bossard, L., Quack, T., Van Gool, L.: Hello neighbor:
Accurate object retrieval with k-reciprocal nearest neighbors. In: CVPR (2011)

30. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures
and a data set for multi-target, multi-camera tracking. In: ECCVW (2016)

31. Rohrbach, M., Ebert, S., Schiele, B.: Transfer learning in a transductive setting.
In: NIPS (2013)

32. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain
adaptation. arXiv preprint arXiv:1702.08400 (2017)

33. Sener, O., Song, H.O., Saxena, A., Savarese, S.: Learning transferrable representa-
tions for unsupervised domain adaptation. In: NIPS (2016)

34. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. JMLR (2014)

35. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In:
AAAI (2016)

https://doi.org/10.1007/978-3-540-88682-2_21
https://doi.org/10.1007/978-3-540-88682-2_21
http://arxiv.org/abs/1703.07737
http://arxiv.org/abs/1711.03213
http://arxiv.org/abs/1702.08400


192 Z. Zhong et al.

36. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adap-
tation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8 35

37. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion:
maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

38. Wang, J., Zhu, X., Gong, S., Li, W.: Transferable joint attribute-identity deep
learning for unsupervised person re-identification. In: CVPR (2018)

39. Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap
for person re-identification. In: CVPR (2018)

40. Wu, Y., et al.: Exploit the unknown gradually: One-shot video-based person re-
identification by stepwise learning. In: CVPR (2018)

41. Yan, H., et al.: Mind the class weight bias: weighted maximum mean discrepancy
for unsupervised domain adaptation. In: CVPR (2017)

42. Yu, H., Wu, A., Zheng, W.S.: Cross-view asymmetric metric learning for unsuper-
vised person re-identification. In: ICCV (2017)

43. Zheng, L., et al.: Scalable person re-identification: a benchmark. In: ICCV (2015)
44. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: Past, present and

future. arXiv preprint arXiv:1610.02984 (2016)
45. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by gan improve the

person re-identification baseline in vitro. In: ICCV (2017)
46. Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with

k-reciprocal encoding. In: CVPR (2017)
47. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmenta-

tion. arXiv preprint arXiv:1708.04896 (2017)
48. Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for

person re-identification. In: CVPR (2018)
49. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation

using cycle-consistent adversarial networks. In: ICCV (2017)
50. Zhu, X.: Semi-supervised learning literature survey. Technical report, University

of Wisconsin-Madison (2005)

https://doi.org/10.1007/978-3-319-49409-8_35
http://arxiv.org/abs/1412.3474
http://arxiv.org/abs/1610.02984
http://arxiv.org/abs/1708.04896

	Generalizing a Person Retrieval Model Hetero- and Homogeneously
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Baseline Configuration
	3.2 Network Architecture
	3.3 Camera Invariance Learning
	3.4 Domain Connectedness Learning
	3.5 Hetero-Homogeneous Learning
	3.6 Discussion

	4 Experiment
	4.1 Datasets
	4.2 Experiment Settings
	4.3 Important Parameters
	4.4 Evaluation
	4.5 Comparison with the State-of-the-Art Methods

	5 Conclusion
	References




