®

Check for
updates

Group Normalization

Yuxin Wu and Kaiming He(®)
Facebook AI Research (FAIR), Menlo Park, USA
kaiminghe@fb.com

Abstract. Batch Normalization (BN) is a milestone technique in the
development of deep learning, enabling various networks to train. How-
ever, normalizing along the batch dimension introduces problems—BN’s
error increases rapidly when the batch size becomes smaller, caused by
inaccurate batch statistics estimation. This limits BN’s usage for training
larger models and transferring features to computer vision tasks includ-
ing detection, segmentation, and video, which require small batches con-
strained by memory consumption. In this paper, we present Group Nor-
malization (GN) as a simple alternative to BN. GN divides the channels
into groups and computes within each group the mean and variance for
normalization. GN’s computation is independent of batch sizes, and its
accuracy is stable in a wide range of batch sizes. On ResNet-50 trained
in ImageNet, GN has 10.6% lower error than its BN counterpart when
using a batch size of 2; when using typical batch sizes, GN is comparably
good with BN and outperforms other normalization variants. Moreover,
GN can be naturally transferred from pre-training to fine-tuning. GN
can outperform its BN-based counterparts for object detection and seg-
mentation in COCO, and for video classification in Kinetics, showing
that GN can effectively replace the powerful BN in a variety of tasks.
GN can be easily implemented by a few lines of code.

1 Introduction

Batch Normalization (Batch Norm or BN) [1] has been established as a very effec-
tive component in deep learning, largely helping push the frontier in computer
vision [2,3] and beyond [4]. BN normalizes the features by the mean and vari-
ance computed within a (mini-)batch. This has been shown by many practices
to ease optimization and enable very deep networks to converge. The stochas-
tic uncertainty of the batch statistics also acts as a regularizer that can benefit
generalization. BN has been a foundation of many state-of-the-art algorithms.
Despite its great success, BN exhibits drawbacks that are also caused by
its distinct behavior of normalizing along the batch dimension. In particular,
it is required for BN to work with a sufficiently large batch size (e.g., 32 per
worker! [1-3]). A small batch leads to inaccurate estimation of the batch statis-
tics, and reducing BN’s batch size increases the model error dramatically (Fig. 1).

1 In the context of this paper, we use “batch size” to refer to the number of samples per
worker (e.g., GPU). BN’s statistics are computed for each worker, but not broadcast
across workers, as is standard in many libraries.
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Fig. 1. ImageNet classification error vs. batch sizes. The model is ResNet-50
trained in the ImageNet training set using 8 workers (GPUs) and evaluated in the
validation set. BN’s error increases rapidly when reducing the batch size. GN’s compu-
tation is independent of batch sizes, and its error rate is stable despite the batch size
changes. GN has substantially lower error (by 10%) than BN with a batch size of 2.

As a result, many recent models [2,3,5-7] are trained with non-trivial batch
sizes that are memory-consuming. The heavy reliance on BN’s effectiveness to
train models in turn prohibits people from exploring higher-capacity models that
would be limited by memory.

The restriction on batch sizes is more demanding in computer vision tasks
including detection [8-10], segmentation [10,11], video recognition [12,13], and
other high-level systems built on them. E.g., the Fast/er and Mask R-CNN frame-
works [8-10] use a batch size of 1 or 2 images because of higher resolution, where
BN is “frozen” by transforming to a linear layer [3]; in video classification with 3D
convolutions [12,13], the presence of spatial-temporal features introduces a trade-
off between the temporal length and batch size. The usage of BN often requires
these systems to compromise between the model design and batch sizes.

This paper presents Group Normalization (GN) as a simple alternative to BN.
We notice that many classical features like SIFT [14] and HOG [15] are group-
wise features and involve group-wise normalization. For example, a HOG vector
is the outcome of several spatial cells where each cell is represented by a normal-
ized orientation histogram. Analogously, we propose GN as a layer that divides
channels into groups and normalizes the features within each group (Fig.2). GN
does not exploit the batch dimension, and its computation is independent of
batch sizes.

GN behaves very stably over a wide range of batch sizes (Fig. 1). With a batch
size of 2 samples, GN has 10.6% lower error than its BN counterpart for ResNet-
50 [3] in ImageNet [16]. With a regular batch size, GN is comparably good as
BN (with a gap of ~0.5%) and outperforms other normalization variants [17-19].
Moreover, although the batch size may change, GN can naturally transfer from
pre-training to fine-tuning. GN shows improved results vs. its BN counterpart
on Mask R-CNN for COCO object detection and segmentation [20], and on 3D
convolutional networks for Kinetics video classification [21]. The effectiveness of
GN in ImageNet, COCO, and Kinetics demonstrates that GN is a competitive
alternative to BN that has been dominant in these tasks.
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There have been existing methods, such as Layer Normalization (LN) [17]
and Instance Normalization (IN) [18] (Fig. 2), that also avoid normalizing along
the batch dimension. These methods are effective for training sequential models
(RNN/LSTM [22,23]) or generative models (GANs [24,25]). But as we will show
by experiments, both LN and IN have limited success in visual recognition, for
which GN presents better results. Conversely, GN could be used in place of LN
and IN and thus is applicable for sequential or generative models. This is beyond
the focus of this paper, but it is suggestive for future research.

2 Related Work

Normalization. Normalization layers in deep networks had been widely used
before the development of BN. Local Response Normalization (LRN) [26-28]
was a component in AlexNet [28] and following models [29-31]. LRN computes
the statistics in a small neighborhood for each pixel.

Batch Normalization [1] performs more global normalization along the batch
dimension (and as importantly, it suggests to do this for all layers). But the
concept of “batch” is not always present, or it may change from time to time.
For example, batch-wise normalization is not legitimate at inference time, so
the mean and variance are pre-computed from the training set [1], often by
running average; consequently, there is no normalization performed when testing.
The pre-computed statistics may also change when the target data distribution
changes [32]. These issues lead to inconsistency at training, transferring, and
testing time. In addition, as aforementioned, reducing the batch size can have
dramatic impact on the estimated batch statistics.

Several normalization methods [17-19,33,34] have been proposed to avoid
exploiting the batch dimension. Layer Normalization (LN) [17] operates along
the channel dimension, and Instance Normalization (IN) [18] performs BN-like
computation but only for each sample (Fig. 2). Instead of operating on features,
Weight Normalization (WN) [19] proposes to normalize the filter weights. These
methods do not suffer from the issues caused by the batch dimension, but they
have not been able to approach BN’s accuracy in many visual recognition tasks.
We compare with these methods in context of the remaining sections.

Addressing Small Batches. Ioffe [35] proposes Batch Renormalization (BR)
that alleviates BN’s issue involving small batches. BR introduces two extra
parameters that constrain the estimated mean and variance of BN within a
certain range, reducing their drift when the batch size is small. BR has better
accuracy than BN in the small-batch regime. But BR is also batch-dependent,
and when the batch size decreases its accuracy still degrades [35].

There are also attempts to avoid using small batches. The object detec-
tor in [36] performs synchronized BN whose mean and variance are computed
across multiple GPUs. However, this method does not solve the problem of small
batches; instead, it migrates the algorithm problem to engineering and hardware
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Fig. 2. Normalization methods. Each subplot shows a feature map tensor. The
pixels in blue are normalized by the same mean and variance, computed by aggregating
the values of these pixels. Group Norm is illustrated using a group number of 2. (Color
figure online)

demands, using a number of GPUs proportional to BN’s requirements. More-
over, the synchronized BN computation prevents using asynchronous solvers
(ASGD [37]), a practical solution to large-scale training widely used in industry.
These issues can limit the scope of using synchronized BN.

Instead of addressing the batch statistics computation (e.g., [35,36]), our
normalization method inherently avoids this computation.

Group-Wise Computation. Group convolutions have been presented by
AlexNet [28] for distributing a model into two GPUs. The concept of groups as
a dimension for model design has been more widely studied recently. The work
of ResNeXt [7] investigates the trade-off between depth, width, and groups, and
it suggests that a larger number of groups can improve accuracy under similar
computational cost. MobileNet [38] and Xception [39] exploit channel-wise (also
called “depth-wise”) convolutions, which are group convolutions with a group
number equal to the channel number. ShuffleNet [40] proposes a channel shuf-
fle operation that permutes the axes of grouped features. These methods all
involve dividing the channel dimension into groups. Despite the relation to these
methods, GN does not require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [3].

3 Group Normalization

The channels of visual representations are not entirely independent. Classical
features of SIFT [14], HOG [15], and GIST [41] are group-wise representations
by design, where each group of channels is constructed by some kind of his-
togram. These features are often processed by group-wise normalization over
each histogram or each orientation. Higher-level features such as VLAD [42]
and Fisher Vectors (FV) [43] are also group-wise features where a group can be
thought of as the sub-vector computed with respect to a cluster.

Analogously, it is not necessary to think of deep neural network features
as unstructured vectors. For example, for conv; (the first convolutional layer)
of a network, it is reasonable to expect a filter and its horizontal flipping to
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exhibit similar distributions of filter responses on natural images. If conv; hap-
pens to approximately learn this pair of filters, or if the horizontal flipping (or
other transformations) is made into the architectures by design [44,45], then the
corresponding channels of these filters can be normalized together.

The higher-level layers are more abstract and their behaviors are not as intu-
itive. However, in addition to orientations (SIFT [14], HOG [15], or [44,45]),
there are many factors that could lead to grouping, e.g., frequency, shapes, illu-
mination, textures. Their coefficients can be interdependent. In fact, a well-
accepted computational model in neuroscience is to normalize across the cell
responses [46-49], “with various receptive-field centers (covering the visual field)
and with various spatiotemporal frequency tunings” (p. 183, [46]); this can hap-
pen not only in the primary visual cortex, but also “throughout the visual sys-
tem” [49]. Motivated by these works, we propose new generic group-wise nor-
malization for deep neural networks.

Formulation. We first describe a general formulation of feature normalization,
and then present GN in this formulation. A family of feature normalization
methods, including BN, LN, IN, and GN, perform the following computation:

. 1
Ti = o (i — pa)- (1)
Here x is the feature computed by a layer, and 4 is an index. In the case of 2D
images, ¢ = (in,ic,im,iw) is a 4D vector indexing the features in (V,C, H, W)
order, where N is the batch axis, C is the channel axis, and H and W are the
spatial height and width axes.
wand o in (1) are the mean and standard deviation (std) computed by:

1 1
L= — .= — — )2 2
Mg m E Ty, 04 m E (xlc ,uz) + €, ( )

kES; keS;

with € as a small constant. S; is the set of pixels in which the mean and std are

computed, and m is the size of this set. Many types of feature normalization

methods mainly differ in how the set S; is defined (Fig. 2), discussed as follows.
In Batch Norm [1], the set S; is defined as:

Si=1{k | kc =ic}, (3)

where ic (and k¢) denotes the sub-index of ¢ (and k) along the C' axis. This
means that the pixels sharing the same channel index are normalized together,
i.e., for each channel, BN computes p and o along the (N, H, W) axes. In Layer
Norm [17], the set is:

Si ={k | kn =in}, (4)

meaning that LN computes p and o along the (C, H, W) axes for each sample.
In Instance Norm [18], the set is:

S ={k | ky =in, ke = ic}. (5)
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def GroupNorm(x, gamma, beta, G, eps=le—5):

N, C, H, W = x.shape
x = tf.reshape(x, [N, G, C // G, H, WI)

mean, var = tf.nn.moments(x, [2, 3, 4], keep_dims=True)
x = (x — mean) / tf.sqrt(var + eps)

x = tf.reshape(x, [N, C, H, W])

return x * gamma + beta

Fig. 3. Python code of Group Norm based on TensorFlow.

meaning that IN computes p and o along the (H, W) axes for each sample and
each channel. The relations among BN, LN, and IN are in Fig. 2.

As in [1], all methods of BN, LN, and IN learn a per-channel linear transform
to compensate for the possible lost of representational ability:

Yi = 7% + B, (6)

where v and (8 are trainable scale and shift (indexed by i¢ in all case, which we
omit for simplifying notations).

Group Norm. A Group Norm layer computes p and o in S; defined as:

Si={k|ky=

(7)

N L(J/G C’/G

Here G is the number of groups, which is a pre-defined hyper-parameter (G = 32
by default). C'/G is the number of channels per group. |-] is the floor operation,
and “LC’,“/GJ = LC/GJ” means that the indexes 7 and k are in the same group of
channels, assuming each group of channels are stored in a sequential order along
the C' axis. GN computes p and o along the (H, W) axes and along a group of
% channels. The computation of GN is illustrated in Fig.2 (rightmost), which
is a simple case of 2 groups (G = 2) each having 3 channels.

Given S; in Eq. (7), a GN layer is defined by Egs. (1), (2) and (6). Specifically,
the pixels in the same group are normalized together by the same y and o. GN
also learns the per-channel v and S.

Relation to Prior Work. LN, IN, and GN all perform independent compu-
tations along the batch axis. The two extreme cases of GN are equivalent to LN
and IN (Fig. 2).

GN becomes LN [17] if we set the group number as G = 1. LN assumes
all channels in a layer make “similar contributions” [17]. Unlike the case of
fully-connected layers studied in [17], this assumption can be less valid with the
presence of convolutions, as discussed in [17]. GN is less restricted than LN,
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Fig. 4. Comparison of error curves with a batch size of 32 images/GPU. We show
the ImageNet training error (left) and validation error (right) vs. numbers of training
epochs. The model is ResNet-50.

Table 1. Comparison of error rates with a batch size of 32 images/GPU, on
ResNet-50 in the ImageNet validation set. The error curves are in Fig. 4.

BN |LN |IN |GN
val error (%) | 23.6 |25.3 | 28.4 | 24.1
A (vs. BN) |- 1.7 4.8 0.5

because each group of channels (instead of all of them) are assumed to subject
to the shared mean and variance; the model still has flexibility of learning a
different distribution for each group. This leads to improved representational
power of GN over LN, as shown by the lower training and validation error in
experiments (Fig. 4).

GN becomes IN [18] if we set the group number as G = C' (i.e., one chan-
nel per group). But IN can only rely on the spatial dimension for computing
the mean and variance and it misses the opportunity of exploiting the channel
dependence.

Implementation. GN can be easily implemented by a few lines of code in
PyTorch [50] and TensorFlow [51] where automatic differentiation is supported.
Figure 3 shows the code based on TensorFlow. In fact, we only need to specify
how the mean and variance (“moments”) are computed, along the appropriate
axes as defined by the normalization method.

4 Experiments

4.1 Image Classification in ImageNet

Implementation Details. As standard practice [3,52], we use 8 GPUs to train
all models, and the batch mean and variance of BN are computed within each
GPU. We use the method of [53] to initialize all convolutions for all models.
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Fig. 5. Sensitivity to batch sizes. We show ResNet-50’s validation error of BN (left)
and LN (right) using a batch size of 32, 16, 8, 4, and 2 images/GPU.

Table 2. Sensitivity to batch sizes. We show ResNet-50’s validation error (%) in
ImageNet. The last row shows the differences between BN and GN. The error curves
are in Fig. 5. This table is visualized in Fig. 1.

Batch size | 32 16 8 4 2

BN 23.6 | 23.7|24.8 |27.3 |34.7
GN 24.1 |24.2 |24.0 |24.2 | 24.1
A 0.5 105 |—08|—-31 —10.6

We use 1 to initialize all v parameters, except for each residual block’s last
normalization layer where we initialize « by 0 following [54] (such that the initial
state of a residual block is identity). We use a weight decay of 0.0001 for all weight
layers, including v and 3 (following [52] but unlike [3,54]). We train 100 epochs
for all models, and decrease the learning rate by 10x at 30, 60, and 90 epochs.
During training, we adopt the data augmentation of [31] as implemented by [52].
We evaluate the top-1 classification error on the center crops of 224 x 224 pixels
in the validation set. To reduce random variations, we report the median error
rate of the final 5 epochs [54]. Other implementation details follow [52].

Our baseline is the ResNet trained with BN [3]. To compare with LN, IN, and
GN, we replace BN with the specific variant. We use the same hyper-parameters
for all models. We set G = 32 for GN by default.

Comparison of Feature Normalization Methods. We first experiment with
a regular batch size of 32 images (per GPU) [1,3]. BN works successfully in
this regime, so this is a strong baseline to compare with. Figure 4 shows the error
curves, and Table 1 shows the final results. All of these normalization methods
are able to converge. LN has a small degradation of 1.7% comparing with BN.
This is an encouraging result, as it suggests that normalizing along all channels
(as done by LN) of a convolutional network is reasonably good. IN also makes
the model converge, but is 4.8% worse than BN.
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Table 3. Group division. We show ResNet-50’s validation error (%) in ImageNet,
trained with 32 images/GPU. (Left): a given number of groups. (Right): a given number
of channels per group. The last rows show the differences with the best number.

# groups (G) channels per group
64 32 16 8 4 2 1(=LN) 64 32 16 8 4 2 1(=IN)
24.6 24.1 24.6 244 24.6 24.7 25.3 24.4 245 24.2 24.3 24.8 25.6 284
0.5 - 0.5 0.3 05 0.6 1.2 0.2 0.3 - 0.1 0.6 14 4.2

In this regime where BN works well, GN is able to approach BN’s accuracy,
with a decent degradation of 0.5% in the validation set. Actually, Fig.4 (left)
shows that GN has lower training error than BN, indicating that GN is effective
for easing optimization. The slightly higher validation error of GN implies that
GN loses some regularization ability of BN. This is understandable, because BN’s
mean and variance computation introduces uncertainty caused by the stochastic
batch sampling, which helps regularization [1]. This uncertainty is missing in GN
(and LN/IN). But it is possible that GN combined with a suitable regularizer
will improve results. This can be a future research topic.

Small Batch Sizes. Although BN benefits from the stochasticity under some
situations, its error increases when the batch size becomes smaller and the uncer-
tainty gets bigger. We show this in Figs. 1, 5 and Table 2.

We evaluate batch sizes of 32, 16, 8, 4, 2 images per GPU. In all cases, the
BN mean and variance are computed within each GPU and not synchronized.
All models are trained in 8 GPUs. In this set of experiments, we adopt the
linear learning rate scaling rule [54-56] to adapt to batch size changes—we use
a learning rate of 0.1 [3] for the batch size of 32, and 0.1N/32 for a batch size of
N. This linear scaling rule works well for BN if the total batch size changes (by
changing the number of GPUs) but the per-GPU batch size does not change [54].
We keep the same number of training epochs for all cases (Fig. 5, x-axis). All
other hyper-parameters are unchanged.

Figure 5 (left) shows that BN’s error becomes considerably higher with small
batch sizes. GN’s behavior is more stable and insensitive to the batch size. Actu-
ally, Fig.5 (right) shows that GN has very similar curves (subject to random
variations) across a wide range of batch sizes from 32 to 2. For a batch size of
2, GN has 10.6% lower error rate than its BN counterpart (24.1% vs. 34.7%).

These results indicate that the batch mean and variance estimation can be
overly stochastic and inaccurate, especially when they are computed over 4 or
2 images. However, this stochasticity disappears if the statistics are computed
from 1 image, in which case BN becomes similar to IN at training time. We see
that IN has a better result (28.4%) than BN with a batch size of 2 (34.7%).

The robust results of GN in Table2 demonstrate GN’s strength. It allows
to remove the batch size constraint imposed by BN, which can give consid-
erably more memory (e.g., 16x or more). This will make it possible to train
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Fig. 6. Evolution of feature distributions of convs_3’s output features (before
normalization and ReLU) from VGG-16, shown as the {1, 20, 80, 99} percentile of
responses, with no normalization, BN, and GN. The table on the right shows the clas-
sification error (%) in ImageNet validation. Models are trained with 32 images/GPU.

higher-capacity models that would be otherwise bottlenecked by memory limi-
tation. We hope this will create new opportunities in architecture design.

Comparison with Batch Renorm (BR). BR [35] introduces two extra
parameters (r and d in [35]) that constrain the estimated mean and variance
of BN. Their values are controlled by 7max and dpmax. To apply BR to ResNet-
50, we have carefully chosen these hyper-parameters, and found that ry.x = 1.5
and dpax = 0.5 work best for ResNet-50. With a batch size of 4, ResNet-50
trained with BR has an error rate of 26.3%. This is better than BN’s 27.3%, but
still 2.1% higher than GN’s 24.2%.

Group Division. Thus far all presented GN models are trained with a group
number of G = 32. Next we evaluate different ways of dividing into groups. With
a given fixed group number, GN performs reasonably well for all values of G we
studied (Table 3, right panel). In the extreme case of G = 1, GN is equivalent to
LN, and its error rate is higher than all cases of G > 1 studied.

We also evaluate fixing the number of channels per group (Table 3, left panel).
Note that because the layers can have different channel numbers, the group
number G can change across layers in this setting. In the extreme case of 1
channel per group, GN is equivalent to IN. Even if using as few as 2 channels
per group, GN has substantially lower error than IN (25.6% wvs. 28.4%). This
result shows the effect of grouping channels when performing normalization.

Deeper Models. We have also compared GN with BN on ResNet-101 [3]. With
a batch size of 32, our BN baseline of ResNet-101 has 22.0% validation error, and
the GN counterpart has 22.4%, slightly worse by 0.4%. With a batch size of 2,
GN ResNet-101’s error is 23.0%. This is still a decently stable result considering
the very small batch size, and it is 8.9% better than the BN counterpart’s 31.9%.

Results and Analysis of VGG Models. To study GN/BN compared to no
normalization, we consider VGG-16 [57] that can be healthily trained without
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Table 4. Detection and segmentation results in COCO, using Mask R-CNN
with the ResNet-50 C4 backbone. BN™ means BN is frozen.

Backbone | APPPox | APEbox | Apbbox | Apmask | Apmask | A pmask
C4, BN® |37.7 57.9 40.9 32.8 54.3 34.7
C4,GN [38.8 |59.2 [42.2 [33.6 559 35.4

normalization layers. We apply BN or GN right after each convolutional layer.
Figure 6 shows the evolution of the feature distributions of convs_s (the last
convolutional layer). GN and BN behave qualitatively similar, while being sub-
stantially different with the variant that uses no normalization; this phenomenon
is also observed for all other convolutional layers. This comparison suggests that
performing normalization is essential for controlling the distribution of features.

For VGG-16, GN is better than BN by 0.4% (Fig.6, right). This possibly
implies that VGG-16 benefits less from BN’s regularization effect, and GN (that
leads to lower training error) is superior to BN in this case.

4.2 Object Detection and Segmentation in COCO

Next we evaluate fine-tuning the models for transferring to object detection
and segmentation. These computer vision tasks in general benefit from higher-
resolution input, so the batch size tends to be small in common practice (1 or
2 images/GPU [8-10,58]). As a result, BN is turned into a linear layer y =
T(z — p) + B where p and o are pre-computed from the pre-trained model and
frozen [3]. We denote this as BN, which in fact performs no normalization during
fine-tuning. We have also tried a variant that fine-tunes BN (normalization is
performed and not frozen) and found it works poorly (reducing ~6 AP with a
batch size of 2), so we ignore this variant.

We experiment on the Mask R-CNN baselines [10], implemented in the pub-
licly available codebase of Detectron [59]. We use the end-to-end variant with the
same hyper-parameters as in [59]. We replace BN" with GN during fine-tuning,
using the corresponding models pre-trained from ImageNet.? During fine-tuning,
we use a weight decay of 0 for the v and § parameters, which is important for
good detection results when vy and 3 are being tuned. We fine-tune with a batch
size of 1 image/GPU and 8 GPUs.

The models are trained in the COCO train2017 set and evaluated in the
COCO val2017 set (a.k.a minival). We report the standard COCO metrics of
Average Precision (AP), AP5o, and AP75, for bounding box detection (APPPox)
and instance segmentation (AP™ask).

2 Detectron [59] uses pre-trained models provided by the authors of [3]. For fair com-
parisons, we instead use the models pre-trained in this paper. The object detection
and segmentation accuracy is statistically similar between these pre-trained models.
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Table 5. Detection and segmentation results in COCO, using Mask R-CNN
with ResNet-50 FPN and a 4convlfc bounding box head. BN" means BN is frozen.

Backbone |box head w/ APPbox | Apbbox | Apbbox | ppmask | g pmask | A pmask
FPN, BN | - 38.6 59.5 41.9 34.2 56.2 36.1
FPN, BN" | GN 39.5 60.0 43.2 34.4 56.4 36.3
FPN, GN |GN 40.0 61.0 43.3 34.8 57.3 36.3

Table 6. Detection and segmentation results in COCO using Mask R-CNN
and FPN. Here BN" is the default Detectron baseline [59], and GN is applied to the
backbone, box head, and mask head. “long” means training with more iterations.

Backbone APPbox | Apbbox | Apbbox | ppmask | ppmask | A pmask
R50 BN” 38.6 59.8  42.1 34.5 56.4 36.3
R50 GN 40.3  |61.0 |44.0 |35.7 57.9 37.7
R50 GN, long |40.8 |61.6 [44.4 |36.1 |58.5 |38.2
R101 BN" 40.9 619 448 |364 58.5 38.7
R101 GN 41.8 625 454 | 36.8 59.2 39.0
R101 GN, long |42.3 |62.8 [46.2 |37.2 |59.7 |39.5

Results of C4 Backbone. Table4 shows the comparison of GN vs. BN" on
Mask R-CNN using a convy backbone (“C4” [10]). This C4 variant uses ResNet’s
layers of up to convy to extract feature maps, and ResNet’s convs layers as
the Region-of-Interest (RoI) heads for classification and regression. As they are
inherited from the pre-trained model, the backbone and head both involve nor-
malization layers.

On this baseline, GN improves over BN" by 1.1 box AP and 0.8 mask AP.
We note that the pre-trained GN model is slightly worse than BN in ImageNet
(24.1% ws. 23.6%), but GN still outperforms BN™ for fine-tuning. BN™ creates
inconsistency between pre-training and fine-tuning (frozen), which may explain
the degradation.

Results of FPN Backbone. Next we compare GN and BN" on Mask R-CNN
using a Feature Pyramid Network (FPN) backbone [60], the currently state-of-
the-art framework in COCO. Unlike the C4 variant, FPN exploits all pre-trained
layers to construct a pyramid, and appends randomly initialized layers as the
head. In [60], the box head consists of two hidden fully-connected layers (2fc).
We find that replacing the 2fc box head with 4convlfc (similar to [61]) can better
leverage GN. The resulting comparisons are in Table 5.

As a baseline, BN" has 38.6 box AP using the 4convlfc head, on par with its
2fc counterpart using the same pre-trained model (38.5 AP). By adding GN to
all convolutional layers of the box head (but still using the BN" backbone), we
increase the box AP by 0.9 to 39.5 (2nd row, Table5). This ablation shows that
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Table 7. COCO models trained from scratch using Mask R-CNN and FPN.

from scratch | APPPO* | APERO* | AP2POY | AP™*F | APEySt | APRYeK
RS0 GN 395 |59.8 436 352 569 376
RI0I GN 410 611 449 [364 582 387

a substantial portion of GN’s improvement for detection is from normalization
in the head (which is also done by the C4 variant). On the contrary, applying
BN to the box head (that has 512 Rols per image) does not provide satisfactory
result and is ~9 AP worse—in detection, the batch of Rols are sampled from the
same image and their distribution is not 4.i.d., and the non-i.i.d. distribution is
also an issue that degrades BN’s batch statistics estimation [35]. GN does not
suffer from this problem.

Next we replace the FPN backbone with the GN-based counterpart, i.e., the
GN pre-trained model is used during fine-tuning (3rd row, Table5). Applying GN
to the backbone alone contributes a 0.5 AP gain (from 39.5 to 40.0), suggesting
that GN helps when transferring features.

Table 6 shows the full results of GN (applied to the backbone, box head, and
mask head), compared with the Detectron baseline [59] based on BN". Using
the same hyper-parameters as [59], GN increases over BN" by a healthy margin.
Moreover, we found that GN is not fully trained with the default schedule in [59],
so we also tried increasing the iterations from 180k to 270k (BN™ does not benefit
from longer training). Our final ResNet-50 GN model (“long”, Table6) is 2.2
points box AP and 1.6 points mask AP better than its BN" variant.

Training Mask R-CNN from Scratch. GN allows us to easily investigate
training object detectors from scratch (without any pre-training). We show the
results in Table7, where the GN models are trained for 270k iterations. To
our knowledge, our numbers (41.0 box AP and 36.4 mask AP) are the best
from-scratch results in COCO reported to date; they can even compete with
the ImageNet-pretrained results in Table6. As a reference, with synchronous
BN [36], a concurrent work [62] achieves a from-scratch result of 34.5 box AP
using R50 and 36.3 using a specialized backbone.

4.3 Video Classification in Kinetics

Lastly we evaluate video classification in the Kinetics dataset [21]. This task is
memory-demanding and imposes constraints on the batch sizes.

We experiment with Inflated 3D (I3D) convolutional networks [13]. We use
the ResNet-50 I3D baseline as described in [63]. The models are pre-trained
from ImageNet. For both BN and GN, we extend the normalization from over
(H,W) toover (T, H,W), where T is the temporal axis. We train in the 400-class
Kinetics training set and evaluate in the validation set. We report the top-1 and
top-5 classification accuracy, using standard 10-clip testing that averages softmax
scores from 10 clips regularly sampled.
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We study two different temporal lengths: 32-frame and 64-frame input clips.
The 32-frame clip is regularly sampled with a frame interval of 2 from the raw
video, and the 64-frame clip is sampled continuously. The model is fully convolu-
tional in spacetime, so the 64-frame variant consumes about 2x more memory.
We study a batch size of 8 or 4 clips/GPU for the 32-frame variant, and 4
clips/GPU for the 64-frame variant due to memory limitation.

Results of 32-frame Inputs. Table8 (col. 1, 2) shows the video classification
accuracy in Kinetics using 32-frame clips. For the batch size of 8, GN is slightly
worse than BN by 0.3% top-1 accuracy and 0.1% top-5. This shows that GN is
competitive with BN when BN works well. For the smaller batch size of 4, GN’s
accuracy is kept similar (72.8 / 90.6 vs. 73.0 / 90.6), but is better than BN’s
72.1 / 90.0. BN’s accuracy is decreased by 1.2% when the batch size decreases
from 8 to 4. Figure7 shows the error curves. BN’s error curves (left) have a
noticeable gap when the batch size decreases from 8 to 4, while GN’s error
curves (right) are very similar.

Batch Norm (BN) Group Norm (GN)

60
—BN, 8clips/gpu
—BN, 4clips/gpu

60

—GN, 8clips/gpu
—GN, 4clips/gpu

o 10 20 30 40 50 60 70 80 920 100 o 10 20 30 40 50 60 70 80 920 100
epochs epochs

Fig.7. Error curves in Kinetics with an input length of 32 frames. We show
ResNet-50 I3D’s validation error of BN (left) and GN (right) using a batch size of 8
and 4 clips/GPU. The monitored validation error is the 1-clip error under the same
data augmentation as the training set, while the final validation accuracy in Table 8 is
10-clip testing without data augmentation.

Results of 64-frame Inputs. Table8 (col. 3) shows the results of using 64-
frame clips. In this case, BN has a result of 73.3 / 90.8. These appear to be
acceptable numbers (vs. 73.3 / 90.7 of 32-frame, batch size 8), but the trade-off
between the temporal length (64 vs. 32) and batch size (4 vs. 8) could have been
overlooked. Comparing col. 3 and col. 2 in Table8, we find that the temporal
length actually has positive impact (4+1.2%), but it is veiled by BN’s negative
effect of the smaller batch size.

GN does not suffer from this trade-off. The 64-frame variant of GN has
74.5 / 91.7 accuracy, showing healthy gains over its BN counterpart and all BN
variants. GN helps the model benefit from temporal length, and the longer clip
boosts the top-1 accuracy by 1.7% (top-5 1.1%) with the same batch size.
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Table 8. Video classification in Kinetics: ResNet-50 I3D’s top-1/5 accuracy (%).

Clip length | 32 32 64

Batch size |8 4 4

BN 73.3 /90.7|72.1 /90.0 |73.3/90.8
GN 73.0 /90.6 |72.8/90.6 74.5/91.7

The improvement of GN on detection, segmentation, and video classification

demonstrates that GN is a strong alternative to the powerful and currently
dominant BN technique in these tasks.

5

Discussion and Future Work

We have presented GN as an effective normalization layer without exploiting the
batch dimension. We have evaluated GN’s behaviors in a variety of applications.
We note, however, that BN has been so influential that many state-of-the-art
systems and their hyper-parameters have been designed for it, which may not
be optimal for GN-based models. It is possible that re-designing the systems or
searching new hyper-parameters for GN will give better results.
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