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Abstract. We consider an active visual exploration scenario, where an
agent must intelligently select its camera motions to efficiently recon-
struct the full environment from only a limited set of narrow field-of-
view glimpses. While the agent has full observability of the environment
during training, it has only partial observability once deployed, being
constrained by what portions it has seen and what camera motions are
permissible. We introduce sidekick policy learning to capitalize on this
imbalance of observability. The main idea is a preparatory learning phase
that attempts simplified versions of the eventual exploration task, then
guides the agent via reward shaping or initial policy supervision. To sup-
port interpretation of the resulting policies, we also develop a novel policy
visualization technique. Results on active visual exploration tasks with
360◦ scenes and 3D objects show that sidekicks consistently improve
performance and convergence rates over existing methods. Code, data
and demos are available (Project website: http://vision.cs.utexas.edu/
projects/sidekicks/).

Keywords: Visual exploration · Reinforcement learning

1 Introduction

Visual recognition has witnessed dramatic successes in recent years. Fueled by
benchmarks composed of Web photos, the focus has been inferring seman-
tic labels from human-captured images—whether classifying scenes, detecting
objects, or recognizing activities [41,51,57]. By relying on human-taken images,
the common assumption is that an intelligent agent will have already decided
where and how to capture the input views. While sufficient for handling static
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Fig. 1. Embodied agents that actively explore novel objects (left) or 360◦ environments
(right) intelligently select camera motions to gain as much information as possible with
very few glimpses. While they naturally face limited observability of the environment,
during learning fuller observability may be available. We propose sidekicks to guide
policy learning for active visual exploration.

repositories of photos (e.g., auto-tagging Web photos and videos), assuming
informative observations glosses over a very real hurdle for embodied vision
systems.

A resurgence of interest in perception tied to action takes aim at that hurdle.
In particular, recent work explores agents that optimize their physical movements
to achieve a specific perception goal, e.g., for active recognition [2,28,29,31,43],
visual exploration [30], object manipulation [40,46,49], or navigation [2,21,70].
In any such setting, deep reinforcement learning (RL) is a promising approach.
The goal is to learn a policy that dictates the best action for the given state,
thereby integrating sequential control decisions with visual perception.

However, costly exploration stages and partial state observability are well-
known impediments to RL. In particular, an active visual agent [21,30,70,71]
has to take a long series of actions purely based on the limited information
available from its first person view. Due to poor action selection based on limited
information, the most effective viewpoint trajectories are buried among many
mediocre ones, impeding the agent’s exploration in complex state-action spaces.

We observe that agents lacking full observability when deployed may nonethe-
less possess full observability during training, in some cases. Overall, the imbal-
ance occurs naturally when an agent is trained with a broader array of sen-
sors than available at test-time, or trained free of the hard time pressures that
limit test-time exploration. In particular, as we will examine in this work, once
deployed, an active exploration agent can only move the camera to “look-around”
nearby [30], yet if trained with omnidirectional panoramas, could access any
possible viewpoint while learning. Similarly, an active object recognition sys-
tem [2,28,29,31,65] can only see its previously selected views of the object; yet
if trained with CAD models, it could observe all possible views while learn-
ing. Additionally, agents can have access to multiple sensors during training in
simulation environments [10,13,48], yet operate on first-person observations dur-
ing test-time. However, existing methods restrict the agent to the same partial
observability during training [28–31,65,70].
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We propose to leverage the imbalance of observability. To this end, we intro-
duce sidekick policy learning. We use the name “sidekick” to signify how a side-
kick to a hero (e.g., in a comic or movie) provides alternate points of view, knowl-
edge, and skills that the hero does not have. In contrast to an expert [19,61], a
sidekick complements the hero (agent), yet cannot solve the main task at hand.

We propose two sidekick variants. Both use access to the full state during
a preparatory training period to facilitate the agent’s ultimate learning task.
The first sidekick previews individual states, estimates their value, and shapes
rewards to the agent for visiting valuable states during training. The second
sidekick provides initial supervision via trajectory selections to accelerate the
agent’s training, while gradually permitting the agent to act on its own. In both
cases, the sidekicks learn to solve simplified versions of the main task with full
observability, and use insights from those solutions to aid the training of the
agent. At test time, the agent has to act without the sidekick.

We validate sidekick policy learning for active visual exploration [30]. The
agent enters a novel environment and must select a sequence of camera motions
to rapidly understand its entire surroundings. For example, an agent that has
explored various grocery stores should enter a new one and, with a couple
glimpses, (1) conjure a belief state for where different objects are located, then
(2) direct its camera to flesh out the harder-to-predict objects and contexts. The
task is like active recognition [2,29,31,65], except that the training signal is pixel-
wise reconstruction error for the full environment rather than labeling error. Our
sidekicks can look at any part of the environment in any sequence during train-
ing, whereas the actual agent is limited to physically feasible camera motions
and sees only those views it has selected. On two standard datasets [65,66], we
show how sidekicks accelerate training and promote better look around policies.

As a secondary contribution, we present a novel policy visualization tech-
nique. Our approach takes the learned policy as input, and displays a sequence
of heatmaps showing regions of the environment most responsible for the agent’s
selected actions. The resulting visualizations help illustrate how sidekick policy
learning differs from traditional training.

2 Related Work

Active Vision and Attention: Linking intelligent control strategies to per-
ception has early foundations in the field [1,5,6,63]. Recent work explores
new strategies for active object recognition [2,28,29,31,65], object localiza-
tion [9,20,71], and visual SLAM [32,58], in order to minimize the number of
sampled views required to perform accurate recognition or reconstruction. Our
work is complementary to any of the above: sidekick policy learning is a means
to accelerate and improve active perception when observability is greater during
training.

Models of saliency and attention allow a system to prioritize portions of
its observation to reduce clutter or save computation [4,42,45,67,68]. However,
unlike both our work and the active methods above, they assume full observ-
ability at test time, selecting among already-observed regions. Work in active
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sensor placement aims to place sensors in an environment to maximize cover-
age [11,36,62]. We introduce a model for coverage in our policy learning solution
(Sect. 3.3). However, rather than place and fix N static sensors, the visual explo-
ration tasks entail selecting new observations dynamically and in sequence.

Supervised Learning with Observability Imbalance: Prior work in super-
vised learning investigates ways to leverage greater observability during training,
despite more limited observability during test time. Methods for depth estima-
tion [16,22,60] and/or semantic segmentation [25,26,56] use RGBD depth data,
multiple views, and/or auxiliary annotations during training, then proceed with
single image observations at test time. Similarly, self-supervised losses [27,44]
based on auxiliary prediction tasks at training time have been used to aid repre-
sentation learning for control tasks. Knowledge distillation [24] lets a “teacher”
network guide a “student” with the motivation of network compression. In learn-
ing with privileged information, an “expert” provides the student with training
data having extra information (unavailable during testing) [37,53,61]. At a high
level, all the above methods relate to ours in that a simpler learning task facili-
tates a harder one. However, in strong contrast, they tackle supervised classifica-
tion/regression/representation learning, whereas our goal is to learn a policy for
selecting actions. Accordingly, we develop a very different strategy—introducing
rewards and trajectory suggestions—rather than auxiliary labels/modalities.

Guiding Policy Learning: There is a wide body of work aimed at addressing
sparse rewards and partial observability. Several works explore reward shaping
motivated by different factors. The intrinsic motivation literature develops par-
allel reward mechanisms, e.g., based on surprise [7,47], to direct exploration. The
TAMER framework [33–35] utilizes expert human rewards about the end-task.
Potential-based reward shaping [23] incorporates expert knowledge grounded
in potential functions to ensure policy invariance. Others convert control tasks
into supervised measurement prediction task by defining goals and rewards as
functions of measurements [12]. In contrast to all these approaches, our side-
kicks exploit the observability difference between training and testing to transfer
knowledge from a simpler version of the task. This external knowledge directly
impacts the final policy learned by augmenting task related knowledge via reward
shaping.

Behavior cloning provides expert-generated trajectories as supervised (state,
action) pairs [8,14,17,50]. Offline planning, e.g., with tree search, is another way
to prepare good training episodes by investing substantial computation offline [3,
19,54], but observability is assumed to be the same between training and testing.
Guided policy search uses importance sampling to optimize trajectories within
high-reward regions [39] and can utilize full observability [38], yet transfers from
an expert in a purely supervised fashion. Our second sidekick also demonstrates
good action sequences, but we specifically account for the observability imbalance
by annealing supervision over time.

More closely related to our goal is the asymmetric actor critic, which lever-
ages synthetic images to train a robot to pick/push an object [48]. Full state
information from the graphics engine is exploited to better train the critic. While
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this approach modifies the advantage expected for a state like our first sidekick,
this is only done at the task level. Our sidekick injects a different perspective by
solving simpler versions of the task, leading to better performance (Sect. 4.2).

Policy Visualization: Methods for post-hoc explanation of deep networks are
gaining attention due to their complexity and limited interpretability. In super-
vised learning, heatmaps indicating regions of an image most responsible for a
decision are generated via backprop of the gradient for a class label [15,52,55]. In
reinforcement learning, policies for visual tasks (like Atari) are visualized using
t-SNE maps [69] or heatmaps highlighting the parts of a current observation
that are important for selecting an action [18]. We introduce a policy visualiza-
tion method that reflects the influence of an agent’s cumulative observations on
its action choices, and use it to illuminate the role of sidekicks.

3 Approach

Our goal is to learn a policy for controlling an agent’s camera motions such that
it can explore novel environments and objects efficiently. Our key insight is to
facilitate policy learning via sidekicks that exploit (1) full observability and (2)
unlimited time steps to solve a simpler problem in a preparatory training phase.

We first formalize the problem setup in Sect. 3.1. After overviewing observa-
tion completion as a means of active exploration in Sect. 3.2, we introduce our
sidekick learning framework in Sect. 3.3. We tie together the observation com-
pletion and sidekick components with the overall learning objective in Sect. 3.4.
Finally, we present our policy visualization technique in Sect. 3.5.

3.1 Problem Setup: Active Visual Exploration

The problem setting builds on the “learning to look around” challenge introduced
in [30]. Formally, the task is as follows. The agent starts by looking at a novel
environment (or object) X from some unknown viewpoint1. It has a budget T
of time to explore the environment. The learning objective is to minimize the
error in the agent’s pixelwise reconstruction of the full—mostly unobserved—
environment using only the sequence of views selected within that budget.

Following [30], we discretize the environment into a set of candidate view-
points. In particular, the space of viewpoints is a viewgrid indexed by N eleva-
tions and M azimuths, denoted by V (X) = {x(X, θ(i))|1 ≤ i ≤ MN}, where
x(X, θ(i)) is the 2D view of X from viewpoint θ(i), which is comprised of two
angles. More generally, θ(i) could capture both camera angle and position; how-
ever, to best exploit existing datasets, we limit camera motions to rotations.

The agent expends the budget in discrete increments, called “glimpses”, by
selecting T − 1 camera motions in sequence. At each time step, the agent gets
1 For simplicity of presentation, we represent an environment as X where the agent

explores a novel scene, looking outward in new viewing directions. However, experi-
ments will also use X as an object where the agent moves around an object, looking
inward at it from new viewing angles.
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observation xt from the current viewpoint. The agent makes an exploratory rota-
tion (δt) based on its policy π. When the agent executes action δt ∈ A, the view-
point changes according to θt+1 = θt + δt. For each camera motion δt executed by
the agent, a reward rt is provided by the environment (Sects. 3.3 and 3.4). Using
the view xt, the agent updates its internal representation of the environment,
denoted V̂ (X). Because camera motions are restricted to have proximity to the
current camera angle (Sect. 4.1) and candidate viewpoints partially overlap, the
discretization promotes efficiency without neglecting the physical realities of the
problem (following [29–31,43]).

t = 1 t = 2 t = 3

Fig. 2. Active observation completion. The agent receives one view (shown in red),
updates its belief and reconstructs the viewgrid at each time step. It executes an
action (red arrows) according to its policy to obtain the next view. The active agent
must rapidly refine its belief with well-chosen views. (Color figure online)

3.2 Recurrent Observation Completion Network

We start with the deep RL neural network architecture proposed in [30] to
represent the agent’s recurrent observation completion. The process is deemed
“completion” because the agent strives to hallucinate portions of the environ-
ment it has not yet seen. It consists of five modules: Sense, Fuse, Aggregate,
Decode, and Act with parameters Ws, Wf , Wr, Wd and Wa respectively.

– Sense: Independently encodes the view (xt) and proprioception (pt) consist-
ing of elevation at time t and relative motion from time t−1 to t, and returns
the encoded tuple st = Sense(xt, pt).

– Fuse: Consists of fully connected layers that jointly encode the tuple st and
output a fused representation ft = Fuse(st).

– Aggregate: An LSTM that aggregates fused inputs over time to build the
agent’s internal representation at = Aggregate(f1, f2, . . . , ft) of X.

– Decode: A convolutional decoder which reconstructs the viewgrid
V̂t = Decode(at) as a set of MN feature maps (3MN for 3 channeled images)
corresponding to each view of the viewgrid.

– Act: Given the aggregated state at and proprioception pt, the Act module
outputs a probability distribution π(δ|at) over the candidate camera motions
δ ∈ A. An action sampled from this distribution δt = Act(at, pt) is executed.

At each time step, the agent receives and encodes a new view xt, then updates
its internal representation at by sensing, fusing, and aggregating. It decodes the
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viewgrid V̂t and executes δt to change the viewpoint. It repeats the above steps
until the time budget T is reached (see Fig. 2). See Supp. for implementation
details and architecture diagram.

3.3 Sidekick Definitions

Sidekicks provide a preparatory learning phase that informs policy learning.
Sidekicks have full observability during training: in particular, they can observe
the results of arbitrary camera motions in arbitrary sequence. This is impossi-
ble for the actual look-around agent—who must enter novel environments and
respect physical camera motion and budget constraints—but it is practical for
the sidekick with fully observed training samples (e.g., a 360◦ panoramic image
or 3D object model, cf. Sect. 4.1). Sidekicks are trained to solve a simpler problem
with relevance to the ultimate look-around agent, serving to accelerate training
and help the agent converge to better policies. In the following, we define two
sidekick variants: a reward-based sidekick and a demonstration-based sidekick.

Reward-Based Sidekick. The reward-based sidekick aims to identify a set of
K views {x(X, θ1), . . . , x(X, θK)} which can provide maximal information about
the environment X. The sidekick is allowed to access X and select views without
any restrictions. Hence, it addresses a simplified completion problem.

A candidate view is scored based on how informative it is, i.e., how well
the entire environment can be reconstructed given only that view. We train a
completion model (cf. Sect. 3.2) that can reconstruct V̂ (X) from any single view
(i.e., we set T = 1). Let V̂ (X|y) denote the decoded reconstruction for X given
only view y as input. The sidekick scores the information in observation x(X, θ)
as:

Info (x(X, θ),X) ∝−1 d
(
V̂ (X|x(X, θ)), V (X)

)
, (1)

where d denotes the reconstruction error and V (X) is the fully observed environ-
ment. We use a simple �2 loss on pixels for d to quantify information. Higher-level
losses, e.g., for detected objects, could be employed when available. The scores
are normalized to lie in [0, 1] across the different views of X. The sidekick scores
each candidate view. Then, in order to sharpen the effects of the scoring function
and avoid favoring redundant observations, the sidekick selects the top K most
informative views with greedy non-maximal suppression. It iteratively selects
the view with the highest score and suppresses all views in the neighborhood of
that view until K views are selected (see Supp. for details). This yields a map
of favored views for each training environment. See Fig. 3, top row.

The sidekick conveys the results to the agent during policy learning in the
form of an augmented reward (to be defined in Sect. 3.4). Thus, the reward-based
sidekick previews observations and encourages the selection of those individu-
ally valuable for reconstruction. Note that while the sidekick indexes views in
absolute angles, the agent will not; all its observations are relative to its initial
(random) glimpse direction. This works because the sidekick becomes a part of
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Fig. 3. Top left shows the 360◦ environment’s viewgrid, indexed by viewing elevation
and azimuth. Top: Reward sidekick scores individual views based on how well they
alone permit inference of the viewgrid X (Eq. 1). The grid of scores (center) is post-
processed with non-max suppression to prioritize K non-redundant views (right), then
is used to shape the agent’s rewards. Bottom: Demonstration sidekick. Left “grid-
of-grids” displays example coverage score maps (Eq. 2) for all θ(i), θ(j) view pairs. The
outer N × M grid considers each θ(i), and each inner N × M grid considers each θ(j)

for the given θ(i) (bottom left). A pixel in that grid is bright if coverage is high for θ(j)

given θ(i), and dark otherwise. Each θ(i) denotes an (elevation, azimuth) pair. While
observed views and their neighbors are naturally recoverable (brighter), the sidekick
uses broader environment context to also anticipate distant and/or different-looking
parts of the environment, as seen by the non-uniform spread of scores in the left grid.
Given the coverage function and a starting position, this sidekick selects actions to
greedily optimize the coverage objective (Eq. 3). The bottom right strip shows the
cumulative coverage maps as each of the T = 4 glimpses is selected.

the environment, i.e., it attaches rewards to the true views of the environment.
In short, the reward-based sidekick shapes rewards based on its exploration with
full observability.

Demonstration-Based Sidekick. Our second sidekick generates trajectories
of informative views. Given a starting view in X, the demonstration sidekick
selects a trajectory of T views that are deemed to be most informative about X.
Unlike the reward-based sidekick above, this sidekick offers guidance with respect
to a starting state, and it is subject to the same camera motion restrictions
placed on the main agent. Such restrictions model how an agent cannot teleport
its camera using one unit of effort.

To identify informative trajectories, we first define a scoring function that
captures coverage. Coverage reflects how much information x(X, θ) contains
about each view in X. The coverage score for view θ(j) upon selecting view
θ(i) is:
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CoverageX

(
θ(j)|θ(i)

)
∝−1 d

(
x̂(X, θ(j)), x(X, θ(j))

)
, (2)

where x̂ denotes an inferred view within V̂ (X|x(X, θ(i))), as estimated using the
same T = 1 completion network used by the reward-based sidekick. Coverage
scores are normalized to lie in [0, 1] for 1 ≤ i, j ≤ MN .

C(Θ,X) =
MN∑
j=1

∑
θ∈Θ

CoverageX(θ(j)|θ), (3)

The goal of the demonstration sidekick is to maximize the coverage objective
(Eq. 3), where Θ = {θ1, . . . , θt} denotes the sequence of selected views, and
C(Θ,X) saturates at 1. In other words, it seeks a sequence of reachable views
such that all views are “explained” as well as possible. See Fig. 3, bottom panel.

The policy of the sidekick (πs) is to greedily select actions based on the
coverage objective. The objective encourages the sidekick to select views such
that the overall information obtained about each view in X is maximized.

πs(Θ) = arg max
δ

C (Θ ∪ {θt + δ},X) . (4)

We use these sidekick-generated trajectories as supervision to the agent for a
short preparatory period. The goal is to initialize the agent with useful insights
learned by the sidekick to accelerate training of better policies. We achieve this
through a hybrid training procedure that combines imitation and reinforcement.
In particular, for the first tsup time steps, we let the sidekick drive the action
selection and train the policy based on a supervised objective. For steps tsup to
T , we let the agent’s policy drive the action selection and use REINFORCE [64]
or Actor-Critic [59] to update the agent’s policy (see Sect. 4). We start with
tsup = T and gradually reduce it to 0 in the preparatory sidekick phase (see
Supp.). This step relates to behavior cloning [8,14,17], which formulates policy
learning as supervised action classification given states. However, unlike typical
behavior cloning, the sidekick is not an expert. It solves a simpler version of the
task, then backs away as the agent takes over to train with partial observability.

3.4 Policy Learning with Sidekicks

Having defined the two sidekick variants, we now explain how they influence pol-
icy learning. The goal is to learn the policy π(δ|at) which returns a distribution
over actions for the aggregated internal representation at at time t. Let A = {δi}
denote the set of camera motions available to the agent.

Our agent seeks the policy that minimizes reconstruction error for the envi-
ronment given a budget of T camera motions (views). If we denote the set of
weights of the network [Ws,Wf ,Wr,Wd,Wa] by W and W excluding Wa by W/a

and W excluding Wd by W/d, then the overall weight update is:

ΔW =
1
n

n∑
j=1

λrΔW rec
/a + λpΔW pol

/d (5)
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where n is the number of training samples, j indexes over the training samples,
λr and λp are constants and ΔW rec

/a and ΔW pol
/d update all parameters except

Wa and Wd, respectively. The pixel-wise MSE reconstruction loss (Lrec
t ) and cor-

responding weight update at time t are given in Eq. 6, where x̂t(X, θ(i)) denotes
the reconstructed view at viewpoint θ(i) and time t, and Δ0 denotes the offset
to account for the unknown starting azimuth (see [30]).

Lt
rec(X) =

MN∑
i=1

d
(
x̂t(X, θ(i) + Δ0), x(X, θ(i))

)
,

ΔW rec
/a = −

T∑
t=1

∇W/a
Lt

rec(X),

(6)

The agent’s reward at time t (see Eq. 7) consists of the intrinsic reward from
the sidekick rs

t = Info(x(X, θt),X) (see Sect. 3.3) and the negated final recon-
struction loss (−LT

rec(X)).

rt =

{
rs
t 1 ≤ t ≤ T − 2

−LT
rec(X) + rs

t t = T − 1
(7)

The update from the policy (see Eq. 8) consists of the REINFORCE update,
with a baseline b to reduce variance, and supervision from the demonstration
sidekick (see Eq. 9). We consider both REINFORCE [64] and Actor-Critic [59]
methods to update the Act module. For the latter, the policy term additionally
includes a loss to update a learned Value Network (see Supp.). For both, we
include a standard entropy term to promote diversity in action selection and
avoid converging too quickly to a suboptimal policy.

ΔW pol
/d =

T−1∑
t=1

∇W/d
log π(δt|at)

( T−1∑

t′=t

rt′ − b(at)
)

+ ΔW demo
/d , (8)

The demonstration sidekick influences policy learning via a cross entropy loss
between the sidekick’s policy πs (cf. Sect. 3.3) and the agent’s policy π:

ΔW demo
/d =

T−1∑
t=1

∑
δ∈A

∇/d(πs(δ|at) log π(δ|at)). (9)

We pretrain the Sense, Fuse, and Decode modules with T = 1. The full
network is then trained end-to-end (with Sense and Fuse frozen). For training
with sidekicks, the agent is augmented either with additional rewards from the
reward sidekick (Eq. 7) or an additional supervised loss from the demonstra-
tion sidekick (Eq. 9). As we will show empirically, training with sidekicks helps
overcome uncertainty due to partial observability and learn better policies.
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3.5 Visualizing the Learned Motion Policies

Finally, we propose a visualization technique to qualitatively understand the
policy that has been learned. The aggregated state at is used by the policy
network to determine the action probabilities. To analyze which part of the
agent’s belief (at) is important for the current selected action δt, we solve for
the change in the aggregated state (Δat) which maximizes the change in the
predicted action distribution (π(·|at)):

Δa∗ = arg max
Δat

∑
δ∈A

(
π(δ|at) − π(δ|at + Δat)

)2

s.t. ||Δat|| ≤ C||at||
(10)

where C is a constant that limits the deviation in norm from the true belief.
Equation 10 is maximized using gradient ascent (see Supp.). This change in belief
is visualized in the viewgrid space by forward propagating through the Decode
module. The visualized heatmap intensities (Ht) are defined as follows:

Ht ∝ ||Decode(at + Δa∗) − Decode(at)||22. (11)

The heatmap indicates which parts of the agent’s belief would have to change
to affect its action selection. The views with high intensity are those that affect
the agent’s action selection the most.

4 Experiments

In Sects. 4.1 and 4.2, we describe our experimental setup and analyze the learn-
ing efficiency and test-time performance of different methods. In Sect. 4.3, we
visualize learned policies and demonstrate the superiority of our policies over a
baseline.

4.1 Experimental Setup

Datasets: We use two popular datasets to benchmark our models.

– SUN360: SUN360 [66] consists of high resolution spherical panoramas from
multiple scene categories. We restrict our experiments to the 26 category
subset used in [30,66]. The viewgrid consists of 32 × 32 views captured across
4 elevations (−45◦ to 45◦) and 8 azimuths (0◦ to 180◦). At each step, the
agent sees a 60◦ field-of-view. This dataset represents an agent looking out
at a scene in a series of narrow field-of-view glimpses.

– ModelNet Hard: ModelNet [65] provides a collection of 3D CAD models for
different categories of objects. ModelNet-40 and ModelNet-10 are provided
subsets consisting of 40 and 10 object categories respectively, the latter being
a subset of the former. We train on objects from the 30 categories not present
in ModelNet-10 and test on objects from the unseen 10 categories. We increase
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completion difficulty in “ModelNet Hard” by rendering with more challenging
lighting conditions, textures and viewing angles than [30]; see Supp. It consists
of 32 × 32 views sampled from 5 elevations and 9 azimuths. This dataset
represents an agent looking in at a 3D object and moving it to a series of
selected poses.

For both datasets, the candidate motions A are restricted to a 3 elevations × 5
azimuths neighborhood, representing the set of unit-cost actions. Neighbor-
hood actions mimic real-world scenarios where the agent’s physical motions
are constrained (i.e., no teleporting) and is consistent with recent active vision
work [2,28–30,43]. The budget for number of steps is fixed to T = 4.

Baselines: We benchmark our methods against several baselines:

– one-view: the agent trained to reconstruct from one view (T = 1).
– rnd-actions: samples actions uniformly at random.
– ltla [30]: our implementation of the “learning to look around” approach [30].

We verified our code reproduces results from [30].
– rnd-rewards: naive sidekick where rewards are assigned uniformly at random

on the viewgrid.
– asymm-ac [48]: approach from [48] adapted for discrete actions. Critic sees

the entire panorama/object and true camera poses (no experience replay).
– demo-actions: actions selected by demo-sidekick while training/testing.
– expert-clone: imitation from an expert policy that uses full observability

(similar to critic in Fig. 2 of Supp.)

Evaluation: We evaluate reconstruction error averaged over uniformly sampled
elevations, azimuths and all test samples (avg). To provide a worst case analysis,
we also report an adversarial metric (adv), which evaluates each agent on its
hardest starting positions in each test sample and averages over the test data.

4.2 Active Exploration Results

Table 1 shows the results on both datasets. For each metric, we report the mean
error along with the percentage improvement over the one-view baseline. Our
methods are abbreviated ours(rew) and ours(demo) referring to the use of our
reward- and demonstration-based sidekicks, respectively. We denote the use of
Actor-Critic instead of REINFORCE with +ac.

We observe that ours(rew) and ours(demo) with REINFORCE generally
perform better than ltla with REINFORCE [30]. In particular, ours(rew) per-
forms significantly better than ltla on both datasets on all metrics. ours(demo)
performs better on SUN360, but is only slightly better on ModelNet Hard.
Figure 4 shows the validation loss plots; using the sidekicks leads to significant
improvement in the convergence rate over ltla.

Figure 5 compares example decoded reconstructions. We stress that the vast
majority of pixels are unobserved when decoding the belief state, i.e., only 4
views out of the entire viewing sphere are observed. Accordingly, they are blurry.
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Table 1. Avg/Adv MSE errors ×1000 (↓ lower is better) and corresponding improve-
ments (%) over the one-view model (↑ higher is better), for the two datasets. The
best and second best performing models are highlighted in green and blue respectively.
Standard errors range from 0.2 to 0.3 on SUN360 and 0.1 to 0.2 on ModelNet Hard.

Method SUN360 ModelNet Hard

Avg (×1000) Adv (×1000) Avg (×1000) Adv (×1000)

Mean ↓ % ↑ Mean ↓ % ↑ Mean ↓ % ↑ Mean ↓ % ↑
one-view 38.31 - 55.12 - 9.63 - 17.10 -

rnd-actions 30.99 19.09 44.85 18.63 7.32 23.93 12.38 27.56

rnd-rewards 25.55 33.30 30.20 45.21 7.04 26.89 9.66 43.50

ltla [30] 24.94 34.89 31.86 42.19 6.30 34.57 8.78 48.65

asymm-ac [48] 23.74 38.01 29.92 45.72 6.24 35.20 8.55 50.00

expert-clone 23.98 37.38 28.50 48.28 6.41 33.44 8.52 50.13

ours(rew) 23.44 38.82 28.54 48.22 5.80 39.79 7.17 58.04

ours(demo) 24.24 36.73 29.01 47.36 6.32 34.37 8.64 49.47

ours(rew)+ac 23.36 39.01 28.26 48.72 5.75 40.26 7.10 58.44

ours(demo)+ac 24.05 37.22 28.52 48.26 6.13 36.31 8.26 51.64

demo-actions* 26.12 31.82 31.53 42.76 5.82 39.50 7.46 56.40

(∗ - requires full observability at test time)

Regardless, their differences indicate the differences in belief states between the
two methods. A better policy more quickly fleshes out the general shape of the
scene or object.

Next, we compare our model to asymm-ac, which is an alternate paradigm
for exploiting full observability during training. First, we note that asymm-ac
performs better than ltla across all datasets and metrics, making it a strong
baseline. Comparing asymm-ac with ours(rew)+ac and ours(demo)+ac, we see
our methods still perform considerably better on all metrics and datasets. As we
show in the Supp, our methods also lead to faster convergence.

In order to contrast learning from sidekicks with learning from experts, we
additionally compare our models to behavior cloning an expert that exploits
full observability at training time. As shown in Table 1, ours(rew) outperforms
expert-clone on both the datasets, validating the strength of our approach. It is
particularly interesting because training an expert takes a lot longer (17×) than
training sidekicks (see Supp.). When compared with demo-actions, an ablated
version of ours(demo) that requires full observability at test time, our perfor-
mance is still significantly better on SUN360 and slightly better on ModelNet
Hard. ours(rew) and ours(demo) also beat the remaining baselines by a signifi-
cant margin. These results verify our hypothesis that sidekick policy learning can
improve over strong baselines by exploiting full observability during training.
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Fig. 4. Validation errors (×1000) vs. epochs on SUN360 (left) and ModelNet Hard
(right). All models shown here use REINFORCE (see Supp. for more curves). Our
approach accelerates convergence.

GT viewgrid ltla ours(rew)

Fig. 5. Qualitative comparison of ours(rew) vs. ltla [30] on SUN360 (first 2 rows)
and ModelNet Hard (last 2 rows). The first column shows the groundtruth viewgrid
and a randomly selected starting point (marked in red). The 2nd and 3rd columns
contain the decoded viewgrids from ltla and ours(rew) after T = 4 time steps. The
reconstructions from ours(rew) are visibly better. For example, in the 3rd row, our
model reconstructs the protrusion more clearly; in the 2nd row, our model reconstructs
the sky and central hills more effectively. Best viewed on pdf with zoom. (Color figure
online)

4.3 Policy Visualization

We present our policy visualizations for ltla and ours(rew) on SUN360 in
Fig. 6; see Supp. for examples with ours(demo). The heatmap from Eq. 10 is
shown in pink and overlayed on the reconstructed viewgrids. For both models,



438 S. K. Ramakrishnan and K. Grauman

Fig. 6. Policy visualization: The viewgrid reconstructions of ours(rew) and ltla [30]
are shown on two examples from SUN360. The first column shows the viewgrid with
a randomly selected view (in red). Subsequent columns show the view received (in
red), viewgrid reconstructed, action selected (red arrow), and the parts of the belief
space our method deems responsible for the action selection (pink heatmap). Both the
agents tend to move towards sparser regions of the heatmap, attempting to improve
their beliefs about views that do not contribute to their action selection. ours(rew)
improves its beliefs much more rapidly and as a result, performs more informed action
selection. (Color figure online)

the policies tend to take actions that move them towards views which have low
heatmap density, as witnessed by the arrows/actions pointing to lower density
regions. Intuitively, the agents move towards the views that are not contributing
effectively to their action selection to increase their understanding of the scene. It
can observed in many cases that ours(rew) model has a much denser heat map
across time when compared to ltla. Therefore, ours(rew) takes more views
into account for selecting its actions earlier in the trajectory, suggesting that a
better policy and history aggregation leads to more informed action selection.

5 Conclusion

We propose sidekick policy learning, a framework to leverage extra observability
or fewer restrictions on an agent’s motion during training to learn better poli-
cies. We demonstrate the superiority of policies learned with sidekicks on two
challenging datasets, improving over existing methods and accelerating training.
Further, we utilize a novel policy visualization technique to illuminate the dif-
ferent reasoning behind policies trained with and without sidekicks. In future
work, we plan to investigate the effectiveness of our framework on other active
vision tasks such as recognition and navigation.



Sidekick Policy Learning for Active Visual Exploration 439

Acknowledgements. The authors thank Dinesh Jayaraman, Thomas Crosley, Yu-
Chuan Su, and Ishan Durugkar for helpful discussions. This research is supported in
part by DARPA Lifelong Learning Machines, a Sony Research Award, and an IBM
Open Collaborative Research Award.

References

1. Aloimonos, J., Weiss, I., Bandyopadhyay, A.: Active vision. Int. J. Comput. Vis.
1, 333–356 (1988)

2. Ammirato, P., Poirson, P., Park, E., Košecká, J., Berg, A.C.: A dataset for devel-
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