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Abstract. This work provides a simple approach to discover tight object
bounding boxes with only image-level supervision, called Tight box
mining with Surrounding Segmentation Context (TS2C). We observe
that object candidates mined through current multiple instance learn-
ing methods are usually trapped to discriminative object parts, rather
than the entire object. TS2C leverages surrounding segmentation con-
text derived from weakly-supervised segmentation to suppress such
low-quality distracting candidates and boost the high-quality ones.
Specifically, TS2C is developed based on two key properties of desir-
able bounding boxes: (1) high purity, meaning most pixels in the box are
with high object response, and (2) high completeness, meaning the box
covers high object response pixels comprehensively. With such novel and
computable criteria, more tight candidates can be discovered for learn-
ing a better object detector. With TS2C, we obtain 48.0% and 44.4%
mAP scores on VOC 2007 and 2012 benchmarks, which are the new
state-of-the-arts.
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1 Introduction

Weakly Supervised Object Detection (WSOD) [3,7,10,17,18,20,21,23,32,33,35,
42–44] aims to detect objects only using image-level annotations for super-
vision. Despite remarkable progress, existing approaches still have difficulties
in accurately identifying tight boxes of target objects with only image-level
annotations, thus their performance is inferior to the fully supervised counter-
parts [6,13,22,25,28–30].
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Fig. 1. Comparison of MIL-based approaches and our target. MIL-based approaches
tend to assign high confidence to discriminative parts (blue boxes) of target objects.
Our target is to alleviate such cases and lift the confidence of the tight ones (yellow
boxes). Best viewed in color. (Color figure online)

To localize objects with weak supervision information, one popular solution
is to apply Multiple Instance Learning (MIL) for mining high-confidence region
proposals [34,47] with positive image-level annotations. However, MIL usually
discovers the most discriminative part of the target object (e.g. the head of a
cat) rather than the entire object region, as shown in Fig. 1. This inability of
providing the complete object severely limits its effectiveness for WSOD. To
address this issue, Li et al. [21] exploited the contrastive relationship between a
selected region and its mask-out image for proposal selection. Nevertheless, the
mask-out strategy fails for multi-instance cases. The selector is easily confused
by remained instances with high responses, even though the correct object has
been masked out.

Recently, some weakly supervised semantic segmentation approaches [19,36,
38,40] have demonstrated promising performance. Utilizing the inferred seg-
mentation confidence maps, Diba et al. [10] presented a cascaded approach that
leverages segmentation knowledge to filter noisy proposals and achieves compet-
itive detection results. However, we argue that their solution is sub-optimal and
insufficient as it only considers the segmentation confidence inside the proposal
boxes, thus is unable to filter high-response fragments of object parts, as the
magenta boxes shown in Fig. 2 (b).

In this work, we propose a principled and more effective approach, compared
with [10], to mine tight object boxes by exploiting segmentation confidence maps
in a creative way, aiming for addressing the challenging WSOD problems. Our
approach is motivated by the following observations, as illustrated by two exam-
ples in Fig. 2 (a). We use blue and yellow to encode two kinds of boxes, which
partially and tightly cover objects respectively. Based on the semantic segmen-
tation confidence maps obtained in a weakly supervised manner, many pixels
surrounding the blue boxes have high predicted segmentation confidence, while
very few high-confidence pixels are included in the surrounding context for the
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yellow ones of higher tightness. We find that a desirable tight object box gener-
ally needs to satisfy two properties based on segmentation context:

– Purity : most pixels inside the box should have high confidence scores, which
guarantees that the box is located around the target object;

– Completeness: very few pixels are with high confidence scores in the sur-
rounding context of the target box.

Fig. 2. (a) Motivation of the proposed TS2C: fewer high response pixels on the seg-
mentation confidence map are included by enlarging higher-quality boxes of object
candidates (the yellow one) compared with partial bounding boxes (the blue one). (b)
Comparison of the rank 1 proposal using the strategy proposed by [10] (magenta boxes)
and ours (yellow boxes). Best viewed in color. (Color figure online)

Based on these properties, we devise a simple yet effective approach, named
Tight box mining with Surrounding Segmentation Context (TS2C), to efficiently
select object candidates of high quality from thousands of candidates. Specifi-
cally, the proposed TS2C examines two kinds of regions for evaluating the tight-
ness of bounding boxes: (1) the region included in the box and (2) the region
surrounding the box. It computes objectness scores of the two regions by averag-
ing the corresponding pixel confidence values on the segmentation maps. Tight
boxes are expected to be with high and low objectness values of the two kinds
of regions simultaneously. Thus, the difference of two objectness scores is then
taken as the quality metric on the final tightness for ranking object candidates.
Figure 2 (b) shows the top 1 object candidate inferred by the proposed TS2C.
We can see that our approach is more effective for mining tight object boxes
than [10]. Moreover, our proposed TS2C is generic and can be easily integrated
into any WSOD framework by introducing a parallel semantic segmentation
branch for class-specific confidence map prediction. Benefiting from our TS2C,
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we achieve 48.0% and 44.4% mAP scores on the challenging Pascal VOC 2007
and VOC 2012 benchmarks, which are the new state-of-the-arts in the WSOD
community.

2 Related Work

Multiple Instance Learning (MIL) provides a suitable way for formulating and
solving WSOD. In specific, if an image is annotated with a specific class, at least
one proposal instance from the image is positive for this class; and no proposal
instance is positive for unlabeled classes. Previous works on applying MIL to
WSOD can be roughly categorized into two-step [7,17,21,35] and end-to-end
[3,10,18,20,32,33] based approaches.

Two-Step Approaches. First extract proposal representation leveraging hand-
crafted features or pre-trained CNN models and employ MIL to select the best
object candidate for learning the object detector. For instance, Wang et al. [35]
presented a latent semantic clustering approach to select the most discrimina-
tive cluster for each category. Cibis et al. [7] learned a multi-fold MIL detector
by re-labeling proposals and re-training the object classifier iteratively. Li et
al. [21] first trained a multi-label classification network on entire images and
then selected class-specific proposal candidates using a mask-out strategy, fol-
lowed by MIL for learning a Fast R-CNN detector. Recently, Jie et al. [17] took a
similar strategy as Li et al. [21] and proposed a more robust self-taught approach
to learn a detector by harvesting more accurate supportive proposals in an online
manner. However, splitting the WSOD into two steps results in a non-convex
optimization problem, making such approaches trapped in local optima.

End-to-End Approaches. Combine CNNs and MIL into a unified framework
for addressing WSOD. Oquab et al. [27] and Wei et al. [39] adopted a similar
strategy to learn a multi-label classification network with max-pooling MIL. The
learned classification model was then applied to coarse object localization [27].
Bilen et al. [3] proposed a novel Weakly Supervised Deep Detection Network
(WSDDN) including two key streams, one for classification and the other for
object localization. The outputs of these two streams are then combined for bet-
ter rating the objectness of proposals. Based on WSDDN, Kantorov et al. [18]
proposed to learn a context-aware CNN with contrast-based contextual model-
ing. Both [18] and our approach employ proposal context to identify high-quality
proposals. However, [18] exploits inside/outside context features of each bound-
ing box for learning to classification, in contrast, we leverage objectness scores
obtained by segmentation confidence maps to pick out tight candidates. Recently,
Tang et al. [32] also employed WSDDN as the basic network and augmented it
with several Online Instance Classifier Refinement (OICR) branches, which is
the state-of-the-art on the challenging WSOD task. In this work, we employ
both WSDDN and OICR to develop our framework where the proposed TS2C is
leveraged to further improve performance. Both [10] and our approach utilizes
object segmentation knowledge to benefit WSOD. However, Diba et al. [10] only
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considered the confidence of pixels included in the bounding box for rating the
proposal objectness, which is not as effective as ours.

Beyond the above mentioned related works, some fully-supervised object
detection approaches [5,12,22,46] also exploit contextual information of bound-
ing boxes for benefiting object detection. Both Chen et al. [5] and Li et al. [22]
leveraged information of enlarged contextual proposals to enhance the accuracy
of the classifier. Zhu et al. [46] proposed to use a pool of segments obtained in the
bottom-up manner to obtain better detection boxes. Our TS2C is totally differ-
ent from these works in terms of both motivation and methodology. In particular,
our motivation is to employ surrounding segmentation context to suppress these
false positive objects parts. In addition, our approach can be easily embedded
into any WSOD framework to make a further performance improvement.

Fig. 3. Overview of the proposed TS2C for weakly supervised object detection. Sev-
eral convolutional layers are leveraged to extract the intermediate features of an input
image. The entire feature maps are firstly fed into a Classification branch to pro-
duce object localization maps corresponding to image-level labels. We then employ the
localization maps to generate the segmentation masks, which serve as supervision to
learn the Segmentation branch. Based on the segmentation confidence maps, we utilize
TS2C to evaluate the objectness scores of proposals according to their purity and com-
pleteness, which collaborates with the OICR [32] for training the Detection branch.

3 The Proposed Approach

We show the overall architecture of the proposed approach in Fig. 3. It con-
sists of three key branches, i.e. image classification, semantic segmentation and
object detection. In particular, the Classification branch is employed to generate
class-specific localization maps. Following the previous weakly supervised seman-
tic segmentation approaches [37], we leverage the inferred localization maps to
produce pseudo segmentation masks of training images, which are then used
as supervision to train the Segmentation branch. The segmentation confidence
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maps from the Segmentation branch are then employed to evaluate objectness
scores of the proposals according to the proposed TS2C, which finally collabo-
rates with the Detection branch for learning an improved object detector. The
overall framework is trained by minimizing the following composite loss functions
from the three branches using stochastic gradient descent:

L = Lcls + Lseg + Ldet. (1)

We will introduce each branch below and then elaborate on details of TS2C.

3.1 Classification for Object Localization

Inspired by [10,24,45], the fully convolutional network along with the Global
Average Pooling (GAP) operation is able to generate class-specific activation
maps, which can provide coarse object localization prior. We conduct experi-
ments on Pascal VOC benchmarks, in which each training image is annotated
with one or several labels. We thus treat the classification task as a separate
binary classification problem for each class. Following [27], the loss function Lcls

is thus defined as a sum of C binary logistic regression losses.

3.2 Weakly Supervised Semantic Segmentation

The Classification branch can produce localization cues for foreground objects.
We assign the pixels with values on the class-specific confidence map larger
than a pre-defined normalized threshold (i.e. ≥0.78) with the corresponding
class label. Beyond the object regions, background localization cues are also
needed for training the segmentation branch. Motivated by [19,36,38,40], we
leverage the saliency detection technology [41] to produce the saliency map for
each training image. Based on the generated saliency map, we choose the pixels
with low normalized saliency values (i.e. ≤0.06) as background. However, both
the class-specific confidence map and the saliency map are not accurate enough
to guarantee a high-quality segmentation mask. To alleviate the negative effect
caused by falsely assigned pixels, we ignore the ambiguous pixels during training
the Segmentation branch, including (1) pixels that are not assigned semantic
labels, (2) foreground pixels of different categories that are in conflict, and (3)
low-saliency pixels that fall in the foreground pixels. With the produced pseudo
segmentation mask, we train the Segmentation branch with pixel-wise cross-
entropy loss Lseg, which is widely adopted by fully-supervised schemes [4,26].

3.3 Learning Object Detection with TS2C

For each training or test image, Selective Search [34] is employed to generate
object proposals and Spatial Pyramid Pooling (SPP) [15] is leveraged to gener-
ate constant size feature maps for different proposals. Our TS2C aims to select
high-quality object candidates from thousands of candidates to improve the effec-
tiveness of training, which can be easily implanted into any WSOD framework.
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We choose the state-of-the-art Online Instance Classifier Refinement (OICR) [32]
as the backbone of the Detection branch, which collaborates with the proposed
TS2C for learning a better object detector. In the following, we will first make
a brief introduction of OICR, and then explain how to leverage our TS2C to
benefit the learning process of WSOD.

OICR. As shown in Fig. 3, the OICR mainly includes two modules, i.e. mul-
tiple instance classification and instance refinement. In particular, the multiple
instance classification module is inspired from [3], which includes two branches to
extract parallel data streams from the input features pooled by SPP, as shown in
Fig. 4 (a). The upper stream conducts softmax operation on each individual pro-
posal for classification. The bottom stream estimates a probability distribution
over all candidate proposals using softmax, which indicates the contribution of
each proposal to classifier decision for each class. Therefore, these two streams
provide classification-based and localization-based features for each proposal.
Both inferred scores are then fused with element-wise product operation and
finally aggregated into image-level prediction by sum-pooling over all proposals.
With the supervision of image-level annotations, the multiple instance classifi-
cation module can be learned with binary logistic regression losses as detailed
in Sect. 3.1.

Fig. 4. Details of (a) multiple instance
classification module and (b) instance
refinement module in TS2C.

By leveraging multiple instance
classification module as a basic clas-
sifier for obtaining initial classifica-
tion scores for each proposal, pro-
gressive refinement is then conducted
via the instance refinement module,
as detailed in Fig. 4 (b). In partic-
ular, the instance refinement module
first selects the top-scoring proposal
of each image-level label. Those pro-
posals with high spatial overlap scores

over the top-scoring one are then labeled correspondingly. The idea behind such a
module is that the top-scoring proposal may only contain part of a target object
and its adjacent proposals may cover more object regions. Benefiting from both
two modules embedded in the OICR, each proposal is assigned with a pseudo
class label, which is then employed as supervision for learning detection with the
softmax cross-entropy loss [13,14,29]. To address the initialization issue (i.e. the
classifier cannot well recognize proposals with randomly initialized parameters
at the beginning of training), OICR adopts a weighted loss by assigning different
weights to different proposals during different training iterations. Thus, the Ldet

is composed of binary logistic regression losses for image-level classification and
softmax cross-entropy loss for proposal-level classification. Please refer to [32]
for more details.
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Problems. However, such progressive refinement operation of OICR highly
relies on the quality of initial object candidates from the multiple instance clas-
sification module. This means without reasonable object candidates received
from the multiple instance classification module for initialization, the following
progressive refinement strategy of OICR cannot find the correct proposals with
high IoU scores over ground-truth bounding boxes. This brings a critical risk:
if the multiple instance classification module fails to produce reasonable object
candidates then the OICR cannot recall the missed object with any hope. We
propose to reduce such a risk by designing an objectness rating approach from
a totally new perspective. In particular, we detail our proposed TS2C that rates
the proposals’ objectness from the segmentation view in the following.

Fig. 5. Motivation of the conditional average strategy: only a small number of pix-
els belong to objects in the surrounding regions. To promote the objectness score of
surrounding context, we only employ pixels with large confidence values (highlighted
by red color) for conducting average calculation. Best viewed in color. (Color figure
online)

TS2C for Learning Detection. As shown in Fig. 3, TS2C uses the segmenta-
tion confidence maps from the Segmentation branch to rate the proposal object-
ness. We consider xi(i = 1 · · · n) as one proposal from a given training image
annotated by class c. Let Hc denote the confidence map of category c predicted
by the semantic Segmentation branch. For xi, we calculate objectness scores of
both the region inside the box PI and the surrounding context PS between xi and
the corresponding enlarged one. Let avg(Hc, xi) denote the operation of comput-
ing PI , which takes all pixel values included in xi into account. PI of a large value
can guarantee that xi is around the target object. To obtain a robust surround-
ing objectness score PS , we adopt a conditional average strategy ˆavg(Hc, xi).
As shown in Fig. 5, many surrounding regions of negative candidates include a
large number of un-related (i.e. background) pixels, which are with low confi-
dence scores. Therefore, the resulted objectness score will be small if we average
all the pixel values for computing PS , in a similar way as for PI . However, we
expect the value of PS to be large, so that negative candidates of such cases can
be suppressed by PI −PS . To this end, we first rank the pixels in the surrounding
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region according to their confidence scores and the conditional average strategy
only employs the first 50% pixels for calculating the objectness score. Then, the
objectness score O(xi) of the proposed TS2C is finally calculated as

O(xi) = PI − PS = avg(Hc, xi) − ˆavg(Hc, xi).

We rank all the object candidates according to O(xi) and build a candidate pool
by selecting the top two hundred proposals, collaborating with the OICR for
learning a better detector. As shown in Fig. 3, ⊕ means the OICR will only select
object candidates from the pool produced by TS2C for the following training
process.

During the testing stage, we ignore the Classification and Segmentation
branches, and leverage the classification outputs from the instance refinement
module to obtain the final detection results.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. We conduct experiments on Pascal VOC 2007 and 2012 datasets [11],
which are the two most widely used benchmarks for weakly supervised object
detection. For VOC 2007, we train the model on the trainval set (5,011 images)
and evaluate on the test set (4,096 images). We also make extensive ablation
analysis on VOC 2007 to verify the effectiveness of some settings. For VOC
2012, we train the model on the trainval set (11,540 images) and evaluate on
test set (10,991 images) by submitting the testing result to the evaluation server.
Metrics. Following [10,17,32], we adopt two metrics for evaluation, i.e. mean
average precision (mAP) and correct localization (CorLoc) [9], for evaluation on
test and trainval sets, respectively. Both two metrics employ the same threshold
of bounding box overlaps with ground-truth boxes, i.e. IoU >=0.5.

4.2 Implementation Details

We use the object proposals generated by Selective Search [34], and adopt the
VGG16 network [31] pre-trained on ImageNet [8] as the backbone of the pro-
posed framework. We employ the Deeplab-CRF-LargeFOV [4] model to initial-
ize the corresponding layers in the segmentation branch. For the newly added
layers, the parameters are randomly initialized with a Gaussian distribution
N (μ, δ)(μ = 0, δ = 0.01). We take a mini-batch size of 2 images and set the learn-
ing rates of the first 40 K and the following 30 K iterations as 0.001 and 0.0001
respectively. During training, we take five image scales {480, 576, 688, 864, 1200}
for data augmentation. For TS2C, we adopt an enlarged ratio of 1.2 to obtain
the surrounding context, which is further employed for evaluating completeness
of object candidates. Our experiments use the OICR [32] code, which is imple-
mented based on the publicly available Caffe [16] deep learning framework. All
of our experiments are run on NVIDIA TITAN X PASCAL GPUs.
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Table 1. Comparison of detection average precision (AP) (%) on PASCAL VOC.

Table 2. Comparison of detection AP (%) by training FRCNN detectors.

Method VOC 2007VOC 2012

TS2C + FRCNN 48.0 44.4

OICR-Ens. + FRCNN [32]47.0 42.5

Fig. 6. Examples of our object detection results on VOC 2007 test set. Ground-truth
annotations, predictions of OICR and ours are indicated by red, green and blue bound-
ing boxes respectively. Best viewed in color. (Color figure online)



464 Y. Wei et al.

Table 3. Comparison of correct localization (CorLoc) (%) on PASCAL VOC.

4.3 Comparison with Other State-of-the-arts

We compare our approach with both two-step [7,17,21,35] and end-to-end [3,10,
18,20,32,33] approaches. Top-3 results are indicated by green, red and blue
colors. Table 1 shows the comparison in terms of AP on the VOC 2007. It can
be observed that the proposed TS2C is effective and outperforms all the other
approaches. In particular, we adopt OICR proposed by Tang et al. [32] as the
detection backbone in the proposed framework. Our approach outperforms OICR
by 3.1%. The gains are mainly from using both purity and completeness metrics
for filtering noisy object candidates. We also show the comparison between our
approach and other state-of-the-arts on PASCAL VOC 2012 in terms of AP.
Our result1 outperforms the baseline (i.e. Tang et al.[32]) and the state-of-the-
art approach (i.e. Jie et al.[17]) by 2.1% and 1.7%, respectively.

Following [32], we also train a FRCNN [13] detector using top-scoring pro-
posals produced by TS2C as pseudo ground-truth bounding boxes. As shown
in Table 2, the performance can be further enhanced to 48.0% and 44.4%2 on
VOC 2007 and 2012, respectively. Our results from a single model are much
better than those of [32] obtained by models (e.g. VGG16 and VGG-M) fusion.
In addition, we conduct additional experiments using CorLoc as the evaluation
metric. Table 3 shows the comparison on the VOC 2007 and 2012. Our approach
achieves 61.0% and 64.4% in terms of CorLoc score, which are competitive com-
pared with the state-of-the-arts. We visualize some successful detection results
(blue boxes) on VOC 2007, as shown in Fig. 6. Results from OICR (green boxes)
and ground truth (red boxes) are employed for comparison. It can be seen that
our approach effectively reduces false positives including partial objects.

1 http://host.robots.ox.ac.uk:8080/anonymous/GDNUDG.html.
2 http://host.robots.ox.ac.uk:8080/anonymous/ECKWR7.html.

http://host.robots.ox.ac.uk:8080/anonymous/GDNUDG.html
http://host.robots.ox.ac.uk:8080/anonymous/ECKWR7.html
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4.4 Ablation Experiments

We conduct extensive ablation analyses of the proposed TS2C, including the
influence of the enlarged scale for obtaining surrounding context and the pro-
posed tightness criteria (i.e. purity and completeness). All experiments are based
on VOC 2007 benchmark.

Table 4. Ablation study on PASCAL VOC 2007.

Purity and Completeness. One of our main contributions is the proposed
criteria of purity and completeness for measuring the tightness of object can-
didates based on the semantic segmentation confidence maps. To validate the
effectiveness of our approach (i.e. PI − PS), we test the other popular setting
where only the purity (e.g. PI) is taken into account. Specifically, we firstly
leverage the two metrics to rank object candidates for annotated class(es). For
example, if the image is annotated with two labels, we will produce two rank-
ings according to segmentation confidence maps of the two classes, which are
then employed for evaluating recall scores. As shown in Fig. 7, we vary the top
number of object candidates based on the rankings from two metrics. Since our
evaluation method only takes one object candidate for each annotated category
in the top-1 case, the upper bound of the recall is 57.9% due to the existence of
multi-instance images. Despite the apparent simplicity, the recall scores of our
proposed PI − PS significantly outperform those of PI under different settings
according to the top number, which demonstrates that the completeness metric
is effective for reducing noisy object candidates. More visualizations of rank 1
boxes produced by PI −PS and PI are shown in Fig. 8. We can observe that our
approach can successfully discover the tight ones from thousands of candidates.
To further validate the effectiveness of the proposed TS2C, we also conduct
experiments using purity i.e. PI for ranking object candidates as adopted in [10]
for proposal selection, which results in 42.2% in mAP. By simultaneously tak-
ing purity and completeness into account, i.e. PI − PS , the result surpasses the
baseline by 2.1% as shown in Table 4.
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Fig. 7. Comparison of recall scores (%) between the proposed TS2C (PI −PS) and the
purity strategy (PI).

Influence of Enlarged Scale. To evaluate the completeness of object can-
didates, we need to enlarge the original box with a specific ratio. As shown in
Table 4, we examine four ratios (i.e. from 1.1 to 1.4) for obtaining the surround-
ing context of object candidates, which are then employed to calculate objectness
scores with the proposed TS2C. We can observe that all the models trained with
the proposed TS2C can outperform the baseline by more than 1.4%. In par-
ticular, the best result is achieved by adopting the ratio of 1.2. By continually
enlarging the ratio, the performance will be decreased. The reason may be that
some training images include multiple instances with the same semantics, and
the completeness score of each object candidate will be influenced by adjacent
instances in the case of using larger ratios.

Influence of Conditional Averaging Strategy. As shown in Table 4, we
also examine the threshold of conditional average strategy. The best result is
achieved by employ the first 50% largest pixels to calculate the objectness score
of surrounding region.

Discussion. Some failure cases are shown in the last row of Fig. 8. These sam-
ples share some similar characteristics: low-quality segmentation predictions or
many semantically identical instances are linked together. For instance (the mid-
dle image of the last row), the semantic segmentation branch makes a false
prediction for the object under the bird, leading to incorrect inference of our
approach. It is believed that such a case can be well addressed with the develop-
ment of weakly supervised semantic segmentation techniques. For other failure
samples, although the segmentation branch can provide high quality confidence
maps, the overlap between objects results in false prediction of our TS2C. In
this case, we may need to develop effective instance-level semantic segmentation
approaches in a weakly supervised manner.
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Fig. 8. Rank 1 object candidates inferred by the proposed TS2C (yellow boxes) and
the strategy only using purity metric for ranking (magenta boxes). Some failure cases
are given in the last row. Best viewed in color. (Color figure online)

However, the limitation of our TS2C to deal with overlapping objects with
the same semantics does not affect its good performance on WSOD. We do not
employ the top-1 proposal according to the objectness score as the object candi-
date, but build a candidate pool by selecting the top two hundred proposals. In
this case, these tight boxes may still be recalled even without the largest tight-
ness score. The effectiveness of our TS2C can be well proved by the performance
gains on VOC 2007 and 2012 compared with [32].

5 Conclusion and Future Work

In this work, we proposed a simple approach, i.e. TS2C, for mining tight boxes
by exploiting surrounding segmentation context. The TS2C is effective for sup-
pressing low quality object candidates and promoting high quality ones tightly
covering the target object. Based on the segmentation confidence map, TS2C
introduces two simple criteria, i.e. purity and completeness, to evaluate object-
ness scores of object candidates. Despite apparent simplicity, the proposed TS2C
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can effectively filter thousands of noisy candidates and be easily embedded into
any end-to-end weakly supervised framework for performance improvement. In
the future, we plan to design more effective metrics for mining tight boxes by
further boosting our current approach.
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