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Abstract. In this paper, we make two contributions to unsuper-
vised domain adaptation (UDA) using the convolutional neural network
(CNN). First, our approach transfers knowledge in all the convolutional
layers through attention alignment. Most previous methods align high-
level representations, e.g., activations of the fully connected (FC) lay-
ers. In these methods, however, the convolutional layers which underpin
critical low-level domain knowledge cannot be updated directly towards
reducing domain discrepancy. Specifically, we assume that the discrimi-
native regions in an image are relatively invariant to image style changes.
Based on this assumption, we propose an attention alignment scheme on
all the target convolutional layers to uncover the knowledge shared by the
source domain. Second, we estimate the posterior label distribution of
the unlabeled data for target network training. Previous methods, which
iteratively update the pseudo labels by the target network and refine
the target network by the updated pseudo labels, are vulnerable to label
estimation errors. Instead, our approach uses category distribution to
calculate the cross-entropy loss for training, thereby ameliorating the
error accumulation of the estimated labels. The two contributions allow
our approach to outperform the state-of-the-art methods by +2.6% on
the Office-31 dataset.
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1 Introduction

This paper focuses on unsupervised domain adaptation (UDA) for visual clas-
sification task. We aim to adapt the knowledge from a source network, trained
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Fig. 1. Attention visualization of the last convolutional layer of ResNet-50. The orig-
inal target input images are illustrated in (a). The corresponding attentions of the
source network, the target network trained on labeled target data, and the target
network adapted with adversarial attention alignment are shown in (b), (c), and (d)
respectively.

by the source domain data, to the training of a target network, which will be
used for making predications in the target domain. Note that in UDA the target
domain is unlabeled. The increasing popularity of UDA arises from the fact that
the performance of a model trained on one domain may degenerate heavily on
another when their underlying data distributions are different.

In the community of UDA, many deep learning methods attempt to minimize
the discrepancy across domains on the top layers, such as the fully connected lay-
ers, of the neural network via explicitly imposing penalty terms [16,17,23,26] or
in an adversarial way [7,24,25]. While the modifications at the fully connected
layers can be back-propagated in principle, it may decay after a few layers,
especially when gradient explosion or vanishing takes place. Consequently, the
convolutional layers may be under-constrained. However, the domain discrep-
ancy may emerge at the start from the convolutional layers, which makes any
adjustment purely at the tail of the network less effective.

We investigate the domain discrepancy of the convolutional layers by visual-
izing their attention mechanisms. In essence, the attention mechanism is empha-
sized as a key ingredient for CNN, suggested by a number of studies [20,22,27–
30,32]. Zagoruyko et al. [28] find that the model performance is highly correlated
with the attention mechanism: a stronger model always owns better aligned
attention than a weaker one. From Fig. 1, suppose we have networks trained
on labeled data from source and target domains respectively, we observe dis-
tinct attention patterns exhibited by the convolutional layers for the same target
domain image. The attention mechanism degenerates when directly applying the
source network to the target domain data, which may exert negative influence
on the classification performance. Therefore, this paper expects the attention of
the convolutional layers to be invariant to the domain shift.

Based on the above discussions, this paper takes the domain discrepancy
of the convolutional layers directly into account by aligning the attention of
the target network with the source network. Our assumption is that no matter
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how domain varies, the discriminative parts of an image should be insensitive
to the changes of image style. Previous discrepancy measures (e.g., MMD [16]
and JMMD [17]) which work effectively on high-level semantic representations
cannot be trivially transferred to measure the attention discrepancy of the convo-
lutional layers where low-level structure information is critical. In this paper, we
propose using CycleGAN [33] to build the data correspondence across domains,
i.e., translating the data from one domain to another without modifying its
underlying content. Then, for the paired samples (e.g. real source (or target)
image and synthetic target (or source) image), we explicitly penalize the dis-
tances between attentions of the source and the target networks.

Additionally, we train our target network with real and synthetic data from
both source and target domains. For source domain and its translated data,
we impose the cross-entropy loss between the predictions and the ground-truth
labels. For target domain and its translated source domain data, due to the lack
of ground-truth labels, we make use of their underlying category distributions
which provide insight into the target data. In a nutshell, we adopt the modi-
fied Expectation Maximization (EM) steps to maximize the likelihood of target
domain images and update the model. Training iterations improve both the label
posterior distribution estimation and the discriminative ability of the model.

Our contributions are summarized below,

– We propose a deep attention alignment method which allows the target net-
work to mimic the attention of the source network. Taking advantage of the
pairing nature of CycleGAN, no additional supervision is needed.

– We propose using EM algorithm to exploit the unlabeled target data to
update the network. Several modifications are made to stabilize training and
improve the adaptation performance.

– Our method outperforms the state of art in all the six transfer tasks, achieving
+2.6% improvement in average on the real-world domain adaptation dataset
Office-31.

2 Related Work

Unsupervised Domain Adaptation. Various methods have been proposed
for unsupervised domain adaptation [7,16,17,26]. Many works try to make the
representations at the tail of neural networks invariant across domains. Tzeng
et al. [26] propose a kind of domain confusion loss to encourage the network
to learn both semantically meaningful and domain invariant representations.
Similarly, Long et al. [16] minimize the MMD distance of the fully-connected
activations between source and target domain while sharing the convolutional
features. Ganin et al. [7] enable the network to learn domain invariant represen-
tations in an adversarial way by adding a domain classifier and back-propagating
inverse gradients. JAN [17] penalizes the JMMD over multiple fully-connected
layers to minimize the domain discrepancy coming from both the data distri-
bution and the label distribution. Further, JAN-A [17], as a variant of JAN,
trains the network in an adversarial way with JMMD as the domain adversary.
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DSN [3] explicitly models domain-specific features to help improve networks’
ability to learn domain-invariant features. Associative domain adaptation (ADA)
[8] reinforces associations across domains directly in embedding space to extract
statistically domain-invariant and class discriminative features. Few works pay
attention to the domain shift coming from the convolutional layers. In this paper,
we notice that the attention mechanism cannot be preserved when directly apply-
ing the model trained on the source domain to the target domain. To alleviate
this problem, we constrain the training of convolutional layers by imposing the
attention alignment penalty across domains.

Attention of CNNs. There exist many ways to define and visualize the atten-
tion mechanisms learned by CNNs. Zeiler and Fergus [29] project certain fea-
tures back onto the image through a network called “deconvnet” which shares
the same weights as the original feed-forward network. Simonyan et al. [22] pro-
pose using the gradient of the class score w.r.t the input image to visualize
the CNN. Class activation maps (CAMs), proposed by [32], aim to visualize the
class-discriminative image regions used by a CNN. Grad-CAM [20] combines gra-
dient based attention method and CAM, enabling to obtain class-discriminative
attention maps without modifying the original network structure as [32].

Zagoruyko et al. [28] define attention as a set of spatial maps indicating which
area the network focuses on to perform a certain task. The attention maps can
also be defined w.r.t various layers of the network so that they are able to capture
both low-, mid-, and high-level representation information. They propose that
attention mechanism should be a kind of knowledge transferred across different
network architectures. Zaogruyko et al. [28] align the attention across different
architectures for exactly the same image during the training process and aim to
transfer the knowledge from a large model to a smaller one. Different to [28], our
method aligns the attention across different data domains where images across
domains are unpaired and aims to promote the model adaptation performance.

Unpaired Image-to-Image Translation. Unpaired image-to-image transla-
tion aims to train a model to map image samples across domains, under the
absence of pairing information. It can be realized through GAN to pair the real
source (or target) and synthetic target (or source) images [2,11,12,14,15,19,
21,33]. Generating synthetic images can be beneficial for various vision tasks
[5,6,18,31]. In this paper, we concentrate on maximizing the utility of given
paired real and synthetic samples. And we choose CycleGAN [33] to perform
such adversarial data pairing.

3 Deep Adversarial Attention Alignment

Our framework is illustrated in Fig. 2. We train a source CNN which guides the
attention alignment of the target CNN whose convolutional layers have the same
architecture as the source network. The target CNN is trained with a mixture
of real and synthetic images from both source and target domains. For source
and synthetic target domain data, we have ground-truth labels and use them
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to train the target network with cross-entropy loss. On the other hand, for the
target and synthetic source domain data, due to the lack of ground-truth labels,
we optimize the target network through an EM algorithm.

Fig. 2. The framework of deep adversarial attention alignment. We train a source
network and fix it. The source network guides the attention alignment of the tar-
get network. The target network is trained with real and synthetic images from both
domains. For labeled real source and synthetic target data, we update the network by
computing the cross-entropy loss between the predictions and the ground-truth labels.
For unlabeled real target and synthetic source images, we maximize the likelihood of
the data with EM steps. The attention distance for a pair of images (as illustrated in
the “Data Pairs” block) passing through the source network and the target network,
respectively, is minimized.

3.1 Adversarial Data Pairing

We use CycleGAN to translate the samples in the source domain S to those in
the target domain T , and vice versa. The underlying assumption to obtain mean-
ingful translation is that there exist some relationships between two domains. For
unsupervised domain adaptation, the objects of interest across domains belong
to the same set of category. So it is possible to use CycleGAN to map the sam-
ple in the source domain to that in the target domain while maintaining the
underlying object-of-interest.

The Generative Adversarial Network (GAN) aims to generate synthetic
images which are indistinguishable from real samples through an adversarial
loss,

LGAN (GST ,DT ,XS ,XT ) = ExT [log DT (xT )] + ExS [1 − log DT (GST (xS))],
(1)

where xS and xT are sampled from source domain S and target domain T ,
respectively. The generator GST mapping XS to XT strives to make its generated
synthetic outputs GST (xS) indistinguishable from real target samples xT for the
domain discriminator DT .
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Because the training data across domains are unpaired, the translation from
source domain to target domain is highly under-constrained. CycleGAN couples
the adversarial training of this mapping with its inverse one, i.e. the mapping
from S to T and that from T to S are learned concurrently. Moreover, it intro-
duces a cycle consistency loss to regularize the training,

Lcyc(GST , GTS) = ExS [‖GTS(GST (xS)) − xS‖1] + ExT [‖GST (GTS(xT )) − xT ‖1], (2)

Formally, the full objective for CycleGAN is,

Lcyc(G,F,DX ,DY ) = LGAN (GST ,DT ,XS ,XT ) + LGAN (GTS ,DS ,XT ,XS)

+ λLcyc(GST , GTS), (3)

where the constant λ controls the strength of the cycle consistency loss. Through
CycleGAN, we are able to translate an image in the source domain to that in
the target domain in the context of our visual domain adaptation tasks (Fig. 3).

Fig. 3. Paired data across domains using CycleGAN. (a) and (c): real images sampled
from source and target domain, respectively. (b): a synthetic target image paired with
(a) through GST . (d): a synthetic source image paired with a real target image (c)
through GTS .

As illustrated in Fig. 1, the target model pays too much attention to the
irrelevant background or less discriminative parts of the objects of interest. This
attention misalignment will degenerate the model’s performance. In this paper,
we propose to use the style-translated images as natural image correspondences
to guide the attention mechanism of the target model to mimic that of the source
model, to be detailed in Sect. 3.2.

3.2 Attention Alignment

Based on the paired images, we propose imposing the attention alignment
penalty to reduce the discrepancy of attention maps across domains. Specifi-
cally, we represent attention as a function of spatial maps w.r.t each convolu-
tional layer [28]. For the input x of a CNN, let the corresponding feature maps
w.r.t layer l be represented by Fl(x). Then, the attention map Al(x) w.r.t layer
l is defined as

Al(x) =
∑

c

|Fl,c(x)|2, (4)
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where Fl,c(x) denotes the c-th channel of the feature maps. The operations in
Eq. (4) are all element-wise. Alternative ways to represent the attention maps
include

∑
c |Fl,c|, and max |Fl,c|, etc. We adopt Eq. (4) to emphasize the salient

parts of the feature maps.
We propose using the source network to guide the attention alignment of

the target network, as illustrated in Fig. 2. We penalize the distance between
the vectorized attention maps between the source and the target networks to
minimize their discrepancy. In order to make the attention mechanism invariant
to the domain shift, we train the target network with a mixture of real and
synthetic data from both source and target domains.

Formally, the attention alignment penalty can be formulated as,

LAT =
∑

l

{
∑

i

‖ AS
l (xS

i )
‖AS

l (xS
i )‖2 − AT

l (xS
i )

‖AT
l (xS

i )‖2 ‖2 +
∑

j

‖ AS
l (xS

j )
‖AS

l (xS
j )‖2 − AT

l (x̃T
j )

‖AT
l (x̃T

j )‖2 ‖2

+
∑

m

‖ AS
l (x̃S

m)
‖AS

l (x̃S
m)‖2 − AT

l (x̃S
m)

‖AT
l (x̃S

m)‖2 ‖2 +
∑

n

‖ AS
l (x̃S

n)
‖AS

l (x̃S
n)‖2 − AT

l (xT
n )

‖AT
l (xT

n )‖2 ‖2},

(5)

where the subscript l denotes the layer and i, j denote the samples. The AS
l and

AT
l represent the attention maps w.r.t layer l for the source network and the

target network, respectively. xS and xT are real source and real target domain
data, respectively. The synthetic target data x̃T

i and synthetic source data x̃S
n

satisfy x̃T
i = GST (xS

i ) and x̃S
n = GTS(xT

n ), respectively.
Through Eq. (5), the distances of attention maps for the paired images (i.e.,

(xS
j , x̃T

j ) and (xT
n , x̃S

n)) are minimized. Moreover, we additionally penalize the
attention maps of the same input (i.e., xS

i and x̃S
m) passing through different

networks. The attention alignment penalty LAT allows the attention mechanism
to be gradually adapted to the target domain, which makes the attention mech-
anism of the target network invariant to the domain shift.

Discussion. On minimizing the discrepancy across domains, our method shares
similar ideas with DAN [16] and JAN [17]. The difference is that our method
works on the convolutional layers where the critical structure information is
captured and aligned across domains; in comparison, DAN and JAN focus on the
FC layers where high-level semantic information is considered. Another notable
difference is that our method deals with the image-level differences through
CycleGAN data pairing, whereas DAN and JAN consider the discrepancy of
feature distributions.

In DAN and JAN, MMD and JMMD criteria are adopted respectively to
measure the discrepancy of feature distributions across domains. Technically,
MMD and JMMD can also be used as attention discrepancy measures. However,
as to be shown in the experiment part, MMD and JMMD yield inferior perfor-
mance to the L2 distance enabled by adversarial data pairing in our method. The
reason is that MMD and JMMD are distribution distance estimators: they map
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the attention maps to the Reproducing Kernel Hilbert Space (RKHS) and lose
the structure information. So they are not suitable for measuring the attention
discrepancy across domains.

3.3 Training with EM

To make full use of the available data (labeled and unlabeled), we train the
target-domain model with a mixture of real and synthetic data from both source
and target domains, as illustrated in Fig. 2. For the source and its translated
synthetic target domain data, we compute the cross-entropy loss between the
predictions and ground-truth labels to back-propagate the gradients through
the target network. The cross-entropy loss for the source and corresponding
synthetic target domain data can be formulated as follows,

LCE = −[
∑

i

log pθ(yS
i |xS

i ) +
∑

j

log pθ(yS
j |x̃T

j )], (6)

where yS ∈ {1, 2, · · · ,K} denotes the label for the source sample xS and the
translated synthetic target sample x̃T . The probability pθ(y|x) is represented by
the y-th output of the target network with parameters θ given the input image
x. x̃T

j = GST (xS
j ).

For the unlabeled target data, due to the lack of labels, we employ the EM
algorithm to optimize the target network. The EM algorithm can be split into
two alternative steps: the (E)xpectation computation step and the expectation
(M)aximization step. The objective is to maximize the log-likelihood of target
data samples,

∑

i

log pθ(xT
i ), (7)

In image classification, our prior is that the target data samples belong to K
different categories. We choose the underlying category zi ∈ {1, 2, · · · ,K} of
each sample as the hidden variable, and the algorithm is depicted as follows
(we omit the sample subscript and the target domain superscript for description
simplicity).

(i) The Expectation step. We first estimate pθt−1(z|x) through,

pθt−1(z|x) =
pθt−1(x|z)p(z)∑
z pθt−1(x|z)p(z)

, (8)

where the distribution pθt−1(z|x) is modeled by the target network. θt−1 is the
parameters of the target-domain CNN at last training step t − 1. We adopt the
uniform distributions to depict p(z) (i.e., assuming the occurrence probabilities
of all the categories are the same) and p(x) (i.e., assuming all possible image
instantiations are distributed uniformly in the manifold of image gallery). In this
manner, pθt−1(z|x) = αpθt−1(x|z) where α is a constant.
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(ii) The Maximization step. Based on the computed posterior pθt−1(z|x),
our objective is to update θt to improve the lower bound of Eq. (7),

∑

z

pθt−1(z|x) log pθt
(x|z) (9)

Note that we omit
∑

z pθt−1(z|x) log p(z) because we assume p(z) subjects to the
uniform distribution which is irrelevant to θt. Also, because pθ(z|x) = pθ(x|z),
Eq. (9) is equivalent to,

∑

z

pθt−1(z|x) log pθt
(z|x). (10)

Moreover, we propose to improve the effectiveness and stability of the above EM
steps through three aspects

(A) Asynchronous update of p(z|x). We adopt an independent network Mpost

to estimate p(z|x) and update Mpost asynchronously, i.e., Mpost synchronizes
its parameters θpost with the target network every N steps: θpost

t = θ�t/N�×N .
In this manner, we avoid the frequent update of p(z|x) and make the training
process much more stable.

(B) Filtering the inaccurate estimates. Because the estimate of p(z|x) is not
accurate, we set a threshold pt and discard the samples whose maximum value
of p(z|x) over z is lower than pt.

(C) Initializing the learning rate schedule after each update of Mpost. To
accelerate the target network adapting to the new update of the distribution
p(z|x), we choose to initialize the learning rate schedule after each update of
Mpost.

Note that for synthetic source data x̃S = GTS(xT ), we can also apply the
modified EM steps for training. Because GTS is a definite mapping, we assume
p(z|x̃S) = p(z|xT ).

To summarize, when using the EM algorithm to update the target network
with target data and synthetic source data, we first compute the posterior
p(z|xT ) through network Mpost which synchronizes with the target network
every N steps. Then we minimize the loss,

LEM = −{
∑

i

∑

zi

pθpost(zi|xT
i ) log pθ(zi|xT

i ) +
∑

j

∑

zj

pθpost(zj |xT
j ) log pθ(zj |x̃S

j )}. (11)

In our experiment, we show that these modifications yield consistent improve-
ment over the basic EM algorithm.

3.4 Deep Adversarial Attention Alignment

Based on the above discussions, our full objective for training the target network
can be formulated as,

min
θ

Lfull = LCE + LEM + βLAT (12)

where β determines the strength of the attention alignment penalty term LAT .
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Discussion. Our approach mainly consists of two parts: attention alignment
and EM training. On the one hand, attention alignment is crucial for the success
of EM training. For EM training, there originally exists no constraint that the
estimated hidden variable Z is assigned with the semantic meaning aligned with
the ground-truth label, i.e. there may exist label shift or the data is clustered in
an undesirable way. Training with labeled data (e.g. source and synthetic target
data) and synchronizing θpost with θ, the above issue can be alleviated. In addi-
tion, attention alignment further regularizes the training process by encouraging
the network to focus on the desirable discriminative information.

On the other hand, EM benefits attention alignment by providing label dis-
tribution estimations for target data. EM approximately guides the attention of
target network to fit the target domain statistics, while attention alignment regu-
larizes the attention of target network to be not far from source network. These
two seemingly adversarial counterparts cooperate to make the target network
acquire the attention mechanism which is invariant to the domain shift.

Note that both parts are promoted by the use of adversarial data pairing
which provides natural image correspondences to perform attention alignment.
Thus our method is named “deep adversarial attention alignment”.

4 Experiment

4.1 Setup

Datasets. We use the following two UDA datasets for image classification.
(1) Digit datasets from MNIST [13] (60,000 training + 10,000 test images)

to MNIST-M [7] (59,001 training + 90,001 test images). MNIST and MNIST-
M are treated as the source domain and target domain, respectively. The images
of MNIST-M are created by combining MNIST digits with the patches randomly
extracted from color photos of BSDS500 [1] as their background.

(2) Office-31 is a standard benchmark for real-world domain adaptation
tasks. It consists of 4,110 images subject to 31 categories. This dataset contains
three distinct domains, (1) images which are collected from the Amazon website
(Amazon domain), (2) web camera (Webcam domain), and (3) digital SLR
camera (DSLR domain) under different settings, respectively. The dataset is
also imbalanced across domains, with 2,817 images in A domain, 795 images
in W domain, and 498 images in D domain. We evaluate our algorithm for six
transfer tasks across these three domains, including A → W, D → W, W →
D, A → D, D → A, and W → A.

Competing Methods. We compare our method with some representative and
state-of-the-art approaches, including RevGrad [7], JAN [17], JAN-A [17], DSN
[3] and ADA [8] which minimize domain discrepancy on the FC layers of CNN.
We compare with the results of these methods reported in their published papers
with identical evaluation setting. For the task MNIST → MNIST-M, we also
compare with PixelDA [2], a state-of-the-art method on this task. Both Cycle-
GAN and PixelDA transfer the source style to the target domain without mod-
ifying its content heavily. Therefore, PixelDA is an alternative way to generate
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paired images across domains and is compatible to our framework. We emphasize
that a model capable of generating more genuine paired images will probably
lead to higher accuracy using our method. The investigation in this direction
can be parallel and reaches beyond the scope of this paper.

4.2 Implementation Details

MNIST → MNIST-M. The source network is trained on the MNIST training
set. When the source network is trained, it is fixed to guide the training of
the target network. The target and the source network are made up of four
convolutional layers, where the first three are for feature extraction and the last
one acts as a classifier. We align the attention between the source and target
network for the three convolutional layers.
Office-31. To make a fair comparison with the state-of-the-art domain adap-
tation methods [17], we adopt the ResNet-50 [9,10] architecture to perform the
adaptation tasks on Office-31 and we start from the model pre-trained on Ima-
geNet [4]. We first fine-tune the model on the source domain data and fix it. The
source model is then used to guide the attention alignment of the target network.
The target network starts from the fine-tuned model and is gradually trained
to adapt to the target domain data. We penalize the distances of the attention
maps w.r.t all the convolutional layers except for the first convolutional layer.

Detailed settings of training are demonstrated in the supplementary material.

4.3 Evaluation

MNIST → MNIST-M. The classification results of transferring MNIST to
MNIST-M are presented in Table 1. We arrive at four observations. First, our
method outperforms a series of representative domain adaptation methods (e.g.,
RevGrad, DSN, ADA) with a large margin, all of which minimize the domain
discrepancy at the FC layers of neural networks. Moreover, we achieve compet-
itive accuracy (95.6%) to the state-of-the-art result (98.2%) reported by Pix-
elDA. Note that technically, PixelDA is compatible to our method, and can be
adopted to improve the accuracy of our model. We will investigate this in the
future. Second, we observe that the accuracy of the source network drops heavily
when transferred to the target domain (from 99.3% on source test set to 45.6%
on target test set), which implies the significant domain shift from MNIST to
MNIST-M. Third, we can see that the distribution of synthetic target data is
much closer to real target data than real source data, by observing that training
with synthetic target data improves the performance over the source network by
about +30%. Finally, training with a mixture of source and synthetic target data
is beneficial for learning domain invariant features, and improves the adaptation
performance by +3.5% over the model trained with synthetic target data only.

Table 1 demonstrates that our EM training algorithm is an effective way to
exploit unlabeled target domain data. Moreover, imposing the attention align-
ment penalty LAT always leads to noticeable improvement.
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Table 1. Classification accuracy (%) for MNIST → MNIST-M. “CNN” denotes the
source and target network (Sect. 4.2). The “S” and “Tf” represent labeled source data
and synthetic target data, respectively. The “T” and “Sf” denote unlabeled target data
and synthetic source data, respectively

Method Train Data Accuracy (%)

RevGrad [7] S+T 81.5
DSN [3] S+T 83.2
ADA [8] S+T 85.9
PixelDA [2] S+T+Tf 98.2

Ours (wo LAT ) S+Tf+T+Sf 93.5
Ours (w LAT ) S+Tf+T+Sf 95.6

Method Train Data Accuracy (%)

CNN S 45.6
CNN Tf 75.0
CNN S+Tf 78.5
CNN + LAT S+Tf 85.7

Ours (wo LAT ) S+Tf+T+Sf 93.5
Ours (w LAT ) S+Tf+T+Sf 95.6

Table 2. Classification accuracy (%) on the Office-31 dataset based on ResNet-50

Method Train Data A → W D → W W → D A → D D → A W → A Average

ResNet-50 S 68.4 ± 0.2 96.7 ± 0.1 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 76.1

RevGrad [7] S+T 82.0 ± 0.4 96.9 ± 0.2 99.1 ± 0.1 79.7 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2

JAN [17] S+T 85.4 ± 0.3 97.4 ± 0.2 99.8 ± 0.2 84.7 ± 0.3 68.6 ± 0.3 70.0 ± 0.4 84.3

JAN-A [17] S+T 86.0 ± 0.4 96.7 ± 0.3 99.7 ± 0.1 85.1 ± 0.4 69.2 ± 0.4 70.7 ± 0.5 84.6

ResNet-50 Tf 81.1 ± 0.2 98.5 ± 0.2 99.8 ± 0.0 83.3 ± 0.3 61.0 ± 0.2 60.2 ± 0.3 80.6

ResNet-50 S+Tf 81.9 ± 0.2 98.5 ± 0.2 99.8 ± 0.0 83.7 ± 0.3 66.5 ± 0.2 64.8 ± 0.3 82.5

Ours (wo LAT ) Tf+T 86.2 ± 0.2 99.3 ± 0.1 100 ± 0.0 86.5 ± 0.6 69.9 ± 0.6 70.2 ± 0.2 85.4

Ours (w LAT ) Tf+T 86.8 ± 0.2 99.3 ± 0.1 100 ± 0.0 87.2 ± 0.5 71.7 ± 0.5 71.8 ± 0.1 86.1

Ours (wo LAT ) S+Tf+T+Sf 87.1 ± 0.3 99.3 ± 0.1 100 ± 0.0 87.1 ± 0.2 72.3 ± 0.2 72.2 ± 0.2 86.3

Ours (w LAT ) S+Tf+T+Sf 86.8 ± 0.2 99.3 ± 0.1 100 ± 0.0 88.8 ± 0.4 74.3 ± 0.2 73.9 ± 0.2 87.2

Office-31. The classification results based on ResNet-50 are shown in Table 2.
With identical evaluation setting, we compare our methods with previous trans-
fer methods and variants of our method. We have three major conclusions.

First, from Table 2, it can be seen that our method outperforms the state of
art in all the transfer tasks with a large margin. The improvement is larger on
harder transfer tasks, where the source domain is substantially different from
and has much less data than the target domain, e.g. D → A, and W → A.

Fig. 4. Analysis of the training process (EM is implemented). Left: The trend of LAT

during training with and without imposing the LAT penalty term. Right: The curves
of test accuracy on the target domain. The results of tasks W → A and D → A are
presented. The results for other tasks are similar. One iteration here represents one
update of the network Mpost (see Sect. 3.3).
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Table 3. Variants of the EM algorithm with and without LAT . The EM algorithm
without asynchronous update of Mpost is denoted by EM-A, while that without filtering
the noisy data is denoted by EM-B. EM-C represents EM training without initializing
the learning rate schedule when Mpost is updated

Method Train Data A → W A → D D → A W → A Average

ResNet-50 S 68.4 ± 0.2 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 65.1

EM-A S+Tf+T+Sf 68.6 ± 0.3 73.5 ± 0.3 62.7 ± 0.3 52.8 ± 0.3 64.4

EM-A + LAT S+Tf+T+Sf 80.4 ± 0.2 79.1 ± 0.2 66.4 ± 0.2 58.4 ± 0.2 71.1

EM-C S+Tf+T+Sf 86.4 ± 0.3 87.0 ± 0.3 69.5 ± 0.3 71.4 ± 0.3 78.6

EM-C + LAT S+Tf+T+Sf 86.2 ± 0.2 86.6 ± 0.3 71.8 ± 0.3 73.7 ± 0.2 79.6

EM-B S+Tf+T+Sf very low very low very low very low very low

EM-B + LAT S+Tf+T+Sf very low very low very low very low very low

Ours (wo LAT ) S+Tf+T+Sf 87.1 ± 0.3 87.1 ± 0.2 72.3 ± 0.2 72.2 ± 0.2 79.7

Ours (w LAT ) S+Tf+T+Sf 86.8 ± 0.2 88.8 ± 0.4 74.3 ± 0.2 73.9 ± 0.2 80.9

Table 4. Comparison of different attention discrepancy measures on Office-31

Measure A → W A → D D → A W → A Average

L1-norm very low very low very low very low very low

MMD 84.7 84.1 66.2 64.5 74.9

JMMD 85.9 85.3 70.1 71.1 78.1

Ours 86.8 88.8 74.3 73.9 80.9

Specifically, we improve over the state of art result by +2.6% on average, and
by +5.1% for the difficult transfer task D → A.

Second, we also compare our method with and without the adversarial atten-
tion alignment loss LAT . Although for easy transfer tasks, the performance of
these two variants are comparable, when moving to much harder tasks, we
observe obvious improvement brought by the adversarial attention alignment,
e.g., training with adversarial attention alignment outperforms that without
attention alignment by +2% for the task D → A, and +1.7% for the task W →
A. This implies that adversarial attention alignment helps reduce the discrep-
ancy across domains and regularize the training of the target model.

Third, we validate that augmenting with synthetic target data to facilitate
the target network training brings significant improvement of accuracy over
source network. This indicates that the discrepancy between synthetic and real
target data is much smaller. We also notice that in our method, the accuracy
of the network trained with real and synthetic data from both domains is much
better than the one purely trained with real and synthetic target data. This ver-
ifies the knowledge shared by the source domain can be sufficiently uncovered
by our framework to improve the target network performance.

Figure 4 illustrates how the attention alignment penalty LAT changes during
the training process with and without this penalty imposed. Without attention
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alignment, the discrepancy of the attention maps between the source and tar-
get network is significantly larger and increases as the training goes on. The
improvement of accuracy brought by adding LAT penalty to the objective can
be attributed to the much smaller discrepancy of attention maps between the
source and the target models, i.e., better aligned attention mechanism. The
testing accuracy curves on the target domain for tasks D → A and D → A
are also drawn in Fig. 4. It can be seen that the test accuracy steadily increases
and the model with LAT converges much faster than that without any attention
alignment.

Visualization of the attention maps of our method is provided in Fig. 1. We
observe that through attention alignment, the attention maps of the target net-
work adapt well to the target domain images, and are even better than those of
the target model trained on labeled target images.

4.4 Ablation Study

Table 3 compares the accuracy of different EM variants. We conduct ablation
studies by removing one component from the system at a time (three components
are considered which are defined in Sect. 3.3). For each variant of EM, we also
evaluate the effect of imposing LAT by comparing training with and without
LAT . By comparing the performances of EM-A, EM-B, EM-C and full method
we adopted, we find that the three modifications all contribute considerably to
the system. Among them, filtering the noisy data is the most important factor.
We also notice that for EM-A and EM-C, training along with LAT always leads
to a significant improvement, implying performing attention alignment is an
effective way to improve the adaptation performance.

4.5 Comparing Different Attention Discrepancy Measures

In this section, we provide a method comparison in measuring the attention
discrepancy across domains which is discussed in Sect. 3.2. This paper uses the
L2 distance, and the compared methods include the L1 distance, MMD [16] and
JMMD [17]. Results are presented in Table 4.

We find that our method achieves the best results among the four measures.
The L1 distance fails in training a workable network because it is misled by the
noise in the attention maps. Our method outperforms MMD/JMMD by a large
margin, because our method preserves the structure information, as discussed in
Sect. 3.2.

5 Conclusion

In this paper, we make two contributions to the community of UDA. First, from
the convolutional layers, we propose to align the attention maps of the source
network and target network to make the knowledge from source network better
adapted to the target one. Second, from an EM perspective, we maximize the
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likelihood of unlabeled target data, which enables target network to leverage
more training data for better domain adaptation. Both contributions benefit
from the unsupervised image correspondences provided by CycleGAN. Experi-
ment demonstrates that the two contributions both have positive effects on the
system performance, and they cooperate together to achieve competitive or even
state-of-the-art results on two benchmark datasets.
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