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Abstract. In this paper, we study the problem of recovering 3D planar
surfaces from a single image of man-made environment. We show that it
is possible to directly train a deep neural network to achieve this goal.
A novel plane structure-induced loss is proposed to train the network to
simultaneously predict a plane segmentation map and the parameters of
the 3D planes. Further, to avoid the tedious manual labeling process, we
show how to leverage existing large-scale RGB-D dataset to train our
network without explicit 3D plane annotations, and how to take advan-
tage of the semantic labels come with the dataset for accurate planar
and non-planar classification. Experiment results demonstrate that our
method significantly outperforms existing methods, both qualitatively
and quantitatively. The recovered planes could potentially benefit many
important visual tasks such as vision-based navigation and human-robot
interaction.
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1 Introduction

Automatic 3D reconstruction from a single image has long been a challenging
problem in computer vision. Previous work have demonstrated that an effective
approach to this problem is exploring structural regularities in man-made envi-
ronments, such as planar surfaces, repetitive patterns, symmetries, rectangles
and cuboids [5,12,14,15,21,28,33]. Further, the 3D models obtained by harness-
ing such structural regularities are often attractive in practice, because they
provide a high-level, compact representation of the scene geometry, which is
desirable for many applications such as large-scale map compression, semantic
scene understanding, and human-robot interaction.

In this paper, we study how to recover 3D planes – arguably the most common
structure in man-made environments – from a single image. In the literature,
several methods have been proposed to fit a scene with a piecewise planar model.
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Fig. 1. We propose a new, end-to-end trainable deep neural network to recover 3D
planes from a single image. (a) Given an input image, the network simultaneously
predicts (i) a plane segmentation map that partitions the image into planar surfaces
plus non-planar objects, and (ii) the plane parameters {nj}m

j=1 in 3D space. (b) With
the output of our network, a piecewise planar 3D model of the scene can be easily
created.

These methods typically take a bottom-up approach: First, geometric primitives
such as straight line segments, corners, and junctions are detected in the image.
Then, planar regions are discovered by grouping the detected primitives based
on their spatial relationships. For example, [3,6,27,34] first detect line segments
in the image, and then cluster them into several classes, each associated with
a prominent vanishing point. [21] further detects junctions formed by multiple
intersecting planes to generate model hypotheses. Meanwhile, [9,11,16] take a
learning-based approach to predict the orientations of local image patches, and
then group the patches with similar orientations to form planar regions.

However, despite its popularity, there are several inherent difficulties with the
bottom-up approach. First, geometric primitives may not be reliably detected in
man-made environments (e.g., due to the presence of poorly textured or spec-
ular surfaces). Therefore, it is very difficult to infer the geometric properties of
such surfaces. Second, there are often a large number of irrelevant features or
outliers in the detected primitives (e.g., due to presence of non-planar objects),
making the grouping task highly challenging. This is the main reason why most
existing methods resort to rather restrictive assumptions, e.g., requiring “Man-
hattan world” scenes with three mutually-orthogonal dominant directions or a
“box” room model, to filter outliers and produce reasonable results. But such
assumptions greatly limit the applicability of those methods in practice.

In view of these fundamental difficulties, we take a very different route to
3D plane recovery in this paper. Our method does not rely on grouping low-
level primitives such as line segments and image patches. Instead, inspired by
the recent success of convolutional neural networks (CNNs) in object detection
and semantic segmentation, we design a novel, end-to-end trainable network
to directly identify all planar surfaces in the scene, and further estimate their
parameters in the 3D space. As illustrated in Fig. 1, the network takes a single
image as input, and outputs (i) a segmentation map that identifies the planar
surfaces in the image and (ii) the parameters of each plane in the 3D space, thus
effectively creating a piecewise planar model for the scene.
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One immediate difficulty with our learning-based approach is the lack of
training data with annotated 3D planes. To avoid the tedious manual labeling
process, we propose a novel plane structure-induced loss which essentially casts
our problem as one of single-image depth prediction. Our key insight here is
that, if we can correctly identify the planar regions in the image and predict the
plane parameters, then we can also accurately infer the depth in these regions.
In this way, we are able to leverage existing large-scale RGB-D datasets to train
our network. Moreover, as pixel-level semantic labels are often available in these
datasets, we show how to seamlessly incorporate the labels into our network to
better distinguish planar and non-planar objects.

In summary, the contributions of this work are: (i) We design an effective,
end-to-end trainable deep neural network to directly recover 3D planes from a
single image. (ii) We develop a novel learning scheme that takes advantage of
existing RGB-D datasets and the semantic labels therein to train our network
without extra manual labeling effort. Experiment results demonstrate that our
method significantly outperforms, both qualitatively and quantitatively, existing
plane detection methods. Further, our method achieves real-time performance at
the testing time, thus is suitable for a wide range of applications such as visual
localization and mapping, and human-robot interaction.

2 Related Work

3D Plane Recovery from a Single Image. Existing approaches to this prob-
lem can be roughly grouped into two categories: geometry-based methods and
appearance-based methods. Geometry-based methods explicitly analyze the geo-
metric cues in the 2D image to recover 3D information. For example, under the
pinhole camera model, parallel lines in 3D space are projected to converging
lines in the image plane. The common point of intersection, perhaps at infin-
ity, is called the vanishing point [13]. By detecting the vanishing points associ-
ated with two sets of parallel lines on a plane, the plane’s 3D orientation can
be uniquely determined [3,6,27]. Another important geometric primitive is the
junction formed by two or more lines of different orientations. Several work make
use of junctions to generate plausible 3D plane hypotheses or remove impossi-
ble ones [21,34]. And a different approach is to detect rectangular structures
in the image, which are typically formed by two sets of orthogonal lines on the
same plane [26]. However, all these methods rely on the presence of strong reg-
ular structures, such as parallel or orthogonal lines in a Manhattan world scene,
hence have limited applicability in practice.

To overcome this limitation, appearance-based methods focus on inferring
geometric properties of an image from its appearance. For example, [16] proposes
a diverse set of features (e.g., color, texture, location and shape) and uses them
to train a model to classify each superpixel in an image into discrete classes
such as “support” and “vertical (left/center/right)”. [11] uses a learning-based
method to predict continuous 3D orientations at a given image pixel. Further, [9]
automatically learns meaningful 3D primitives for single image understanding.
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Our method also falls into this category. But unlike existing methods which
take a bottom-up approach by grouping local geometric primitives, our method
trains a network to directly predict global 3D plane structures. Recently, [22]
also proposes a deep neural network for piecewise planar reconstruction from a
single image. But its training requires ground truth 3D planes and does not take
advantage of the semantic labels in the dataset.

Machine Learning and Geometry. There is a large body of work on devel-
oping machine learning techniques to infer pixel-level geometric properties of
the scene, mostly in the context of depth prediction [7,30] and surface normal
prediction [8,18]. But few work has been done on detecting mid/hight-level 3D
structures with supervised data. A notable exception which is also related to our
problem is the line of research on indoor room layout estimation [5,14,15,20,28].
In these work, however, the scene geometry is assumed to follow a simple “box”
model which consists of several mutually orthogonal planes (e.g., ground, ceil-
ing, and walls). In contrast, our work aims to detect 3D planes under arbitrary
configurations.

3 Method

3.1 Difficulty in Obtaining Ground Truth Plane Annotations

As most computer vision problems, a large-scale dataset with ground truth anno-
tations is needed to effectively train the neural network for our task. Unfortu-
nately, since the planar regions often have complex boundaries in an image,
manual labeling of such regions could be very time-consuming. Further, it is
unclear how to extract precise 3D plane parameters from an image.

To avoid the tedious manual labeling process, one strategy is to automati-
cally convert the per-pixel depth maps in existing RGB-D datasets into planar
surfaces. To this end, existing multi-model fitting algorithms can be employed to
cluster 3D points derived from the depth maps. However, this is not an easy task
either. Here, the fundamental difficulty lies in the choice of a proper threshold
in practice to distinguish the inliers of a model instance (e.g., 3D points on a
particular plane) from the outliers, regardless of which algorithm one chooses.

To illustrate this difficulty, we use the SYNTHIA dataset [29] which provides
a large number of photo-realistic synthetic images of urban scenes and the cor-
responding depth maps (see Sect. 4.1 for more details). The dataset is generated
by rendering a virtual city created using the Unity game development platform.
Thus, the depth maps are noise-free. To detect planes from the 3D point cloud,
we apply a popular multi-model fitting method called J-Linkage [31]. Similar to
the RANSAC technique, this method is based on sampling consensus. We refer
interested readers to [31] for a detailed description of the method.

A key parameter of J-Linkage is a threshold ε which controls the maximum
distance between a model hypothesis (i.e., a plane) and the data points belonging
to the hypothesis. In Fig. 2, we show example results produced by J-Linkage with



Recovering 3D Planes from a Single Image 91

(a) (b) (c) (d)

Fig. 2. Difficulty in obtaining ground truth plane annotations. (a–b): Original image
and depth map. (c–d): Plane fitting results generated by J-Linkage with ε = 0.5 and
ε = 2, respectively.

different choices of ε. As one can see in Fig. 2(c), when a small threshold (ε = 0.5)
is used, the method breaks the building facade on the right into two planes. This
is because the facade is not completely planar due to small indentations (e.g.,
the windows). When a large threshold (ε = 2) is used (Fig. 2(d)), the stairs on
the building on the left are incorrectly grouped with another building. Also,
some objects (e.g., cars, pedestrians) are merged with the ground. If we use
these results as ground truth to train a deep neural network, the network will
also likely learn the systematic errors in the estimated planes. And the problem
becomes even worse if we want to train our network on real datasets. Due to the
limitation of existing 3D acquisition systems (e.g., RGB-D cameras and LIDAR
devices) and computational tools, the depth maps in these datasets are often
noisy and of limited resolution and limited reliable range. Clustering based on
such depth maps is prone to errors.

3.2 A New Plane Structure-Induced Loss

The challenge in obtaining reliable labels motivates us to develop alternative
training schemes for 3D plane recovery. Specifically, we ask the following ques-
tion: Can we leverage the wide availability of large-scale RGB-D and/or 3D
datasets to train a network to recognize geometric structures such as planes
without obtaining ground truth annotations about the structures?

To address this question, our key insight is that, if we can recover 3D planes
from the image, then we can use these planes to (partially) explain the scene
geometry, which is generally represented by a 3D point cloud. Specifically, let
{Ii,Di}ni=1 denote a set of n training RGB image and depth map pairs with
known camera intrinsic matrix K.1 Then, for any pixel q .= [x, y, 1]T (in homo-
geneous coordinates) on image Ii, it is easy to compute the corresponding 3D
point as Q = Di(q) · K−1q. Further, let n ∈ R

3 represents a 3D plane in the
scene. If Q lies on the plane, then we have nTQ = 12.

1 Without loss of generality, we assume a constant K for all images in the dataset.
2 A common way to represent a 3D plane is (ñ, d) where ñ is a normal vector and

d is the distance to the camera center. In this paper, we choose a more succinct
parametrization: n

.
= ñ/d. Note that n can uniquely identify a 3D plane, assuming

the plane is not through the camera center (which is valid for real world images).
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With the above observation, assuming there are m planes in the image Ii,
we can now train a network to simultaneously output (i) a per-pixel probability
map Si, where Si(q) is an (m+1)-dimensional vector with its j-th element Sj

i (q)
indicating the probability of pixel q belonging to the j-th plane,3 and (ii) the
plane parameters Πi = {nj

i}mj=1, by minimizing the following objective function:

L =
n∑

i=1

m∑

j=1

(
∑

q

Sj
i (q) · |(nj

i )
TQ − 1|

)
+ α

n∑

i=1

Lreg(Si), (1)

where Lreg(Si) is a regularization term preventing the network from generating
a trivial solution S0

i (·) ≡ 1, i.e., classifying all pixels as non-planar, and α is a
weight balancing the two terms.

Before proceeding, we make two important observations about our formula-
tion Eq. (1). First, the term |(nj

i )
TQ − 1| measures the deviation of a 3D scene

point Q from the j-th plane in Ii, parameterized by nj
i . In general, for a pixel

q in the image, we know from perspective geometry that the corresponding 3D
point must lie on a ray characterized by λK−1q, where λ is the depth at q. If
this 3D point is also on the j-th plane, we must have

(nj
i )

T · λK−1q = 1 =⇒ λ =
1

(nj
i )T · K−1q

. (2)

Hence, in this case, λ can be regarded as the depth at q constrained by nj
i . Now,

we can rewrite the term as:

|(nj
i )

TQ − 1| = |(nj
i )

TDi(q) · K−1q − 1| = |Di(q)/λ − 1|. (3)

Thus, the term |(nj
i )

TQ − 1| essentially compares the depth λ induced by the
j-th predicted plane with the ground truth Di(q), and penalizes the difference
between them. In other words, our formulation casts the 3D plane recovery
problem as a depth prediction problem.

Second, Eq. (1) couples plane segmentation and plane parameter estimation
in a loss that encourages consistent explanations of the visual world through
the recovered plane structure. It mimics the behavior of biological agents (e.g.,
humans) which also employ structural priors for 3D visual perception of the
world [32]. This is in contrast to alternative methods that rely on ground truth
plane segmentation maps and plane parameters as direct supervision signals to
tackle the two problems separately.

3.3 Incorporating Semantics for Planar/Non-planar Classification

Now we turn our attention to the regularization term Lreg(Si) in Eq. (1). Intu-
itively, we wish to use the predicted planes to explain as much scene geometry
as possible. Therefore, a natural choice of Lreg(Si) is to encourage plane predic-
tions by minimizing the cross-entropy loss with constant label 1 at each pixel.
3 In this paper, we use j = 0 to denote the “non-planar” class.
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Specifically, let pplane(q) =
∑m

j=1 Sj
i (q) be the sum of probabilities of pixel q

being assigned to each plane, we write

Lreg(Si) =
∑

q

−1 · log(pplane(q)) − 0 · log(1 − pplane(q)). (4)

Note that, while the above term effectively encourages the network to explain
every pixel in the image using the predicted plane models, it treats all pixels
equally. However, in practice, some objects are more likely to form meaningful
planes than others. For example, a building facade is often regarded as a planar
surface, whereas a pedestrian or a car is typically viewed as non-planar. In
other words, if we can incorporate such high-level semantic information into
our training scheme, the network is expected to achieve better performance in
differentiating planar vs. non-planar surfaces.

Motivated by this observation, we propose to further utilize the semantic
labels in the existing datasets. Take the SYNTHIA dataset as an example. The
dataset provides precise pixel-level semantic annotations for 13 classes in urban
scenes. For our purpose, we group these classes into “planar” = {building, fence,
road, sidewalk, lane-marking} and “non-planar” = {sky, vegetation, pole, car,
traffic signs, pedestrians, cyclists, miscellaneous}. Then, let z(q) = 1 if pixel q
belongs to one of the “planar” classes, and z(q) = 0 otherwise, we can revise
our regularization term as:

Lreg(Si) =
∑

q

−z(q) · log(pplane(q)) − (1 − z(q)) · log(1 − pplane(q)). (5)

Note that the choices of planar/non-planar classes are dataset- and problem-
dependent. For example, one may argue that “sky” can be viewed as plane at
infinity, thus should be included in the “planar” classes. Regardless the partic-
ular choices, we emphasize that here we provide a flexible way to incorporate
high-level semantic information (generated by human annotators) to the plane
detection problem. This is in contrast to traditional geometric methods that
solely rely on a single threshold to distinguish planar vs. non-planar surfaces.

3.4 Network Architecture

In this paper, we choose a fully convolutional network (FCN), following its recent
success in various pixel-level prediction tasks such as semantic segmentation [2,
23] and scene flow estimation [25]. Figure 3 shows the overall architecture of
our proposed network. To simultaneously estimate the plane segmentation map
and plane parameters, our network consists of two prediction branches, as we
elaborate below.

Plane Segmentation Map. To predict the plane segmentation map, we use an
encoder-decoder design with skip connections and multi-scale side predictions,
similar to the DispNet architecture proposed in [25]. Specifically, the encoder
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Fig. 3. Network architecture. The width and height of each block indicates the channel
and the spatial dimension of the feature map, respectively. Each reduction (or increase)
in size indicates a change by a factor of 2. The first convolutional layer has 32 channels.
The filter size is 3 except for the first four convolutional layers (7, 7, 5, 5).

takes the whole image as input and produces high-level feature maps via a con-
volutional network. The decoder then gradually upsamples the feature maps via
deconvolutional layers to make final predictions, taking into account also the
features from different encoder layers. The multi-scale side predictions further
allow the network to be trained with deep supervision. We use ReLU for all
layers except for the prediction layers, where the softmax function is applied.

Plane Parameters. The plane parameter prediction branch shares the same
high-level feature maps with the segmentation branch. The branch consists of two
stride-2 convolutional layers (3×3×512) followed by a 1×1×3 m convolutional
layer to output the parameters of the m planes. Global average pooling is then
used to aggregate predictions across all spatial locations. We use ReLU for all
layers except for the last layer, where no activation is applied.

Implementation Details. Our network is trained from scratch using the pub-
licly available Tensorflow framework. By default, we set the weight in Eq. (1) as
α = 0.1, and the number of planes as m = 5. During training, we adopt the
Adam [17] method with β1 = 0.99 and β2 = 0.9999. The batch size is set to
4, and the learning rate is set to 0.0001. We also augment the data by scaling
the images with a random factor in [1, 1.15] followed by a random cropping.
Convergence is reached at about 500K iterations.

4 Experiments

In this section, we conduct experiments to study the performance of our method,
and compare it to existing ones. All experiments are conducted on one Nvidia
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GTX 1080 Ti GPU device. At testing time, our method runs at about 60 frames
per second, thus are suitable for potential real-time applications4.

4.1 Datasets and Ground Truth Annotations

SYNTHIA: The recent SYNTHIA dataset [29] comprises more than 200,000
photo-realistic images rendered from virtual city environments with precise pixel-
wise depth maps and semantic annotations. Since the dataset is designed to
facilitate autonomous driving research, all frames are acquired from a virtual car
as it navigates in the virtual city. The original dataset contains seven different
scenarios. For our experiment, we select three scenarios (SEQS-02, 04, and 05)
that represents city street views. For each scenario, we use the sequences for all
four seasons (spring, summer, fall, and winter). Note that, to simulate real traffic
conditions, the virtual car makes frequent stops during navigation. As a result,
the dataset has many near-identical frames. We filter these redundant frames
using a simple heuristic based on the vehicle speed. Finally, from the remaining
frames, we randomly sample 8,000 frames as the training set and another 100
frames as the testing set.

For quantitative evaluation, we need to label all the planar regions in the
test images. As we discussed in Sect. 3.1, automatic generation of ground truth
plane annotations is difficult and error-prone. Thus, we adopt a semi-automatic
method to interactively determine the ground truth labels with user input. To
label one planar surface in the image, we ask the user to draw a quadrilateral
region within that surface. Then, we fit a plane to the 3D points (derived from
the ground truth depth map) that fall into that region to obtain the plane
parameters and an instance-specific estimate of the variance of the distance
distribution between the 3D points and the fitted plane. Note that, with the
instance-specific variance estimate, we are able to handle surfaces with varying
degrees of deviation from a perfect plane, but are commonly regarded as “planes”
by humans. Finally, we use the plane parameters and the variance estimate to
find all pixels that belong to the plane. We repeat this process until all planes
in the image are labeled.

Cityscapes: Cityscapes [4] contains a large set of real street-view video
sequences recorded in different cities. From the 3,475 images with publicly avail-
able fine semantic annotations, we randomly select 100 images for testing, and
use the rest for training. To generate the planar/non-planar masks for training,
we label pixels in the following classes as “planar” = {ground, road, sidewalk,
parking, rail track, building, wall, fence, guard rail, bridge, and terrain}.

In contrast to SYNTHIA, the depth maps in Cityscapes are highly noisy
because they are computed from stereo correspondences. Fitting planes on such
data is extremely difficult even with user input. Therefore, to identify planar

4 Please refer to supplementary materials for additional experiment results about (i)
the choice of plane number and (ii) the effect of semantic labels.
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surfaces in the image, we manually label the boundary of each plane using poly-
gons, and further leverage the semantic annotations to refine it by ensuring that
the plane boundary aligns with the object boundary, if they overlap.

4.2 Methods for Comparison

As discussed in Sect. 2, a common approach to plane detection is to use geometric
cues such as vanishing points and junction features. However, such methods
all make strong assumptions on the scene geometry, e.g., a “box”-like model
for indoor scenes or a “vertical-ground” configuration for outdoor scenes. They
would fail when these assumptions are violated, as in the case of SYNTHIA and
Cityscapes datasets. Thus, we do not compare to these methods. Instead, we
compare our method to the following appearance-based methods:

Depth + Multi-model Fitting: For this approach, we first train a deep neural
network to predict pixel-level depth from a single image. We directly adopt the
DispNet architecture [25] and train it from scratch with ground truth depth
data. Following recent work on depth prediction [19], we minimize the berHu
loss during training.

To find 3D planes, we have then applied two different multi-model fitting
algorithms, namely J-Linkage [31] and RansaCov [24], on the 3D points derived
from the predicted depth map. We call the corresponding methods Depth +
J-Linkage and Depth + RansaCov, respectively. For fair comparison, we
only keep the top-5 planes detected by each method. As mentioned earlier, a
key parameter in these methods is the distance threshold ε. We favor them by
running J-Linkage or RansaCov multiple times with various values of ε and
retaining the best results.

Geometric Context (GC) [16]: This method uses a number of hand-crafted
local image features to predict discrete surface layout labels. Specifically, it trains
decision tree classifiers to label the image into three main geometric classes
{support, vertical, sky}, and further divide the “vertical” class into five sub-
classes {left, center, right, porous, solid}. Among these labels, we consider the
“support” class and “left”, “center”, “right” subclasses as four different planes,
and the rest as non-planar.

To retrain their classifiers using our training data, we translate the labels in
SYNTHIA dataset into theirs5 and use the source code provided by the authors6.
We found that this yields better performance on our testing set than the pre-
trained classifiers provided by the authors. We do not include this method in
the experiment on Cityscapes dataset because it is difficult to determine the
orientation of the vertical structures from the noisy depth maps.
5 sky→sky, {road, sidewalk, lane-marking}→support, and the rest→vertical. For the

“building” and “fence” classes in the SYNTHIA dataset, we fit 3D planes at different
orientations to determine the appropriate subclass label (i.e., left/center/right).

6 http://dhoiem.cs.illinois.edu/.

http://dhoiem.cs.illinois.edu/
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Fig. 4. Plane segmentation results on SYNTHIA. From left to right: Input image;
Ground truth; Depth + J-Linkage; Depth + RansaCov; Geometric Context; Ours.

Finally, we note that there is another closely related work [11], which also
detects 3D planes from a single image. Unfortunately, the source code needed
to train this method on our datasets is currently unavailable. And it is reported
in [11] that its performance on plane detection is on par with that of GC. Thus,
we decided to compare our method to GC instead.

4.3 Experiment Results

Plane Segmentation. Figure 4 shows example plane segmentation results on
SYNTHIA dataset. We make several important observations below.

First, Neither Depth + J-Linkage nor Depth + RansaCov performs well on
the test images. In many cases, they fail to recover the individual planar surfaces
(except the ground). To understand the reason, we show the 3D point cloud
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derived from the predicted depth map in Fig. 5. As one can see, the point cloud
tends to be very noisy, making the task of choosing a proper threshold ε in the
multi-model fitting algorithm extremely hard, if possible at all – if ε is small, it
would not be able to tolerate the large noises in the point cloud; if ε is large,
it would incorrectly merge multiple planes/objects into one cluster. Also, these
methods are unable to distinguish planar and non-planar objects due to lack of
ability to reason about the scene semantics.

Second, GC does a relatively good job in identifying major scene categories
(e.g., separating the ground, sky from buildings). However, it has difficulty in
determining the orientation of vertical structures (e.g., Fig. 4, first and fifth
rows). This is mainly due to the coarse categorization (left/center/right) used by
this method. In complex scenes, such a discrete categorization is often ineffective
and ambiguous. Also, recall that GC is unable to distinguish planes that have
the same orientation but are at different distances (e.g., Fig. 4, fourth row), not
to mention finding the precise 3D plane parameters.

Fig. 5. Comparison of 3D models. First column: Input image. Second and third
columns: Model generated by depth prediction. Fourth and fifth columns: Model
generated by our method.

Table 1. Plane segmentation results. Left: SYNTHIA. Right: Cityscapes.

Method RI VOI SC
Depth+J-Linkage 0.825 1.948 0.589
Depth+RansaCov 0.810 2.274 0.550
Geo. Context [16] 0.846 1.626 0.636
Ours 0.925 1.129 0.797

Method RI VOI SC
Depth+J-Linkage 0.713 2.668 0.450
Depth+RansaCov 0.705 2.912 0.431
Ours (w/o fine-tuning) 0.759 1.834 0.597
Ours (w/ fine-tuning) 0.884 1.239 0.769

Third, our method successfully detects most prominent planes in the scene,
while excluding non-planar objects (e.g., trees, cars, light poles). This is no
surprise because our supervised framework implicitly encodes high-level semantic
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information as it learns from the labeled data provided by humans. Interestingly,
one may observe that, in the last row of Fig. 4, our method classifiers the unpaved
ground next to the road as non-planar. This is because such surfaces are not
considered part of the road in the original SYNTHIA labels. Figure 5 further
shows some piecewise planar 3D models obtained by our method.

For quantitative evaluation, we use three popular metrics [1] to compare the
plane segmentation maps obtained by an algorithm with the ground truth: Rand
index (RI), variation of information (VOI), and segmentation covering (SC).
Table 1(left) compares the performance of all methods on SYNTHIA dataset. As
one can see, our method outperforms existing methods by a significant margin
w.r.t all evaluation metrics.

Table 1(right) further reports the segmentation accuracies on Cityscapes
dataset. We test our method under two settings: (i) directly applying our model
trained on SYNTHIA dataset, and (ii) fine-tuning our network on Cityscapes
dataset. Again, our method achieves the best performance among all methods.
Moreover, fine-tuning on the Cityscapes dataset significantly boost the perfor-
mance of our network, despite that the provided depth maps are very noisy.
Finally, we show example segmentation results on Cityscapes in Fig. 6.

Fig. 6. Plane segmentation results on Cityscapes. From left to right: Input image;
Ground truth; Depth + J-Linkage; Depth + RansaCov; Ours (w/o fine-tuning); Ours
(w/ fine-tuning).



100 F. Yang and Z. Zhou

Depth Prediction. To further evaluate the quality of the 3D planes estimated
by our method, we compare the depth maps derived from the 3D planes with
those obtained via standard depth prediction pipeline (see Sect. 4.2 for details).
Recall that our method outputs a per-pixel probability map S(q). For each
pixel q in the test image, we pick the 3D plane with the maximum probability to
compute our depth map. We exclude pixels which are considered as “non-planar”
by our method, since our network is not designed to make depth predictions in
that case.

As shown in Table 2, our method achieves competitive results on both
datasets, but the accuracies are slightly lower than those of standard depth
prediction pipeline. The decrease in accuracy may be partly attributed to that
our method is designed to recover large planar structures in the scene, therefore
ignores small variations and details in the scene geometry.

Table 2. Depth prediction results.

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

SYNTHIA

Train set mean 0.3959 3.7348 10.6487 0.5138 0.3420 0.6699 0.8221

DispNet+berHu loss 0.0451 0.2226 1.6491 0.0755 0.9912 0.9960 0.9976

Ours 0.0431 0.3643 2.2405 0.0954 0.9860 0.9948 0.9966

Cityscapes

Train set mean 0.2325 4.6558 15.4371 0.5093 0.6127 0.7352 0.8346

DispNet+berHu loss 0.0855 0.7488 5.1307 0.1429 0.9222 0.9776 0.9907

Ours 0.1042 1.4938 6.8755 0.1869 0.8909 0.9672 0.9862

Fig. 7. Failure examples.

Failure Cases. Figure 7 shows typical failure cases of our method, which include
occasionally separating one plane into two (first column) or merging multiple
planes into one (second column). Interestingly, for the formal case, one can still
obtain a decent 3D model (Fig. 5, last row), suggesting opportunities to further
refine our results via post-processing. Our method also has problem with curved
surfaces (third column).

Other failures are typically associated with our assumption that there are
at most m = 5 planes in the scene. For example, in Fig. 7, fourth column, the
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building on the right has a large number of facades. And it becomes even more
difficult when multiple planes are at great distance (fifth column). We leave
adaptively choosing the plane number in our framework for future work.

5 Conclusion

This paper has presented a novel approach to recovering 3D planes from a single
image using convolutional neural networks. We have demonstrated how to train
the network, without 3D plane annotations, via a novel plane structure-induced
loss. In fact, the idea of exploring structure-induced loss to train neural networks
is by no means restricted to planes. We plan to generalize the idea to detect other
geometric structures, such as rectangles and cuboids.

Another promising direction for future work would be to improve the gener-
alizability of the networks via unsupervised learning, as suggested by [10]. For
example, it is interesting to probe the possibility of training our network without
depth information, which is hard to obtain in many real world applications.
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