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Abstract. Learning and predicting the pose parameters of a 3D hand
model given an image, such as locations of hand joints, is challenging due
to large viewpoint changes and articulations, and severe self-occlusions
exhibited particularly in egocentric views. Both feature learning and pre-
diction modeling have been investigated to tackle the problem. Though
effective, most existing discriminative methods yield a single determinis-
tic estimation of target poses. Due to their single-value mapping intrinsic,
they fail to adequately handle self-occlusion problems, where occluded
joints present multiple modes. In this paper, we tackle the self-occlusion
issue and provide a complete description of observed poses given an
input depth image by a novel method called hierarchical mixture density
networks (HMDN). The proposed method leverages the state-of-the-art
hand pose estimators based on Convolutional Neural Networks to facili-
tate feature learning, while it models the multiple modes in a two-level
hierarchy to reconcile single-valued and multi-valued mapping in its out-
put. The whole framework with a mixture of two differentiable density
functions is naturally end-to-end trainable. In the experiments, HMDN
produces interpretable and diverse candidate samples, and significantly
outperforms the state-of-the-art methods on two benchmarks with occlu-
sions, and performs comparably on another benchmark free of occlusions.
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1 Introduction

3D hand pose estimation has shown an increasing interest with commer-
cial miniaturized RGBD cameras and its ubiquitous applications in vir-
tual/augmented reality (VR/AR) [13], sign language recognition [3,47], activity
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recognition [29], and man-machine interfaces for robots and autonomous vehi-
cles. There are generally two typical camera settings: a third-person viewpoint,
where the camera is set in front of the user, and an egocentric (or first-person)
viewpoint, where the camera is mounted on the user’s head (in VR glasses, for
example), or shoulder. While both settings share challenges like the full range
of 3D global rotations, complex articulations, self-similar parts of hands, self-
occlusions are more dominant in the egocentric viewpoints. Most existing hand
benchmarks are collected in the third-person viewpoints, e.g. the two widely
used ICVL [38] and NYU [41] have less than 9% occluded finger joints.

Discriminative methods (cf. generative model fitting) in hand pose estimation
learn a mapping from an input image to pose parameters from a large training
dataset, and have been very successful in the settings of third-person viewpoints.
However, they fail to handle occlusions frequently encountered in egocentric
viewpoints. They treat the mapping to be single-valued, not being aware of that
an input image may have multiple pose hypotheses when occlusions occur. See
Fig. 1 where an example image and its multiple pose labels from the BigHand
dataset [48] are shown.

Average

a b
c d

Fig. 1. (a) A hand depth image with the pinky finger occluded. (b) Multiple pose labels
(visible joints are in blue and occluded joints in yellow) and the predicted pose (in red)
by CNN trained using a mean squared error. (c) A closer look of the multiple labels
and the CNN prediction for the occluded joints. (d) The average of two labels yields a
physically implausible pose. (Color figure online)

Given a set of hand images and their pose labels i.e. 3D joint locations, dis-
criminative methods such as Convolutional Neural Networks (CNN) minimize a
mean squared error function, and the minimization of such error functions typi-
cally yields the averages of joint locations conditioned on input images. When all
finger joints in the images are visible, the mapping is single-valued and the condi-
tional average is correct, though the average only provides a limited description
of the joint locations. However, for the occlusion cases, which happen frequently
in the egocentric and hand-object interaction scenarios [7,22–24], the mapping
is multi-valued due to occluded joints that exhibit multiple locations given the
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same images. The conditional average of the joint locations is not necessarily a
correct pose, as shown in Fig. 1b and c (The skeletons are shown in a 3D rotated
view to better illustrate the problem, same for the other 3D skeletons shown in
the paper). The prediction of a CNN trained by the mean squared error function
is shown in red. It is interpretable and close to the ground truth for the visible
joints, whereas it is physically implausible and not close to any of the given
poses for the occluded joints. The example is clearer in Fig. 1d, where we are
given two available poses for the same image and CNN trained with the mean
squared error function produces the pose estimation in red.

Existing discriminative methods, including the above CNN, are mostly deter-
ministic, i.e. their outputs are single poses, thus lacking the description of all
available joint locations. A discriminative method often serves as the initial-
ization of a generative model fitting in the hybrid pose estimation approaches
[31,36]. If the discriminative method yields a probability distribution that well
fits the data, than a single deterministic output, it would allow sampling pose
hypotheses from its distribution. This, in turn, reduces the search space, helping
a faster convergence, and avoids local minima from diverse candidates in the
model fitting. Such sampling is crucial also for multi-stage pose estimation [36]
and hand tracking [21]. Previous methods ignore the pose space to be explored
ahead and their optimization frameworks are not aware of occlusions.

Visible Occluded

(a) SGN

(b) HMDN

Fig. 2. Samples drawn from the distribu-
tions of SGN and HMDN for finger tips.

Fig. 3. Hand images under self-occlusions
exhibiting multiple pose labels.

In this paper, hierarchical mixture density networks (HMDN) are proposed
to give a complete description of hand poses given images under occlusions.
The probability distribution of joint locations is modeled in a two-level hier-
archy to consider both single- and multi-valued mapping conditioned on the
joint visibility. The first level represents the distribution of a latent variable
for the joint visibility, while the second level the distribution of joint locations
by a single Gaussian model for visible joints or a Gaussian mixture model for
occluded joints. The hierarchical mixture density is topped upon the CNN out-
put layer, and the whole network is trained end-to-end with the differentiable
density functions. See Fig. 2. The distribution of the proposed method HMDN
captures diverse joint locations in a compact manner, compared to the network
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that learns a single Gaussian distribution (SGN). To the best of our knowledge,
HMDN is the first solution that has its estimation in the form of a conditional
probability distribution with the awareness of occlusions in 3D hand pose esti-
mation. The experiments show that the proposed method significantly improves
several baselines and state-of-the-art methods under occlusions given the same
number of pose hypotheses.

2 Related Work

2.1 Pose Estimation Under Occlusion

For free hand motions, methods explicitly tackling self-occlusions are rare as
most existing datasets are collected in third-person viewpoints and the propor-
tion of occluded joints is small. Mueller et al. [16] observed that many exist-
ing methods fail to work under occlusions and even some commercial systems
claiming for egocentric viewpoints often fail under severe occlusions. Methods
developed for hand-object interactions [23,33,42], where occlusions happen fre-
quently, model hands and objects together to resolve the occlusion issues. Jang et
al. [13] and Rogez et al. [28] exploit pose priors to refine the estimations. Mueller
et al. [16] and Rogez et al. [27] generate synthetic images to train discriminative
methods for difficult egocentric views.

In human body pose estimation and object keypoint detection, occlusions
are tackled more explicitly [4,5,8,10,12,17,26,32]. Chen et al. [5] and Ghiasi et
al. [8] learn templates for occluded parts. Hsiao et al. [12] construct a occlusion
model to score the plausibility of occluded regions. Rafi et al. [26] and Wang et al.
[44] utilize the information in backgrounds to help localize occluded keypoints.
Charles et al. [4] evaluate automatic labeling according to occlusion reasoning.
Haque et al. [10] jointly refine the prediction for visible parts and visibility mask
in stages. Navaratnam et al. [17] tackle the multi-valued mapping for 3d human
body pose via marginal distributions which help estimate the joint density.

The existing methods do not address multi-modalities nor do not model the
difference in distributions of visible and occluded joints. For CNN-based hand
pose regression [19,20,41,46], the loss function used is the mean squared error,
bringing in the aforementioned issues under occlusions. For random forest-based
pose regression [31,34,38], the estimation is made from the data in leaf nodes
and it is convenient to fit a multi-modal model to the data. However, with no
information of which joints are visible or occluded, the data in all leaf nodes
is captured either by the mean-shift (a uni-modal distribution) or a Gaussian
Mixture Model (GMM) [36].

2.2 Mixture Models

Mixture density networks (MDN) were first proposed in [1] to enable neural
networks to overcome the limitation of the mean squared error function by pro-
ducing a probability distribution. Zen et al. [49] use MDN for acoustic modeling



Occlusion-Aware Hand Pose Estimation 821

and Kinoshita et al. [15] for speech feature enhancement. Variani [43] proposes
to learn the features and the GMM model jointly. All these work apply MDN to
model acoustic signals without an adaptation of the mixture density model. In
addition to applying MDN to model the hand pose space when multiple modes
exist due to occlusion, we extend MDN by a two-level hierarchy to fit the specific
mixture of single-valued and multi-valued problems, for the application of hand
pose estimation under occlusions. To model data under noise, a similar hierar-
chical mixture model is proposed in [6] to represent “useful” data and “noise” by
different sub-components, and a Bayesian approach is used to learn the param-
eters of the mixture model. Different from the work, we model a conditional
distribution and use CNN to discriminatively learn the model parameters.

3 Hierarchical Mixture Density Network

3.1 Model Representation

The dataset to learn the model consists of {xn, Y d
n , vd

n|n = 1, . . . , N, d =
1, . . . , D}, where xn, Y d

n , and vd
n denote the n-th hand depth image, the multiple

pose labels i.e. 3D locations of the d-th joint of the n-th image, and the visibility
label of the d-th joint of the n-th image, respectively. The d-th joint is associ-
ated with multiple labels Y d

n = {yd
nm}, where yd

nm ∈ R3 is the m-th label i.e. 3D
location. See Fig. 3 for examples. Each shows different example labels overlaid
on the same depth image (in the first three columns), and all available labels in
a 3D rotated view (in the last column). Visible joints are in blue and occluded
joints in other colors. The visibility label is binary, indicating whether the d-th
joint of the n-th image is visible or not. We treat D joints independently.

To model hand poses under occlusions, a two-level hierarchy is considered.
The top-level takes the visibility label, and the bottom-level switches between a
uni-modal distribution and a multi-modal distribution, depending on the joint
visibility.

The binary label or variable vd
n follows the Bernoulli distribution,

p(vd
n|wd

n) = (wd
n)v

d
n(1 − wd

n)(1−vd
n), (1)

where wd
n is the probability that the joint is visible. As existing hand benchmarks

do not provide the joint visibility labels, we use a sphere model similar to [25] to
generate the visibility labels from the available pose labels. The sphere centers
are obtained from the joint locations and depth image pixels are assigned to the
nearest spheres. Hand joints whose spheres have the number of pixels below a
threshold are labeled as occluded. See Fig. 4. The visibility labels vd

n are used for
training, and they are inferred at testing.

When vd
n = 1, the joint is visible in the image and the location is deter-

ministic. Considering the label noise, yd
nm is generated from a single Gaussian

distribution,
p(yd

nm|vd
n = 1) = N (yd

nm;μd
n, σd

n). (2)
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When the joint is occluded i.e. vd
n = 0, it has multiple labels and they are drawn

from a Gaussian Mixture Model (GMM) with J components

p(yd
nm|vd

n = 0) =
J∑

j=1

πd
njN (yd

nm; εdnj , s
d
nj), (3)

where εdnj and sdnj represent the center and standard deviation of the j-th com-
ponent. The location yd

nm is drawn from the j-th component dependent on a

hidden variable zdnj , where zdnj ∈ {0, 1} and
J∑

j=1

zdnj = 1. The hidden variable is

under the distribution p(zdnj) =
J∏

j=1

(πd
nj)

(zd
nj), where 0 ≤ πd

nj ≤ 1,
J∑

j=1

πd
nj = 1.

Fig. 4. Left: the hand sphere model; Right: examples with pixels assigned to different
parts

With all components defined, the distribution of the joint location condi-
tioned on the visibility is

p(yd
nm|vd

n) =
[N (yd

nm;μd
n, σd

n)
]vd

n

⎡

⎣
J∑

j=1

πd
njN (yd

nm; εdnj , s
d
nj)

⎤

⎦
(1−vd

n)

(4)

and the joint distribution of yd
nm and vd

n is

p(yd
nm, vd

n) =
[
wd

nN (yd
nm;μd

n, σd
n)

]vd
n

⎡

⎣(1 − wd
n)

J∑

j=1

πd
njN (yd

nm; εdnj , s
d
nj)

⎤

⎦
(1−vd

n)

.

(5)
Equation (4) shows that the generation of joint locations yd

nm given the input
image xn is in a two-level hierarchy: first, a sample vd

n is drawn from Eq. (1)
and then, depending on vd

n, a joint location is drawn either from a uni-modal
Gaussian distribution or GMM. Thus, the proposed model switches between the
two cases and provides a full description of hand poses under occlusions. The
joint distribution in Eq. (5) is used to define the loss function in Sect. 3.3.

3.2 Architecture

The formulations in the previous section are presented for the d-th joint yd
nm. For

all D joints of hands, the distribution is obtained by multiplying the distributions
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of independent joints. The observed hand poses and the joint visibility, given xn,

are drawn from
D∏

d=1

∏
m

p(yd
nm, vd

n).

Note that the hierarchical mixture density in Eq. (4) and the joint distribu-
tion in Eq. (5) are conditioned on xn. All model parameters are in a functional
form of xn and the joint distribution in Eq. (5) is differentiable. We choose to
learn these functions by a CNN and the distribution is parameterized by the out-
put of the CNN. As shown in Fig. 5, the input of the CNN is an image xn and
the outputs are the HMDN parameters: wd

n, μd
n, σd

n, εdnj , s
d
nj , π

d
nj , for d = 1, . . . , D

and j = 1, . . . , J . The output parameters consist of three parts. wd
n is the vis-

ibility probability in Eq. (1), μd
n, σd

n for the uni-modal Gaussian in Eq. (2), and
εdnj , s

d
nj , π

d
nj for the GMM in Eq. (3). Different activation functions are used to

meet the defined ranges of parameters. For instance, the standard deviations σd
n

and sdnj are activated by an exponential function to remain positive and πd
nj by

a softmax function to be in [0, 1].
The prediction of the visibility, the value of wd

n, is used to compute the
visibility loss over the visibility label vd

n. See Sect. 3.3. Depending on the visibility
label vd

n, the parameters of the uni-modal Gaussian (for visible joints) or GMM
(for occluded joints) are chosen to compute the loss, as shown in blue and in
orange respectively in Fig. 5.

Input image  

Visibility Loss

Ground truth 

Two-level mixture density

CN
N Single Gauss Loss

Multi-Gauss Loss

Fig. 5. Hierarchical Mixture Density Network. Hand joint locations y given the input
image x are modeled in a two-level hierarchy: in the first level, the visibility is modeled
by Bernoulli distribution whose parameter is w; then depending on the visibility, the
joint locations are either modeled by uni-modal Gaussian distributions (visible joints,
shown in blue) or GMMs (occluded joint, shown in orange). The CNN outputs the
parameters of HMDN, i.e. w, μ, σ, ε, s, π. (Color figure online)

3.3 Training and Testing

The likelihood for the entire dataset {xn, Y d
n , vd

n|n = 1, . . . , N, d = 1, . . . , D} is

computed as P =
N∏

n=1

D∏
d=1

∏
m

p(yd
nm, vd

n), where p(yd
nm, vd

n) in (5) has the model
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parameters dependent on xn. Thus, our goal is to learn the neural networks that
yield the parameters that maximize the likelihood on the dataset. We use the
negative logarithmic likelihood as the loss function.

L = −logP =
N∑

n=1

D∑

d=1

∑

m

{Lvis + Lsingle + Lmulti}, (6)

where
Lvis = −vd

nlog(wd
n) − (1 − vd

n)log(1 − wd
n), (7)

Lsingle = −vd
nlog(N (yd

nm;μd
n, σd

n)), (8)

Lmulti = −(1 − vd
n)log(

J∑

j=1

πd
njN (yd

nm; εdnj , s
d
nj)). (9)

The three loss functions correspond to the three branches in Fig. 5. The visibility
loss Lvis is computed using the predicated value of wd

n. When vd
n = 1, Lmulti = 0

and Lsingle is calculated, and when vd
n = 0, vise versa.

During testing, when an image xn is fed into the network, the prediction
for the d-th joint location is diverted to different branches according to the
prediction of the visibility probability wd

n. If wd
n is larger than 0.5, the prediction

(or sampling) for the location is made by the uni-modal Gaussian distribution
in Eq. (2); otherwise, the GMM in Eq. (3).

However, when the prediction for the visibility is erroneous, the prediction for
the joint location will be wrong. To help the bias problem, instead of using the
binary visibility labels vd

n to compute the likelihood, we use the samples drawn
from the estimated distribution in Eq. (1) during training. When the number of
samples is large enough, the mean of these samples becomes wd

n. So, the losses
in Eqs. (8) and (9) change to

Lsingle = −wd
nlog(N (yd

nm;μd
n, σd

n)), (10)

Lmulti = −(1 − wd
n)log(

J∑

j=1

πd
njN (yd

nm; εdnj , s
d
nj)). (11)

The modified losses in Eqs. (10) and (11) can be seen as a soft version of the
original ones Eqs. (8) and (9).

3.4 Degradation into Mixture Density Network

HMDN degrades into Mixture Density Network (MDN), without the supervision
for learning the visibility variable. The other form of (4) is

p(yd
nm|wd

n) = wd
nN (yd

nm;μd
n, σd

n) + (1 − wd
n)

⎡

⎣
J∑

j=1

πd
njN (yd

nm; εdnj , s
d
nj)

⎤

⎦ (12)
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where the visibility probability wd
n is learned with visibility labels. When the

labels are not available, the above equation becomes

p(yd
nm) =

J+1∑

j=1

π̄d
njN (yd

nm; ε̄dnj , s̄
d
nj) (13)

where π̄d
nJ+1 = wd

n, ε̄dnJ+1 = μd
n, s̄dnJ+1 = σd

n, and π̄d
nj = (1 − wd

n)πd
nj , ε̄

d
nj =

εdnj , s̄
d
nj = sdnj for j = 1, . . . , J . The visibility probability wd

n in (12) is absorbed
into the GMM mixing coefficients π̄d

nj , and the distribution becomes a GMM
with J + 1 components with no dependency on the visibility.

4 Experiments

4.1 Datasets

Public benchmarks for hand pose estimation are mostly collected in third-person
viewpoints and do not offer plenty of occluded joints with multiple pose labels.
We investigate four datasets, ICVL [37], NYU [41], MSHD [31] and BigHand [48],
and exploit those containing a higher portion of occluded joints in the following
experiments. The rate of occluded finger joints and the total number of training
and testing images are listed in Table 1.

The images in these datasets are paired with pose labels i.e. joint locations,
without the visibility information of the finger joints. As explained in Sect. 3.1,
we use the sphere model to generate the visibility labels for training HMDN.

Table 1. The rate of occluded finger joints and the total number of frames

Dataset ICVL NYU MSHD EgoBigHand

Train (rate/total no.) 0.06/16,008 0.09/72,757 0.33/100,000 0.48/969,600

Test (rate/total no.) 0.01/1,596 0.36/8,252 0.16/2,000 0.24/33,468

The BigHand dataset consists of two subparts: the egocentric subset includes
lots of self-occlusions but lacks diverse articulations; the third-person viewpoint
subset spans the full articulation space while the proportion of occluded joints,
especially severe occlusions, is low. We augment the egocentric subset using the
articulations of the third-person view dataset, and use it called EgoBigHand for
experiments. EgoBigHand includes 8 subjects: frames of 7 subjects are used for
training and frames of 1 subject for testing.

More results are also shown on MSHD and NYU datasets.
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4.2 Self-comparisons

The baseline of our comparison is Single Gaussian Network (SGN), which is
the CNN trained with a uni-modal Gaussian distribution. In [2], it is shown that
maximization of the likelihood function under a uni-modal Gaussian distribution
for a linear model is equivalent to minimizing the mean squared error errors.
In our experiments, we observed that the estimation error of SGN using the
Gaussian center is about the same as that of the CNN trained with the mean
squared error. For further comparisons under the probabilistic framework, we
report the accuracies of SGN.

We also report the experiments of MDN as in the previous section, we showed
that HMDN degrades to MDN when there is no visibility label available in train-
ing. To compare MDN with HMDN fairly, the number of Gaussian components
of MDN is set J + 1 and that of GMM branch of HDMN is J .

The CNN network used is the U-net proposed in [30], by adapting the final
layers to fully connected layers for regression. All the networks are trained using
Adam [14] and the convergence times of all methods above took about 24 h using
Geforce GTX 1080Ti.

SGN MDN HMDN

Visible Occluded Visible Occluded Visible Occluded

Fig. 6. Samples drawn from the distributions of SGN, MDN and HMDN for finger
tips, shown in comparison to a pose label.

Occluded thumb tip SGN MDN HMDNVisible index tip SGN MDN HMDN

Fig. 7. Distributions predicted by SGN, MDN and HMDN for visible index tip and
occluded thumb tip. Each magenta sphere represents a Gaussian component whose
radius is the standard deviation and center is the mean. The degree of transparency is
in proportion to the mixture coefficients {π}. (Color figure online)

Qualitative Analyses. See Fig. 6. 100 samples for each finger tip are drawn
from the distributions of the different methods. HMDN is motivated by the
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intrinsic mapping difference: single-valued mapping for visible and multi-valued
mapping for occluded joints. Our results, shown in Fig. 6, demonstrate its ability
of modeling this difference by producing interpretable and diverse candidate
samples accordingly. For visible joints, SGN and HMDN produce the samples
distributed in a compact region around the ground truth location, while the
samples from MDN scatter in a larger area. For occluded joints, while the samples
produced by SGN scatter in a broad sphere range, the samples produced by
HMDN and MDN form an arc-shaped region, which indicates the movement
range of finger tips within the kinematic constraints.

With the aid of visibility supervision, HMDN handles well the self-occlusion
problem by tailoring different density functions to the respective cases. The
examples of the distributions predicted by SGN, MDN and HMDN for visible
and occluded joints are shown in Fig. 7. The resulting compact distributions
that fit both visible joints and occluded joints improve the pose prediction accu-
racies in the following quantitative analyses. Such compact and interpretable
distributions are also helpful for hybrid methods [31,36]. For the discriminative-
generative pipelines, the distribution largely reduces the space to be explored
and produces diverse candidates to avoid being stuck at local minima in the
generative part. For hand tracking methods [21], the distributions of occluded
joints can be combined with the motion information e.g. speed and direction, to
give a sharper i.e. more confident response at a certain location. The model can
also find its application in multi-view settings.

Table 2. Estimation errors of different models. *see text for the evaluation metric
used.

No. of Gauss. (J) 1 10 20 30

Model SGN MDN HMDN MDN HMDN MDN HMDN

Vis. Err. (mm) 32.8 32.2 30.5 34.0 30.7 32.6 30.5

Occ. Err. (mm) 36.5 35.4 34.8 36.4 34.4 35.6 34.2

*Occ. Err. (mm) 38.9 34.8 34.6 35.1 34.2 35.0 34.5

Quantitative Analyses. One hypothesis is drawn from the distribution of each
method and is compared with the pose label, i.e. the ground truth joint location
to measure the displacement error (in mm). The average errors are reported for
visible joints and occluded joints separately in Table 2. Figure 8a presents the
comparisons under the commonly used metric, the proportion of joints within a
error threshold [31,36,46], using J = 20 in MDN/HMDN. HMDN outperforms
both MDN and SGN for visible and occluded joints using the different numbers
of Gaussian components. For occluded joints, HMDN improves SGN by 10% in
the percentage of joints within the error 20 mm (Fig. 8a), and by about 2 mm in
the mean displacement error (Table 2). HMDN also outperforms the baselines
for visible joints. One can reason that given the limited network capacity, by
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(a) (b)

Fig. 8. Comparison of HMDN, SGN, MDN, when J = 20.

specifying density functions by data types, HMDN learns to take a better balance
between the visible and occluded, while maximizing the likelihood of the entire
training data. As shown in Table 2, the estimation errors of HMDN do not change
much for J = 10, 20, 30. Note, however, the number of model parameters linearly
increases with J .

In Fig. 8b, we vary the number of samples drawn from the distributions, and
measure the minimum distance error. HMDN consistently achieves lower errors
than SGN at all numbers of samples. Compared to MDN, HMDN appears better
at the smaller numbers of samples. When the number of samples increases, the
error gap between the two methods becomes small.

In both Table 2 and Fig. 8, we repeated the sampling process 100 times and
reported the mean accuracies. The standard deviations were fairly small as:
0.03–0.04 mm for occluded joints, and 0.01–0.02 mm for visible joints.

As our motivation is in modeling the distribution of joint locations, we mea-
sure how well the predicted distribution aligns with the target distribution. As
shown in Fig. 3, multiple pose labels are gathered for the same image with occlu-
sions. We draw multiple samples from the predicted distribution and measure
the minimum distance between the set of drawn samples and the set of pose
labels. As shown in the last row of Table 2, the improvement is significant. Both
MDN and HMDN outperform SGN by about 4 mm, which demonstrates that
the arc-shaped distributions produced by MDN/HMDN align better with the
target joint locations than the sphere-shaped distribution produced by SGN, as
shown in Fig. 6. Instead of the minimum distance, we could use other similarity
measures between distributions.

Though the improvement of HMDN over MDN is marginal, the number of
parameters for the density is largely reduced by the awareness of occlusion in
HMDN when joints are visible.

Bias. In Sect. 3.3, we proposed to mitigate the exposed bias during testing,
by sampling from the visibility distribution at training. HMDN trained with the
loss functions in Eqs. (8) and (9), is denoted as HMDNhard, while the one trained
with Eqs. (10) and (11) is HMDNsoft. In Table 3 HMDNsoft consistently achieves
lower errors than HMDNhard for different numbers of Gaussian components.
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Table 3. Comparison of HMDNhard and HMDNsoft

No. of Gauss. (J) 10 20 30

Model HMDNhard HMDNsoft HMDNhard HMDNsoft HMDNhard HMDNsoft

Vis. Err. (mm) 32.2 30.5 32.9 30.7 33.1 30.5

Occ. Err. (mm) 35.8 34.8 35.9 34.4 36.4 34.2
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Fig. 9. Comparison of HMDN with prior work.

4.3 Comparison with the State-of-the-Arts

To compete with state-of-the-arts, the following strategies are adopted: first, a
CNN network is trained to estimate the global rotation and translation, and con-
ditioned on the estimation, HMDN is then trained; data augmentation, including
translation, in-plane rotation, and scaling is used.

MSHD Dataset. MSHD has a considerable number of occluded joints both
in training and testing set. We compare HMDN with three methods: Ye et al.
[46], Tang et al. [36], Sharp et al. [31]. For [31], the results of its discriminative
part are used. Figure 9a shows the proportion of joints within different error
thresholds for the four methods, where a single prediction is used from HMDN.

In Fig. 9b and c, we further compare Ye et al. [46] and Tang et al. [36]
with HMDN, by varying the number of hypotheses i.e. samples from the output
distributions, and measuring the minimum displacement errors. Ye et al. [46] use
a deterministic CNN. To produce multiple samples, they jitter around the CNN
prediction, which can be treated as a uni-modal Gaussian. Tang et al. [36] use
decision forests (3 trees) and the data points in the leaf nodes are modeled by
GMM with 3 components. During testing, samples are drawn from GMMs of all
trees. We used the original codes from the authors in our experiments.

HMDN significantly outperforms both methods for visible joints. For
occluded joints, when the number of samples is 1, the errors of HMDN and
Ye et al. [46] are close. However, Ye et al. [46] are not able to produce diverse
samples to reach low errors as HMDN when the number of samples increases.
Tang et al. [36] provide diverse candidates by GMM in its leaf nodes, but the
variance of the distribution is much larger than that of Ye et al. [46] and HMDN
for both visible and occluded joints. From the results, HMDN demonstrates its
superiority for both the unimodal Gaussian model and GMM: the compact dis-
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HMDN Tang et al. Ye et al.HMDN Tang et al. Ye et al.
Thumb Index Middle Ring Pinky

Fig. 10. Comparison of HMDN with Tang et al. [36] and Ye et al. [46]. Ground truth:
skeletons in gray. Predictions from the models: skeletons in blue. For each image, sam-
ples for one tip joint from the three methods are scattered along the skeletons. Visible
joints in the left column and occluded joints in the right column. (Color figure online)

tribution with lower bias for visible joints and the diverse samples yet having
smaller variances for occluded joints. See Fig. 10 for example results. The sam-
ples from Tang et al. [36] for the finger tips spans a large region; those from Ye
et al. [46] are more compact but many deviate from the ground truth.

Fig. 11. Comparison with state-of-the-art approaches on NYU dataset.

NYU Dataset. The proposed method has also been evaluated on NYU dataset.
Most joints in the training set are visible while on the testing set, there are up to
36% occluded joints. This implies all the joints in the testing dataset will be
predicted as visible joints. Despite the ill-setting for HMDN, the method does
not fail but degrades into SGN: the performances of SGN and HMDN are similar
as shown in Fig. 11, and when compared with various state-of-the-arts based on
CNN [9,18–20,46,50], HMDN is in the second place for visible joints and third
place for occluded joints. Note the best method [20] uses a 50-layer ResNet model
[11] and 21 more CNN models to refine the estimation.



Occlusion-Aware Hand Pose Estimation 831

5 Conclusion

This paper addresses the occlusion issues in 3D hand pose estimation. Exist-
ing discriminative methods are not aware of the multiple modes of occluded
joints and thus do not adequately handle the self-occlusions frequently encoun-
tered in egocentric views. The proposed HMDN models the hand pose in a
two-level hierarchy to explain visible joints and occluded joints by their uni-
modal and multi-modal traits respectively. The experimental results show that
HMDN successfully captures the distributions of visible and occluded joints, and
significantly outperforms prior work in terms of hand pose estimation accuracy.
HMDN also produces interpretable and diverse candidate samples, which is use-
ful for hybrid pose estimation, tracking, or multi-stage pose estimation, which
require sampling.

In the paper, we assume the outputs are independent and do not exploit the
temporal continuity. To sample kinematically valid poses, we can consider mod-
eling hand structural information. One approach is to explicitly learn the depen-
dency on top of part regression, e.g. by deep structured models [45]. Though the
pose estimation benefits from the structural models, they usually result in highly
interconnected models and thus difficult learning, and exact inference becomes
intractable. The other approach exploits the dependency priors to post-process
the part regression: e.g. a multivariate normal with correlation priors is used
to constrain the pose samples [35,39,40]. We can also further incorporate the
temporal dependency using offline priors or learning it with the part regression
in the LSTM framework.

Testifying HMDN on hand-object and hand-hand interaction scenarios is
interesting. Though it was tested on the datasets with self-occlusions, the gen-
eralization to different occlusion types is promising.
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