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Abstract. In this paper, we propose a dual-agent deep reinforcement
learning (DADRL) method for deformable face tracking, which gener-
ates bounding boxes and detects facial landmarks interactively from face
videos. Most existing deformable face tracking methods learn models for
these two tasks individually, and perform these two procedures subse-
quently during the testing phase, which ignore the intrinsic connections
of these two tasks. Motivated by the fact that the performance of facial
landmark detection depends heavily on the accuracy of the generated
bounding boxes, we exploit the interactions of these two tasks in prob-
abilistic manner by following a Bayesian model and propose a unified
framework for simultaneous bounding box tracking and landmark detec-
tion. By formulating it as a Markov decision process, we define two agents
to exploit the relationships and pass messages via an adaptive sequence
of actions under a deep reinforcement learning framework to iteratively
adjust the positions of the bounding boxes and facial landmarks. Our
proposed DADRL achieves performance improvements over the state-of-
the-art deformable face tracking methods on the most challenging cate-
gory of the 300-VW dataset.
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1 Introduction

Deformable face tracking has received considerable attention in computer vision
recently with numerous applications such as human computer interaction, facial
expression analysis, and person identification. The aim of deformable face track-
ing is to detect the key points around facial components and facial contours
across all frames of a given face video. It is a challenging problem in practice
because face samples are usually captured in unconstrained conditions, where
large poses, heavy occlusions, illumination variations and motion artifacts usu-
ally occur.

Over the past decade, many efforts [1–3] have been devoted to this problem,
which usually employ a “tracking-by-detection” strategy to perform deformable
face tracking in a serial manner. Specifically, these methods first generate a
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high-scored bounding box covering a face region, and then apply face alignment
to localize facial landmarks based on the bounding box. Hence, face alignment
depends heavily on the generated bounding box. Figure 1(a) shows an exam-
ple to illustrate the effect of face box generation for facial landmark detection.
We see that the bias from the ground-truth bounding box affects the align-
ment accuracy heavily because the bounding box is generated without consider-
ing the face conditions of pose and expression. Especially when face undergoes
extreme conditions, the facial region selected by the bounding box usually misses
facial landmarks, resulting in limited performance of face alignment. A desirable
deformable face tracking approach is to exploit the rich interaction between face
bounding box generation and face alignment. Since facial landmarks can effec-
tively represent face pose across frames, they can provide auxiliary information
for accurate bounding box generation. However, most existing deformable face
tracking methods ignore such interaction, which results in low accuracy fitting
for extreme conditions.

Fig. 1. (a) Existing “tracking-by-detection” methods [1–3] produce deformable face
tracking in a serial manner. (b) Our DADRL method formulates deformable face track-
ing as a Markov decision process (MDP) problem, and produces bounding box tracking
and landmark detection in an interactive manner. Here si denotes the MDP state, ai

denotes the MDP action. The dash line represents that initial bounding box of the
current frame is the tracked box of previous frame. The blue color and the gray color
denote the tracking agent action and the alignment agent action respectively (best
viewed in color). (Color figure online)

In this work, we propose a dual-agent deep reinforcement learning (DADRL)
method for deformable face tracking, which performs bounding box generation
and facial landmark detection in interactive manner. Specifically, we exploit
the interaction of these two procedures in probabilistic manner by following a
Bayesian model. Unlike existing deformable face tracking methods which directly
infer the decomposed form of joint probability for bounding boxes and facial
landmarks, we train these two models to learn two conditional distributions
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simultaneously. Then, the connections between these two tasks are formulated as
two marginal distributions, and their correlation is explicitly modeled with learn-
able parameters. Motivated by the observation that the face tracking complexity
varies across frames, our method utilizes reinforcement learning as a principled
way to learn how to make adaptive decisions during deformable face tracking.
We formulate this sequential procedure as a Markov decision process, which
models bounding box generation and face alignment as two agents. These dual
agents predict a variable-length sequence of actions to position updates of bound-
ing boxes and landmarks. Experiment results show that our proposed DADRL
achieves large performance improvements over the state-of-the-art deformable
face tracking methods on the 300-VW dataset [4].

2 Related Work

Deformable Face Tracking: Deformable face tracking focuses on tracking a
set of facial landmarks across all frames of a given face video. Existing deformable
face tracking methods can be mainly classified into two categories: pure shape
tracking methods and tracking-by-detection methods. Methods of first cate-
gory [5–8] perform face detection in the first frame of each face video and then
conduct facial landmark localization at each consecutive frame by using the align-
ment result of the previous frame as the initialization. Based on this fundamental
process, recent works focus on exploiting the temporal dependency relationship
of landmarks across different frames. For example, the recurrent encoder-decoder
network [7] consists of a sequence of spatial and temporal recurrences. The two-
stream transformer networks [8] captures both spatial and temporal information
by using a couple of networks. These methods partially handle the large varia-
tions of pose and expression across the whole video, because the motion between
two adjacent frames is usually small. However, these methods struggle with
the drifting drawback, as the error accumulates through time across the whole
video. Methods in the second category [1,3,9–12] apply face detection/tracking
and facial landmark localization successively at each frame, which are also simi-
lar to most existing image-based face alignment methods [7,13–18]. While these
methods eliminate drifting to some extent, these two models are trained indi-
vidually and utilized in a serial manner. As a result, the performance of face
alignment is restricted, which may cause low accuracy fittings under a poor
generated bounding box. To address this, Khan et al. [19] proposed a syner-
gistic approach to perform landmark localization by using different detection
and tracking initializations, which partially utilizes the correlation between the
bounding box generation and the face alignment. However, they only employed
a separate tracking model to generate bounding boxes, which is not optimized
together with the alignment model during training.

Deep Reinforcement Learning: Reinforcement learning has been originated
from humans’ decision making process [20], which aims to enable the agent
to make decisions from its experiences. Deep reinforcement learning, which is
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a combination of deep learning and reinforcement learning, can be divided into
two classes: deep Q learning [21–23] and policy gradient [24,25]. The goal of deep
Q Networks is to learn a state-action value function given by a deep network.
Policy gradient methods learn the policy which maximizes the expected future
reward using gradient descent. Recently deep reinforcement learning has gained
great successes in several computer vision applications. For example, Rao et al.
[26] proposed an attention-aware deep reinforcement learning method for key-
frame selection in video face recognition. Yu et al. [27] proposed a sequence
generative adversarial networks via policy gradient. Yoo et al. [28] proposed
a sequential visual tracker learned by policy gradient. Foerster et al. [29] and
Sukhbaatar et al. [30] proposed multi-agent deep reinforcement learning methods
to communicate message between different agents. Kong et al. [31] proposed a
collaborative algorithm to localize multiple objects via multi-agent reinforcement
learning. Unlike these methods which have a common network architecture, we
propose a dual-agent deep reinforcement learning (DADRL) method which is
equipped with a dual-agent process: face bounding box generation and facial
landmark detection.

3 Approach

In this section, we first present the Bayesian formulation of deformable face
tracking to introduce the dual learning scheme. Then we propose the settings
of Markov decision process (MDP) to show how to utilize deep reinforcement
learning. Lastly, we detail the architecture of the proposed DADRL and the
training procedure.

3.1 Problem Formulation

Suppose we have a face video consisting of K frames, {Ik}k=1:K . For the k-th
frame Ik ∈ R

w×h×3, we have the tracked bounding box Bk−1 ∈ R
2×2 and the

shape vector with L landmarks Vk−1 ∈ R
L×2 of previous frame. The purpose

of deformable face tracking is to predict the bounding box Bk and facial shape
Vk for the current frame Ik. This task aims to learn a joint probability of face
bounding box generation and face landmark detection. Following the Bayesian
formulation, the joint probability are derived as follows:

p(Bk, Vk|Ik, Bk−1, Vk−1) = p(Bk|Ik, Bk−1, Vk−1)p(Vk|Bk, Ik, Bk−1, Vk−1) (1)

Since the joint probability p(x, y) can be computed in two equivalent ways:
p(x, y) = p(x)p(y|x) = p(y)p(x|y), ideally the conditional probabilities in
deformable face tracking problem should satisfy the following equality (we omit
Bk−1, Vk−1 for simplicity):

p(Bk|Ik)p(Vk|Bk, Ik) = p(Vk|Ik)p(Bk|Vk, Ik) (2)

We call this probabilistic duality, which is a necessary condition for the optimality
of the learned dual models.
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Fig. 2. The architecture of our proposed DADRL. Our DADRL consists of two agents:
a tracking agent and an alignment agent. Each agent has a discrete action set. The
communicated messages are encoded by a deconvolution layer and a LSTM unit, respec-
tively. These two agents decide a sequence of actions to adjust the target face’s bound-
ing box and regress the facial landmarks simultaneously. The agents go to the next
frame until the detected facial landmarks are finalized. Note that, T denotes the iter-
ation number of MDP, rather than time-stamps number of the video.

Most existing deformable face tracking methods model the joint probability
as the decomposed form in Eq. 1. Since these two models are learned individually,
there is no guarantee that the probabilistic duality will hold. To tackle this prob-
lem, we propose to explicitly reinforce the empirical probabilistic duality of these
two models. We consider the learning objectives of bounding box generation and
facial landmark detection as two conditional probabilities. Then the connections
between these two tasks can be formulated as two marginal distributions. To
satisfy the probabilistic duality during the training, one possible solution is to
design a term in the loss function as an appropriate constraint, such as the reg-
ularization term in [32], and train the dual models by using standard supervised
learning techniques. However, as the ground-truth marginal distributions are not
available, the empirical marginal distributions are usually utilized to fulfill the
constraint. This is a sub-optimal strategy as the marginal distributions are fixed
during training.

Inspired by the observation that marginal distributions should be learned, we
propose a deep reinforcement learning framework for deformable face tracking.
These two tasks are considered as dual agents. The communicated messages
between them are regarded as alternatives of two marginal distributions to satisfy
the probabilistic duality. The learning of message channels is facilitated by using
the deep Q-learning algorithm.

Our proposed DADRL is different from the following two learning schemes, as
illustrated Fig. 3: (1) Tracking-by-detection focuses on single-task learning which
has no guarantee to hold the probabilistic duality; (2) Multi-task learning has
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an assumption that these two tasks share the same input space and coherent
feature representation, which is too strong in practical application. Different
from these learning schemes, our DADRL disentangles the connection of two
tasks and explicitly exploits the synergy between them.

Fig. 3. Comparisons of three strategies for deformable face tracking. I, T , and A denote
an image frame, bounding box tracking, and face alignment, respectively. (a) Tracking-
by-detection processes deformable face tracking in a serial manner, which has no guar-
antee to hold the probabilistic duality. (b) Multi-task learning assumes that two tasks
share the same input space and coherent feature representation, which is too strong in
many real applications. (c) Our DADRL explicitly exploits the synergy between these
two tasks.

3.2 Dual-Agent Deep Reinforcement Learning

Our DADRL consists of two agents: a tracking agent and an alignment agent.
Each agent has a discrete action set. The basic pipeline is as follows: for each
frame in the video, firstly the state is initialized by the terminal state of the
previous frame. Then, based on the observed state and the received message,
these two agents decide a sequence of actions to adjust the target face’s bounding
box and regress facial landmark coordinates simultaneously. Lastly, the agents
go to the next frame until the detected facial landmarks are finalized. Figure 2
illustrates the pipeline of our method.

We formulate our strategy as MDP for each frame in the video. We start
by introducing the state definition, which is shared by two agents, followed by
the other respective definitions of two agents. We omit the subscript k when we
describe MDP in each frame for simplicity.

State: st is defined as the current image region extracted by the bounding box,
which is resized to a fixed size. Given the frame I and the current bounding box
B, the state st is formulated as follows:

st = φ(B, I) (3)

where φ denotes the patch-extracting function.
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Action: Based on the state st, each agent outputs an action at. There are
totally eight types of actions for two agents, including movement actions and
stop/continue actions, as shown in Fig. 4.

Tracking Agent: The tracking agent aims to produce movement actions to
change the current observed region. Specifically, the set of actions are defined
as: {left, right, up, down, scale up, scale down}.

Alignment Agent: The alignment agent produces stop/continue actions to
determine whether the iteration should be terminated. Thus, the termination of
the search process is in light of face alignment quality, rather than the tracked
bounding box result.

Fig. 4. The defined actions of two agents. Left: movement actions for the tracking
agent. Right: stop/continue actions for the alignment agent.

State Transition: Having decided the action at the state st, the next state
st+1 is obtained by the state transition function.

Tracking Agent: For the movement actions of the tracking agent, the new
state st+1 is obtained by shifting the bounding box with a discrete change, which
is relative to the current size of the bounding box as follows:

δw = α(x2 − x1), δh = α(y2 − y1) (4)

where α ∈ [0, 1] denotes a scale vector, {x1, y1, x2, y2} denotes the bounding
box coordinates of top-left and bottom-right vertices. The bounding box B is
updated by adding or removing δw or δh to the coordinates according to the
output action. For example, if left action is selected, the position of B moves
to {x1 − δw, y1, x2 − δw, y2} and scale up action changes B into {x1 − 1

2δw, y1 −
1
2δh, x2 + 1

2δw, y2 + 1
2δh}.

Alignment Agent: For the alignment agent, if a stop action is selected, the
face alignment result is finalized as the target of the current frame, and the
bounding box result is transferred to the initial state of the next frame. The
continue action continues the iteration of MDP.

Reward: The rewards of the agent depend on the chosen action at at state st,
which are determined by the function rt.

Tracking Agent: The reward function rt reflects the landmark detection accu-
racy improvements. The reward function measures the misalignment descent and
is defined as follow:

rt = −sign(dt+1 − dt), dt =
∑L

i=1 ‖V̂i,t − V ∗
i ‖

L · ζ
(5)



790 M. Guo et al.

where dt denotes the normalized point-to-point distance for the t-th iteration of
MDP, ‖ · ‖ specifies the �2 norm, ζ denotes the normalizing factor, V̂ , V ∗ denote
the predicted landmarks points and the ground truth, respectively.

Alignment Agent: For the continue action, we use the same reward as the
tracking agent. For the stop action, we use a different reward scheme because it
leads to a terminate state, which is defined as:

rt =

{
+η if dt < τ

−η otherwise
(6)

where η is empirically set to 3.0, and τ is a threshold that indicates the maximum
error allowed to consider the predicted alignment result as a positive one.

3.3 Network Architecture

The DADRL network consists of three parts: the tracking agent, the alignment
agent, and communicated message channels. The tracking agent is a VGG-M
model followed by a one-layer Q network. The alignment agent is designed as a
combination of stacked hourglass network and a confidence network. Two com-
municated messages are encoded by a deconvolution layer and a Long Short-
Term Memory (LSTM) unit respectively. In this section, we detail communicated
message channels and the confidence network, and will detail tracking agent and
stacked hourglass network in Sect. 4.2.

Communicated Message Channels: The communicated messages explicitly
encode the synergic information flows between these two agents. For the message
passed from the tracking agent to the alignment agent, we aim to provide prior
additional textural information for the alignment agent to improve the robust-
ness. We select the output feature map of the conv3 layer in the tracking agent,
and concatenate it in depth axis with the feature map which is the output of the
first down-sampling step in the hourglass network. We adopt a deconvolution
layer as message channel to match the sizes of feature maps.

The message passed from the alignment agent to the tracking agent provides
complementary 3D pose information for bounding box tracking. The primary
goal is to produce auxiliary knowledge of facial pose for accurate tracking. To
achieve this, we take the normalized coordinates of predicted landmark points
as a representation of 3D pose information. We also adopt LSTM to memorize
the pose variation through time series. The hidden state is not updated until the
MDP of one frame is terminated for training stabilization.

Confidence Network: We observe that landmark prediction is usually for-
mulated as a regression problem, which has no confidence score as estimated
in classification problems. However, it is necessary for the alignment agent to
judge the quality of predicted landmarks and determine whether to continue the
adjustment process. For example, in cases that predicted landmarks is obviously
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implausible due to an inaccurate bounding box, the regression result of the align-
ment agent should have a low confidence score and be considered as a failure.
Inspired by this observation, we propose the confidence network to determine
the termination of iterations for these two agents. The proposed confidence net-
work takes the predicted heatmap and shape-indexed local patches as the input,
and outputs a L × 1 vector, which represents the confidence of each landmark.
Followed by a one-layer fully connected Q-net, Q values of stop/continue actions
are predicted for the alignment agent.

3.4 Network Training

As training via reinforcement learning directly from scratch is significantly slow
to converge, we exploit a two-stage training procedure: firstly utilize supervised
learning to pre-train main branch of the network, then train the other parts via
reinforcement learning.

Supervised Learning Stage: For the supervised learning stage, two agents
are trained separately and elements of message vectors are set to zero. For the
tracking agent, training samples which consist of image patches {pi} and action
labels {a∗

i } are fed into the network. The image patches are sampled from the
training dataset by adding Gaussian noise to the ground truth patches, which are
the tightest bounding box of the annotated facial landmarks. The corresponding
action label a∗

i is assigned by a∗
i = arg max

a
IoU(f(pi, a), G), where f(pi, a)

denotes the moved patch from pi by the action a from the action set of tracking
agent, G denotes the ground truth patch. The loss function for tracking agent is
defined as follows,

Ltracking = CrossEntropy(âi, a
∗
i ) (7)

where âi denotes the predicted action of tracking agent.
For the alignment agent, the loss function of hourglass model is presented

as:

Lalignment =
1
L

L∑

n=1

(
∑

ij

||hn(i, j) − h∗
n(i, j)||22) (8)

where hn(i, j), h∗
n(i, j) represent the predicted and the ground truth heatmap

at pixel location (i, j) for the n-th landmark respectively.

Reinforcement Learning Stage: The reinforcement learning stage aims to
train parameters of Q-nets, message channels and confidence network simultane-
ously. Following the Q-learning algorithm, each agent chooses an action accord-
ing to the current estimation of the Q-function Q(s, a) in an iterative fashion.
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Based on Q(s, a), the agent will choose the action that is associated to the high-
est reward. Q-learning iteratively updates the action-selection policy using the
Bellman as follows:

Q(s, a) = r + γ max
a′

Q(s
′
, a

′
) (9)

where s and a are the current state and action, γ represents the discount factor.
In our work, we approximate the Q-function by deep Q-network trained with

reinforcement learning. In the dual-agent setting, deep Q-network also takes the
message received from the other agent as input, formulated as Q(s, a,m). In
order to reach the Bellman optimality, we jointly perform sampling to these two
agents and the samples are used to update all parameters by jointly minimizing
the following loss,

L = E[Q(st, at) − (rt + γ max
a′

Q(st+1, a
′
))]2 (10)

The parameters related to message channels between these two agents are
also updated because the messages are differential.

4 Experiments and Results

We evaluated the performance of the proposed DADRL on the large-scale face
tracking dataset, the 300-VW test set [4], which is one publicly available large
scale face tracking dataset. We compared our method with state-of-the-arts, and
reported several analyses to investigate the importance of message passing in the
dual-agent learning manner in Sect. 4.3. Our results demonstrate the effectiveness
of interaction between two tasks.

4.1 Dataset and Settings

The 300-VW dataset consists of 3 categories: 1 (62,135 frames), 2 (32,805
frames), and 3 (26,338 frames). The Category 3 is by far the most challeng-
ing, and contains 14 videos in severe wild conditions and each video lasts around
one minute (25–30 images per second). We conducted our experiments on Cat-
egory 3 to study the improved performance of our method on severe conditions
including large pose, heavily occlusion, etc. Results were reported for both the
49 inner points and the whole 68 points. Note that, there are several existing
evaluation protocols and different versions of annotations for the dataset, such
as [3,4]. For fair comparison, we followed the dataset and setting in the origi-
nal 300VW competition of [4]. The other reported results also follow the same
setting.

During supervised learning stage, the two agents were trained separately. We
utilized all training data from the 300-W competition [34] to train the align-
ment agent, and the 300-VW training set to train the tracking agent. During
reinforcement learning stage, the whole network was trained with the data of
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300-VW training set. We noticed a newly set-up face tracking competition [35]
with released 3D projected annotated facial landmarks of 300-VW dataset. We
also trained another model with the 3D data and compared it with state-of-the-
art methods in Sect. 4.3. For the evaluation protocols, we employed the standard
normalized root mean squared error (RMSE) and cumulative error distribution
(CED) curves.

4.2 Implementation Details

Our model was built based on the popular accelerated deep learning toolbox Ten-
sorFlow [36], which mainly operates on data flow graphs. The network of tracking
agent is initialized by the pre-trained VGG-M model. The feature extracted by
the pre-trained CNN is trained with ImageNet [37], which helps the parame-
ters of the Q-Network to converge faster. The input fixed size of state st is
112 × 112. As illustrated in Fig. 2, the network consists of three convolutional
layers {conv1, conv2, conv3}, which are identical to the convolutional layers in
VGG-M model, and three fully connected layers {fc4, fc5, fc6}. {fc4, fc5} lay-
ers are combined with ReLU and dropout layers, and the output of fc5 layer
is concatenated with the message received from alignment agent. The final fc6
layer, without any activation function, predicts the Q value of the six movement
actions, in order to determine the action of tracking agent for the current itera-
tion.

The basic network of alignment agent is designed based on stacked hourglass
network [38]. The original signals are branched out before each down-sampling
step and combined before each up-sampling step. Features from the original size
to 1/2n size are able to extracted for n scale hourglass model. The output of
hourglass model is a set of heatmaps, each of which represents the probability
of one keypoint’s presence at each pixel. We choose n = 2 for the trade-off of
accuracy and speed.

For Confidence Network, we concatenate the extracted shape-index patches
and the predicted heatmaps, and resize them to 26×26 as input. Then we deploy
two convolutional layers (3×3 kernel size, 1×1 stride) with 128 and 512 kernels.
By following the convolution layers, we append a two-layer fully connections,
where the parameters are 512 × 512 and 512 × L vector matrices (L = 68 for
300-VW dataset). The output vector is fed into a one-layer fully connection to
predict the Q value of stop/continue actions.

For hyper-parameters during training process, we specified the learning rates
to 0.001, the discounted factor to 0.9, and mini-batch size to 20. For parameters
in MDP, the scale vector α was set to 0.2, the threshold τ was set to 0.06, ε was
set to 0.7. A replay buffer [33] is used for reinforcement learning stage.

4.3 Results and Analysis

Comparison with State-of-the-Arts: In this section, we compared DADRL
with state-of-the-arts for both the 49 inner points and 68 points. For 49 inner
points, we compared DADRL with 5 state-of-the-art methods including the two
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Fig. 5. (a) Comparison between DADRL and state-of-the-arts on Category 3 of 300-
VW for 49 inner points. (b) Comparison between DADRL and state-of-the-arts on
Category 3 of 300-VW for 68 points.

Fig. 6. Bounding box tracking comparison. (a) Success plots for all videos on Cate-
gory 3 of 300-VW. (b) Success plots for several videos with extreme pose variation on
Category 3 of 300-VW.

best performing methods of the 300-VW competition [2,39], the state-of-the-art
face alignment method of [16], the state-of-the-art tracker of [40] and a syn-
ergy method DGCM of [19]. We introduced a baseline, called ‘DADRL-zero’,
where the communicated messages are set to zero during test phase. As the
newly released 3D projected annotated landmarks in [35] has the same inner-
points position as the previous 2D annotation, we also reported the result of
the model trained by these 3D data, named ‘DADRL-3D’. Figure 5(a) shows the
obtained results on Category 3. The proposed ‘DADRL-3D’ is the best perform-
ing method, followed by ‘DADRL’, while the baseline DADRL-zero shows com-
parable performance with other methods. The large margin between ‘DADRL’
and other state-of-arts demonstrates the effectiveness of the interactive manner,
as the intrinsic correlation between two agents could be held. It is reasonable
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that ‘DADRL-3D’ outperforms all state-of-the-arts because the model is more
robust to large pose by training with 3D data. The comparison of the proposed
‘DADRL’ and the baseline ‘DADRL-zero’ illustrates the importance of the com-
municated messages.

We also reported our results for the whole 68 points. As the ‘DADRL-3D’ has
an output of 84 points, we did not consider it for the 68-points condition. Com-
pared with 49-inner-points setting, the 68-points setting could better demon-
strate the robustness of the methods, as the contour points are more sensitive
to extreme conditions. As DGCM of [19] did not report results for 68 points, we
did not compare our method with it. As illustrated in Fig. 5(b), our proposed
DADRL outperforms other methods by a large margin.

Vi./Meth. Baseline DADRL
#517 3.29 2.75
#526 3.60 2.92
#528 3.70 3.01
#533 3.78 3.68

Fig. 7. CED curves (left) and averaged errors comparisons (100%) (right) of several
videos with heavy occlusions and motion artifacts on Category 3 of 300-VW.

Analysis: In this section, we performed two analyses to illustrate how commu-
nicated messages in the dual-agent training manner improve the performance
of both bounding box tracking and face alignment. As the comparison between
DADRL and the conducted baseline ‘DADRL-zero’ has already illustrated the
importance of communicated messages, we further investigated how two mes-
sages assist the respective agent. Two experiments demonstrate that the inter-
action between two tasks enhances the robustness to extreme conditions for
deformable face tracking.

Tracking Experiments: The message passing from alignment agent to tracking
agent aims to provide complementary 3D pose information for accuracy bound-
ing box tracking. To verify the effectiveness, we trained another tracking network
as baseline. This network has the same architecture as the tracking agent, except
the output of the fc5 layer is no more concatenated with message code. The
network was trained in the same manner as the tracking agent, namely, firstly
pretrained by supervised learning, then fine-tuned by reinforcement learning.
The baseline tracker also follows MDP and has the same action set as the track-
ing agent of DADRL. A similar sequence of bounding box shifting is predicted
by the baseline network. As there is no stop action for this tracker, the selected
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face region is fed into our DRDAL to determine whether the iteration should
stop by our alignment agent. The only difference between this baseline bound-
ing box tracker and our tracking agent is that there is no message input for
the baseline. For comparison, we employed success rate as evaluation protocol.
As there is no annotated bounding box in 300-VW dataset, we considered the
tightest bounding box of the facial landmarks as ground truth. Success plots
of Category 3 are shown in Fig. 6(b). We also illustrated success plots of sev-
eral individual videos, shown in Fig. 6(a). Note that these videos contain faces
which undergo extreme pose, even totally turn-around. The results show that
the message from alignment agent is an effective complementary 3D information
for accurate 2D tracking and can enhance the robustness of tracking agent to
large pose. Examples of sequential actions decided by tracking agents are shown
in Fig. 8(c).

Fig. 8. (a)(b) Examples of alignment results for 68 points and 3D projected 84 points
on Category 3 of 300-VW. (c) Sequential actions decided by tracking agent for two
frames in Video #533 of 300-VW Category 3.

Alignment Experiments: For better understanding the effect of the message
passing to alignment agent, we trained a separated stacked hourglass model as
baseline which predicts landmarks without any received message. This baseline
model was trained the same way as the supervised learning stage of DADRL.
During test phase, we directly used the tightest bounding box of annotated
landmarks as the input face region. Two models predicted landmarks with only
one feed-forward pass. To verify that this message channel provides prior addi-
tional textural information for the alignment agent, we selected several videos
which contain frames under occlusions or motion artifacts. The comparison of
CED curves and averaged point-to-point error is shown in Fig. 7. We can see the
alignment agent with a message input has about 2% performance improvement
over the single hourglass model, which demonstrates the robustness to occlu-
sions and motion artifacts of our DADRL. The results further show that the
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message passing from tracking agent to alignment agent is able to decode the
textural information, which is an effective prior information for face alignment
under heavy inclusions or motion artifacts. Examples of alignment results are
shown in Fig. 8(a) (b), for 68 points and 3D 84 points respectively. In summary,
the results of these two experiments suggest that the communicated messages
play an important role in our proposed method.

5 Conclusion

In this paper, we have proposed a dual-agent deep reinforcement learning
(DADRL) method for deformable face tracking. In our method, we have explic-
itly exploited the interaction between bounding box generation and face align-
ment by following a Bayesian model and have proposed a unified framework to
simultaneously perform these two tasks. By formulating the problem as MDP,
we have defined these two models as dual agents to exploit the relationships
and pass messages via an adaptive sequence of actions. The models are trained
interactively via deep reinforcement learning. Experimental results have been
presented to show the effectiveness of the proposed approach. How to automat-
ically choose the message channels and to further improve the performance of
our method seems to be an interesting future work.
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