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Abstract. The lack of realistic and open benchmarking datasets for
pedestrian visual-inertial odometry has made it hard to pinpoint dif-
ferences in published methods. Existing datasets either lack a full six
degree-of-freedom ground-truth or are limited to small spaces with opti-
cal tracking systems. We take advantage of advances in pure inertial
navigation, and develop a set of versatile and challenging real-world com-
puter vision benchmark sets for visual-inertial odometry. For this pur-
pose, we have built a test rig equipped with an iPhone, a Google Pixel
Android phone, and a Google Tango device. We provide a wide range of
raw sensor data that is accessible on almost any modern-day smartphone
together with a high-quality ground-truth track. We also compare result-
ing visual-inertial tracks from Google Tango, ARCore, and Apple ARKit
with two recent methods published in academic forums. The data sets
cover both indoor and outdoor cases, with stairs, escalators, elevators,
office environments, a shopping mall, and metro station.

Keywords: Visual-inertial odometry · Navigation · Benchmarking

1 Introduction

Various systems and approaches have recently emerged for tracking the motion
of hand-held or wearable mobile devices based on video cameras and inertial
measurement units (IMUs). There exist both open published methods (e.g.
[2,12,14,16,21]) and closed proprietary systems. Recent examples of the lat-
ter are ARCore by Google and ARKit by Apple which run on the respective
manufacturers’ flagship smartphone models. Other examples of mobile devices
with built-in visual-inertial odometry are the Google Tango tablet device and
Microsoft Hololens augmented reality glasses. The main motivation for develop-
ing odometry methods for smart mobile devices is to enable augmented reality

Access data and documentation at: https://github.com/AaltoVision/ADVIO.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01249-6 26) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11214, pp. 425–440, 2018.
https://doi.org/10.1007/978-3-030-01249-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01249-6_26&domain=pdf
http://orcid.org/0000-0001-7886-7841
http://orcid.org/0000-0002-0958-7886
http://orcid.org/0000-0001-8767-0864
http://orcid.org/0000-0001-5088-4041
https://github.com/AaltoVision/ADVIO
https://doi.org/10.1007/978-3-030-01249-6_26
https://doi.org/10.1007/978-3-030-01249-6_26


426 S. Cortés et al.

Fig. 1. The custom-built capture rig with a Google Pixel smartphone on the left, a
Google Tango device in the middle, and an Apple iPhone 6s on the right.

applications which require precise real-time tracking of ego-motion. Such appli-
cations could have significant value in many areas, like architecture and design,
games and entertainment, telepresence, and education and training.

Despite the notable scientific and commercial interest towards visual-inertial
odometry, the progress of the field is constrained by the lack of public datasets
and benchmarks which would allow fair comparison of proposed solutions and
facilitate further developments to push the current boundaries of the state-of-
the-art systems. For example, since the performance of each system depends
on both the algorithms and sensors used, it is hard to compare methodological
advances and algorithmic contributions fairly as the contributing factors from
hardware and software may be mixed. In addition, as many existing datasets
are either captured in small spaces or utilise significantly better sensor hardware
than feasible for low-cost consumer devices, it is difficult to evaluate how the
current solutions would scale to medium or long-range odometry, or large-scale
simultaneous localization and mapping (SLAM), on smartphones.

Further, the availability of realistic sensor data, captured with smartphone
sensors, together with sufficiently accurate ground-truth would be beneficial in
order to speed up progress in academic research and also lower the threshold
for new researchers entering the field. The importance of public datasets and
benchmarks as a driving force for rapid progress has been clearly demonstrated in
many computer vision problems, like image classification [9,19], object detection
[13], stereo reconstruction [10] and semantic segmentation [6,13], to name a
few. However, regarding visual-inertial odometry, there are no publicly available
datasets or benchmarks that would allow evaluating recent methods in a typical
smartphone context. Moreover, since the open-source software culture is not
as common in this research area as, for example, it is in image classification
and object detection, the research environment is not optimal for facilitating
rapid progress. Further, due to the aforementioned reasons, there is a danger
that the field could become accessible only for big research groups funded by
large corporations, and that would slow down progress and decay open academic
research.
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Fig. 2. Multi-floor environments such as (a) were considered. The point cloud (b) and
escalator/elevator paths captured in the mall. The Tango track (red) in (b) has similar
shape as the ground-truth in (c). Periodic locomotion can be seen in (c) if zoomed in.
(Color figure online)

In this work, we present a dataset that aims to facilitate the development of
visual-inertial odometry and SLAM methods for smartphones and other mobile
devices with low-cost sensors (i.e. rolling-shutter cameras and MEMS based iner-
tial sensors). Our sensor data is collected using a standard iPhone 6s device and
contains the ground-truth pose trajectory and the raw synchronized data streams
from the following sensors: RGB video camera, accelerometer, gyroscope, magne-
tometer, platform-provided geographic coordinates, and barometer. In total, the
collected sequences contain about 4.5 km of unconstrained hand-held movement
in various environments both indoors and outdoors. One example sequence is
illustrated in Fig. 2. The data sets are collected in public spaces, conforming the
local legislation regarding filming and publishing. The ground-truth is computed
by combining a recent pure inertial navigation system (INS) [24] with frequent
manually determined position fixes based on a precise floor plan. The quality of
our ground-truth is verified and its accuracy estimated.

Besides the benchmark dataset, we present a comparison of visual-inertial
odometry methods, including three recent proprietary platforms: ARCore on
a Google Pixel device, Apple ARKit on the iPhone, and Tango odometry on
a Google Tango tablet device, and two recently published methods, namely
ROVIO [1,2] and PIVO [25]. The data for the comparison was collected with a
capture rig with the three devices and is illustrated in Fig. 1. Custom applica-
tions for data capture were implemented for each device.

The main contributions of our work are summarized in the following:

– A public dataset of iPhone sensor data with 6 degree-of-freedom pose ground-
truth for benchmarking monocular visual-inertial odometry in real-life use
cases involving motion in varying environments, and also including stairs,
elevators and escalators.

– Comparing state-of-the-art visual-inertial odometry platforms and methods.
– A method for collecting ground-truth for smartphone odometry in realistic

use cases by combining pure inertial navigation with manual position fixes.
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Table 1. An overview of related datasets.

2 Related Work

Despite visual-inertial odometry (VIO) being one of the most promising
approaches for real-time tracking of hand-held and wearable devices, there is
a lack of good public datasets for benchmarking different methods. A relevant
benchmark should include both video and inertial sensor recordings with syn-
chronized time stamps preferably captured with consumer-grade smartphone
sensors. In addition, the dataset should be authentic and illustrate realistic use
cases. That is, it should contain challenging environments with scarce visual
features, both indoors and outdoors, and varying motions, also including rapid
rotations without translation as they are problematic for monocular visual-only
odometry. Our work is the first one addressing this need.

Regarding pure visual odometry or SLAM, there are several datasets and
benchmarks available [6,8,23,26] but they lack the inertial sensor data. Fur-
ther, many of these datasets are limited because they (a) are recorded using
ground vehicles and hence do not have rapid rotations [6,23], (b) do not con-
tain low-textured indoor scenes [6,23], (c) are captured with custom hardware
(e.g. fisheye lens or global shutter camera) [8], (d) lack full 6-degree of free-
dom ground-truth [8], or (e) are constrained to small environments and hence
are ideal for SLAM systems but not suitable for benchmarking odometry for
medium and long-range navigation [26].

Nevertheless, besides pure vision datasets, there are some public datasets
with inertial sensor data included, for example, [3–5,10,18]. Most of these
datasets are recorded with sensors rigidly attached to a wheeled ground vehicle.
For example, the widely used KITTI dataset [10] contains LIDAR scans and
videos from multiple cameras recorded from a moving car. The ground-truth is
obtained using a very accurate GPS/IMU localization unit with RTK correc-
tion signals. However, the IMU data is captured only with a frequency of 10 Hz,
which would not be sufficient for tracking rapidly moving hand-held devices.
Further, even if high-frequency IMU data would be available, also KITTI has
the constraints (a), (b), and (c) mentioned above and this limits its usefulness
for smartphone odometry.
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Another analogue to KITTI is that we also use pure inertial navigation with
external location fixes for determining the ground-truth. In our case, the GPS
fixes are replaced with manual location fixes since GPS is not available or accu-
rate indoors. Further, in contrast to KITTI, by utilizing recent advances in iner-
tial navigation [24] we are able to use the inertial sensors of the iPhone for the
ground-truth calculation and are therefore not dependent on a high-grade IMU,
which would be difficult to attach to the hand-held rig. In our case the man-
ual location fixes are determined from a reference video (Fig. 3a), which views
the recorder, by visually identifying landmarks that can be accurately localized
from precise building floor plans or aerial images. The benefit of not using opti-
cal methods for establishing the ground-truth is that we can easily record long
sequences and the camera of the recording device can be temporarily occluded.
This makes our benchmark suitable also for evaluating occlusion robustness of
VIO methods [25]. Like KITTI, the Rawseeds [5] and NCLT [4] datasets are
recorded with a wheeled ground vehicle. Both of them use custom sensors (e.g.
omnidirectional camera or industrial-grade IMU). These datasets are for evalu-
ating odometry and self-localization of slowly moving vehicles and not suitable
for benchmarking VIO methods for hand-held devices and augmented reality.

The datasets that are most related to ours are EuRoC [3] and PennCOSYVIO
[18]. EuRoC provides visual and inertial data captured with a global shutter
stereo camera and a tactical-grade IMU onboard a micro aerial vehicle (MAV)
[17]. The sequences are recorded in two different rooms that are equipped with
motion capture system or laser tracker for obtaining accurate ground-truth
motion. In PennCOSYVIO, the data acquisition is performed using a hand-
held rig containing two Google Tango tablets, three GoPro Hero 4 cameras, and
a similar visual-inertial sensor unit as used in EuRoC. The data is collected by
walking a 150 m path several times at UPenn campus, and the ground-truth is
obtained via optical markers. Due to the need of optic localization for determin-
ing ground-truth, both EuRoC and PennCOSYVIO contain data only from a few
environments that are all relatively small-scale. Moreover, both datasets use the
same high-quality custom sensor with wide field-of-view stereo cameras [17]. In
contrast, our dataset contains around 4.5 km of sequences recorded with regular
smartphone sensors in multiple floors in several different buildings and different
outdoor environments. In addition, our dataset contains motion in stairs, eleva-
tors and escalators, as illustrated in Fig. 2, and also temporary occlusions and
lack of visual features. We are not aware of any similar public dataset. The prop-
erties of different datasets are summarized in Table 1. The enabling factor for
our flexible data collection procedure is to utilize recent advances in pure inertial
navigation together with manual location fixes [24]. In fact, the methodology for
determining the ground-truth is one of the contributions of our work. In addi-
tion, as a third contribution, we present a comparison of recent VIO methods
and proprietary state-of-the-art platforms based on our challenging dataset.
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Fig. 3. Example of simultaneously captured frames from three synchronized cameras.
The external reference camera (a) is used for manual position fixes for determining the
ground-truth trajectory in a separate post-processing stage.

3 Materials

The data was recorded with the three devices (iPhone 6s, Pixel, Tango) rigidly
attached to an aluminium rig (Fig. 1). In addition, we captured the collection
process with an external video camera that was viewing the recorder (Fig. 3).
The manual position fixes with respect to a 2D map (i.e. a structural floor plan
image or an aerial image/map) were determined afterwards from the view of the
external camera. Since the device was hand-held, in most fix locations the height
was given as a constant distance above the floor level (with a reasonable uncer-
tainty estimate), so that the optimization could fit a trajectory that optimally
balances the information from fix positions and IMU signals (details in Sect. 4).

The data streams from all the four devices are synchronized using network
provided time. That is, the device clock is synchronized over a network time
protocol (NTP) request at the beginning of a capture session. All devices were
connected to 4G network during recording. Further, in order to enable analysis
of the data in the same coordinate frame, we calibrated the internal and exter-
nal parameters of all cameras by capturing multiple views of a checkerboard.
This was performed before each session to account for small movements during
transport and storage. The recorded data streams are listed in Table 2.

3.1 Raw iPhone Sensor Capture

An iOS data collection app was developed in Swift 4. It saves inertial and visual
data synchronized to the Apple ARKit pose estimation. All individual data
points are time stamped internally and then synchronized to global time. The
global time is fetched using the Kronos Swift NTP client1. The data was cap-

1 https://github.com/lyft/Kronos.

https://github.com/lyft/Kronos
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Table 2. Data captured by the devices.

tured using an iPhone 6s running iOS 11.0.3. The same software and an identi-
cal iPhone was used for collecting the reference video. This model was chosen,
because the iPhone 6s (published 2015) is hardware-wise closer to an average
smartphone than most recent flagship iPhones and also matches well with the
Google Pixel hardware.

During the capture the camera is controlled by the ARKit service. It is
performing the usual auto exposure and white balance but the focal length
is kept fixed (the camera matrix returned by ARKit is stored during cap-
ture). The resolution is also controlled by ARKit and it is 1280× 720. The
frames are packed into an H.264/MPEG-4 video file. The GNSS/network loca-
tion data is collected through the CoreLocation API. Locations are requested
with the desired accuracy of ‘kCLLocationAccuracyBest’. The location service
provides latitude and longitude, horizontal accuracy, altitude, vertical accuracy,
and speed. The accelerometer, gyroscope, magnetometer, and barometer data
are collected through the CoreMotion API and recorded at the maximum rate.
The approximate capture rates of the multiple data streams are shown in Table 2.
The magnetometer values are uncalibrated. The barometer samples contain both
the barometric pressure and associated relative altitude readings.

3.2 Apple ARKit Data

The same application that captures the raw data is running the ARKit frame-
work. It provides a pose estimate associated with every video frame. The pose
is saved as a translation vector and a rotation expressed in Euler angles. Each
pose is relative to a global coordinate frame created by the phone.

3.3 Google ARCore Data

We wrote an app based on Google’s ARCore example2 for capturing the ARCore
tracking result. Like ARKit, the pose data contains a translation to the first
2 https://github.com/google-ar/arcore-android-sdk.

https://github.com/google-ar/arcore-android-sdk
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frame of the capture and a rotation to a global coordinate frame. Unlike ARKit,
the orientation is stored as a unit quaternion. Note that the capture rate is slower
than with ARKit. We do not save the video frames nor the sensor data on the
Pixel. The capture was done on a Google Pixel device running Android 8.0.0
Oreo and using the Tango Core AR developer preview (Tango core version
1.57:2017.08.28-release-ar-sdk-preview-release-0-g0ce07954:250018377:stable).

3.4 Google Tango Data

A data collection app developed and published by [11], based on the Paraview
project3, was modified in order to collect the relevant data. The capture includes
the position of the device relative to the first frame, the orientation in global
coordinates, the fisheye grayscale image, and the point cloud created by the
depth sensor. The Tango service was run on a Project Tango tablet running
Android 4.4.2 and using Tango Core Argentine (Tango Core version 1.47:2016.11-
22-argentine tango-release-0-gce1d28c8:190012533:stable). The Tango service
produces two sets of poses, referred to as raw odometry and area learning4. The
raw odometry is built frame to frame without long term memory whereas the
area learning uses ongoing map building to close loops and reduce drift. Both
tracks are captured and saved.

3.5 Reference Video and Locations

One important contribution of this paper is the flexible data collection framework
that enables us to capture realistic use cases in large environments. In such
conditions, it is not feasible to use visual markers, motion capture, or laser
scanners for ground-truth. Instead, our work takes advantage of pure inertial
navigation together with manual location fixes as described in Sect. 4.1.

In order to obtain the location fixes, we record an additional reference video,
which is captured by an assisting person who walks within a short distance from
the actual collector. Figure 3a illustrates an example frame of such video. The
reference video allows us to determine the location of the data collection device
with respect to the environment and to obtain the manual location fixes (subject
to measurement noise) for the pure inertial navigation approach [24].

In practice, the location fixes are produced as a post-processing step using a
location marking tool developed for this paper. In this tool, one can browse the
videos, and mark manual location fixes on the corresponding floor plan image.
The location fixes are inserted on occasions where it is easy to determine the
device position with respect to the floor plan image (e.g. in the beginning and
the end of escalators, entering and exiting elevator, passing through a door, or
walking past a building corner). In all our recordings it was relatively easy to
find enough such instances needed to build an accurate ground-truth. Note that
it is enough to determine the device location manually, not orientation.

3 https://github.com/Kitware/ParaViewTangoRecorder.
4 https://developers.google.com/tango/overview/area-learning.

https://github.com/Kitware/ParaViewTangoRecorder
https://developers.google.com/tango/overview/area-learning
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The initial location fixes have to be further transformed from pixel coor-
dinates of floor plan images into metric world coordinates. This is done by
first converting pixels to meters by using manually measured reference distances
(e.g. distance between pillars). Then the floor plan images are registered with
respect to each other using manually determined landmark points (e.g. pillars
or stairs) and floor height measurements.

4 Methods

4.1 Ground-Truth

The ground-truth is an implementation of the purely inertial odometry algorithm
presented in [24], with the addition of manual fixation points recorded using the
external reference video (see Sec. 3.5). The IMU data used in the inertial navi-
gation system for the ground-truth originated from the iPhone, and is the same
data that is shared as part of the dataset. Furthermore, additional calibration
data was acquired for the iPhone IMUs accounting for additive gyroscope bias,
additive accelerometer bias, and multiplicative accelerometer scale bias.

The inference of the iPhone pose track (position and orientation) was imple-
mented as described in [24] with the addition of fusing the state estimation
with both the additional calibration data and the manual fix points. The pose
track corresponds to the INS estimates conditional to the fix points and external
calibrations,

p
(
p(tk),q(tk) | IMU, calibrations, {(ti,pi)}Ni=1

)
, (1)

where p(tk) ∈ R
3 is the phone position and q(tk) is the orientation unit quater-

nion at time instant tk. The set of fixpoints consists of time–position pairs (ti,pi),
where the manual fixpoint pi ∈ R

3 assigned to a time instant ti. The ‘IMU’ refers
to all accelerometer and gyroscope data over the entire track.

Accounting for uncertainty and inaccuracy in the fixation point locations is
taken into account by not enforcing the phone track to match the points, but
including a Gaussian measurement noise term with a standard deviation of 25 cm
in the position fixes (in all directions). This allows the estimate track to disagree
with the fix. Position fixes are given either as 3D locations or 2D points with
unknown altitude while moving between floors.

The inference problem was finally solved with an extended Kalman filter
(forward pass) and extended Rauch–Tung–Striebel smoother (backward pass, see
[24] for technical details). As real-time computation is not required here, we could
have also used batch optimization but that would not have caused noticeable
change in the results. Calculated tracks were inspected manually frame by frame
and the pose track was refined by additional fixation points until the track
matched the movement seen in all three cameras and the floor plan images.
Figure 2c shows examples of the estimated ground-truth track. The vertical line
is an elevator ride (stopping in each floor). Walking-induced periodic movement
can be seen if zoomed in. The obtained accuracy can be checked also from the
example video in the supplementary material.
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4.2 Evaluation Metrics

For odometry results captured on the fly while collecting the data, we propose the
following evaluation metrics. All data was first temporally aligned to the same
global clock (acquired by NTP requests while capturing the data), which seemed
to give temporal alignments accurate to about 1–2 s. The temporal alignment
was further improved by determining a constant time offset by minimizing the
median error between the device yaw and roll tracks. This alignment accounts
for both temporal registration errors between devices and internal delays in the
odometry methods.

After the temporal alignment the tracks provided by the three devices are
chopped to the same lengths covering the same time-span as there may be few
seconds differences in the starting and stopping times of the recordings with
different devices. The vertical direction is already aligned to gravity. To account
for the relative poses between the devices, method estimates, and ground-truth,
we estimate a planar rigid transform (2D rotation and translation) between
estimate tracks and ground-truth based on the first 60 s of estimates in each
method (using the entire path would not have had a clear effect on the results,
though). The reason for not using the calibrated relative poses is that especially
ARCore (and occasionally ARKit) showed wild jumps at the beginning of the
tracks, which would have had considerable effects and ruined those datasets for
the method.

The aligned tracks all start from origin, and we measure the absolute error to
the ground-truth for every output given by each method. The empirical cumu-
lative distribution function for the absolute position error is defined as

F̂n(d) =
number of position errors ≤ d

n
=

1
n

n∑

i=1

1ei≤d, (2)

where 1E is an indicator function for the event E, e ∈ R
n is a vector of absolute

position errors compared to ground-truth, and n is the number of positions. The
function tells the proportion of position estimates being less than d meters from
ground-truth.

5 Data and Results

The dataset contains 23 separate recordings captured in six different locations.
The total length of all sequences is 4.47 km and the total duration is 1 h 8 min.
There are 19 indoor and 4 outdoor sequences. In the indoor sequences there is a
manual fix point on average every 3.7 m (or 3.8 s), and outdoors every 14.7 m (or
10 s). The ground-truth 3D trajectories for all the sequences are illustrated in
the supplementary material, where also additional details are given. In addition,
one of the recordings and its ground-truth are illustrated in the supplementary
video. The main characteristics of the dataset sequences and environments are
briefly described below.
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Fig. 4. Example frames from datasets. There are 7 sequences from two separate office
buildings, 12 sequences from urban indoor scences (malls and metro station), two from
urban outdoor scenes, and two from suburban (campus) outdoor scenes.

Our dataset is primarily designed for benchmarking medium and long-range
odometry. The most obvious use case is indoor navigation in large spaces, but we
have also included outdoor paths for completeness. The indoor sequences were
acquired in a 7-storey shopping mall (∼135,000 m2), in a metro station, and
in two different office buildings. The shopping mall and station are in the same
building complex. The metro and bus station is located in the bottom floors,
and there are plenty of moving people and occasional large vehicles visible in
the collected videos, which makes pure visual odometry challenging. Also the
lower floors of the mall contain a large number of moving persons. Figure 2
illustrates an overall view of the mall along with ground-truth path examples
and a Tango point cloud (Fig. 2b). Figure 4b shows example frames from the
mall and station. The use cases were as realistic as possible including motion in
stairs, elevators and escalators, and also temporary occlusions and areas lacking
visual features. There are ten sequences from the mall and two from the station.

Office building recordings were performed in the lobby and corridors in two
office buildings. They contain some people in a static position and a few people
moving. The sequences contain stair climbs and elevator rides. There are closed
and open (glass) elevator sequences. Example frames are shown in Fig. 4a.

The outdoor sequences were recorded in the city center (urban, two
sequences) and university campus (suburban, two sequences). Figures 4c and
4d illustrate example frames from both locations. Urban outdoor captures were
performed through city blocks; they contain open spaces, people, and vehicles.
Suburban outdoor captures were performed through sparsely populated areas.
They contain a few people walking and some vehicle encounters. Most of the
spaces are open. The average length of the outdoor sequences is 334.6 m, rang-
ing from 133 to 514 m. The outdoor sequences were acquired in different times
of the day illustrating several daylight conditions.
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Fig. 5. (a) Speed histograms; peaks correspond to escalators, stairs, and walking.
(b) the histogram for one data set with escalator rides/walking. (c–d) the histogram
for roll and yaw. (e) the paths for , , ,

, , , and

Figure 5a shows the histograms of different motion metrics extracted from the
ground-truth. Figure 5a shows the speed histogram which has three peaks that
reflect the three main motion modes. From slower to faster they are escalator,
stairs, and walking. Figure 5b shows the speed histogram for just one sequence
that contained both escalator rides and normal walking. The orientation his-
tograms show that the phone was kept generally in the same position relative to
the carrier (portrait orientation, slightly pointing downward). The pitch angle
which reflects the heading direction has a close to uniform distribution.

5.1 Benchmark Results

We evaluated two research level VIO systems using the raw iPhone data and
the three proprietary solutions run on the respective devices (ARCore on Pixel,
ARKit on iPhone, and Tango on the tablet). The research systems used were
ROVIO [1,2,20] and PIVO [25]. ROVIO is a fairly recent method, which has
been shown to work well on high-quality IMU and large field-of-view camera
data. PIVO is a recent method which has shown promising results in compar-
ison with Google Tango [25] using smartphone data. For both methods, imple-
mentations (ROVIO as part of maplab5) from the original authors were used
(in odometry-only mode without map building or loop-closures). We used pre-
calibrated camera parameters and rigid transformation from camera to IMU,
and pre-estimated the process and measurement noise scale parameters.

5 https://github.com/ethz-asl/maplab.

https://github.com/ethz-asl/maplab
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For testing purposes, we also ran two visual-only odometry methods on the
raw data (DSO [7] and ORB-SLAM2 [15]). Both were able to track subsets of the
paths, but the small field-of-view, rapid motion with rotations, and challenging
environments caused them not to succeed for any of the entire paths.

Fig. 6. Example paths showing , , ,
, and that stopped prematurely in (a).

Map data c© OpenStreetMap. The ground-truth fix points were marked on an archi-
tectural drawing. ROVIO and PIVO diverge and are not shown.

In general, the proprietary systems work better than the research methods, as
shown in Fig. 7. In indoor sequences, all proprietary systems work well in general
(Fig. 7a). Tango has the best performance, ARKit performs well and robustly
with only a few clear failure cases (95th percentile ∼10 m), and ARCore occasion-
ally fails, apparently due to incorrect visual loop-closures. Including the outdoor
sequences changes the metrics slightly (Fig. 7b). ARKit had severe problems with
drifting in the outdoor sequences. In terms of the orientation error all systems
were accurate with less than <2◦ error from the ground-truth on average. This
is due to the orientation tracking by integrating the gyroscope performing well
if the gyroscope is well calibrated.

As shown in Fig. 7, the research methods have challenges with our iPhone
data which has narrow field-of-view and a low-cost IMU. There are many
sequences where both methods diverge completely (e.g. Fig. 6). On the other
hand, there are also sequences where they work reasonably well. This may be par-
tially explained by the fact that both ROVIO and PIVO estimate the calibration
parameters of the IMU (e.g. accelerometer and gyroscope biases) internally on
the fly and neither software directly supports giving pre-calibrated IMU parame-
ters as input. ROVIO only considers additive accelerometer bias, which shows in
many sequences as exponential crawl in position. We provide the ground-truth
IMU calibration parameters with our data, and it would hence be possible to
evaluate their performance also with pre-calibrated values. Alternatively, part of
the sequences could be used for self-calibration and others for testing. Propri-
etary systems may benefit from factory-calibrated parameters. Figures 5e and 6
show examples of the results. In these cases all commercial solutions worked well.
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Still, ARCore had some issues at the beginning of the outdoor path. Moreover,
in multi-floor cases drifting was typically more severe and there were sequences
where also proprietary systems had clear failures.

In general, ROVIO had problems with long-term occlusions and disagree-
ments between visual and inertial data. Also, in Fig. 5e it has clearly inaccurate
scale—most likely due to the not modelled scale bias in the accelerations, which
is clearly inadequate for consumer-grade sensors that also show multiplicative
biases [22]. On the other hand, PIVO uses a model with both additive and mul-
tiplicate accelerometer biases. However, with PIVO the main challenge seems to
be that without suitable motion the online calibration of various IMU param-
eters from scratch for each sequence takes considerable time and hence slows
convergence onto the right track.

Fig. 7. Cumulative distributions of position error: , ,
, , and .

6 Discussion and Conclusion

We have presented the first public benchmark dataset for long-range visual-
inertial odometry for hand-held devices using standard smartphone sensors. The
dataset contains 23 sequences recorded both outdoors and indoors on multiple
floor levels in varying authentic environments. The total length of the sequences
is 4.5 km. In addition, we provide quantitative comparison of three proprietary
visual-inertial odometry platforms and two recent academic VIO methods, where
we use the raw sensor data. To the best of our knowledge, this is the first back-
to-back comparison of ARKit, ARCore, and Tango.

Apple’s ARKit performed well in most scenarios. Only in one hard outdoor
sequence the ARKit had the classic inertial dead-reckoning failure where the
estimated position grew out of control. Google’s ARCore showed more aggres-
sive visual loop-closure use than ARKit, which is seen in false positive ‘jumps’
scattered throughout the tracks (between visually similar areas). The specialized
hardware in the Tango gives it a upper hand, which can also be seen in Fig. 7.
The area learning was the most robust and accurate system tested. However, all
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systems performed relatively well in the open elevator where the glass walls let
the camera see the open lobby as the elevator moves. In the case of the closed
elevator none of the systems were capable of reconciling the inertial motion with
the static visual scene. The need for a dataset of this kind is clear from the
ROVIO and PIVO results. The community needs challenging narrow field-of-
view and low-grade IMU data for developing and testing new VIO methods that
generalize to customer-grade hardware.

The collection procedure scales well to new environments. Hence, in future
the dataset can be extended with a reasonably small effort. The purpose of the
dataset is to enable fair comparison of visual-inertial odometry methods and to
speed up development in this area of research. This is relevant because VIO is
currently the most common approach for enabling real-time tracking of mobile
devices for augmented reality.

Further details of the dataset and the download links can be found on the
web page: https://github.com/AaltoVision/ADVIO.
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