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Abstract. Modern semantic segmentation frameworks usually combine
low-level and high-level features from pre-trained backbone convolutional
models to boost performance. In this paper, we first point out that a
simple fusion of low-level and high-level features could be less effective
because of the gap in semantic levels and spatial resolution. We find
that introducing semantic information into low-level features and high-
resolution details into high-level features is more effective for the later
fusion. Based on this observation, we propose a new framework, named
ExFuse, to bridge the gap between low-level and high-level features thus
significantly improve the segmentation quality by 4.0% in total. Further-
more, we evaluate our approach on the challenging PASCAL VOC 2012
segmentation benchmark and achieve 87.9% mean IoU, which outper-
forms the previous state-of-the-art results.
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1 Introduction

Most state-of-the-art semantic segmentation frameworks [2–6,12,22,26,28,35,
38,40] follow the design of Fully Convolutional Network (FCN) [25]. FCN has a
typical encoder-decoder structure – semantic information is firstly embedded into
the feature maps via encoder then the decoder takes responsibility for generating
segmentation results. Usually the encoder is the pre-trained convolutional model
to extract image features and the decoder contains multiple upsampling compo-
nents to recover resolution. Although the top-most feature maps of the encoder
could be highly semantic, its ability to reconstruct precise details in segmentation
maps is limited due to insufficient resolution, which is very common in modern
backbone models such as [15,16,20,31,33,37]. To address this, an “U-Net” archi-
tecture is proposed [28] and adopted in many recent work [2,12,22,25,26,28]. The
core idea of U-Net is to gradually fuse high-level low-resolution features from
top layers with low-level but high-resolution features from bottom layers, which
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Fig. 1. Fusion of low-level and high-level features. (a) “Pure” low-level high-resolution
and “pure” high-level low-resolution features are difficult to be fused because of the
significant semantic and resolution gaps. (b) Introducing semantic information into
low-level features or spatial information into high-level features benefits the feature
fusion. “dn” and“up” blocks represent abstract up/down-sampling feature embedding.

is expected to be helpful for the decoder to generate high-resolution semantic
results.

Though the great success of U-Net, the working mechanism is still unknown
and worth further investigating. Low-level and high-level features are comple-
mentary by nature, where low-level features are rich in spatial details but lack
semantic information and vice versa. Consider the extreme case that “pure” low-
level features only encode low-level concepts such as points, lines or edges. Intu-
itively, the fusion of high-level features with such “pure” low-level features helps
little, because low-level features are too noisy to provide sufficient high-resolution
semantic guidance. In contrast, if low-level features include more semantic infor-
mation, for example, encode relatively clearer semantic boundaries, then the
fusion becomes easy – fine segmentation results could be obtained by aligning
high-level feature maps to the boundary. Similarly, “pure” high-level features
with little spatial information cannot take full advantage of low-level features;
however, with additional high-resolution features embedded, high-level features
may have chance to refine itself by aligning to the nearest low-level boundary.
Figure 1 illustrates the above concepts. Empirically, the semantic and resolution
overlap between low-level and high-level features plays an important role in the
effectiveness of feature fusion. In other words, feature fusion could be enhanced
by introducing more semantic concepts into low-level features or by embedding
more spatial information into high-level features.
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Motivated by the above observation, we propose to boost the feature fusion
by bridging the semantic and resolution gap between low-level and high-level
feature maps. We propose a framework named ExFuse, which addresses the gap
from the following two aspects: (1) to introduce more semantic information into
low-level features, we suggest three solutions – layer rearrangement, semantic
supervision and semantic embedding branch; (2) to embed more spatial infor-
mation into high-level features, we propose two novel methods: explicit channel
resolution embedding and densely adjacent prediction. Significant improvements
are obtained by either approach and a total increase of 4% is obtained by the
combination. Furthermore, we evaluate our method on the challenging PASCAL
VOC 2012 [10] semantic segmentation task. In the test dataset, we achieve the
score of 87.9% mean IoU, surpassing the previous state-of-the-art methods.

Our contributions can be summerized as follows:

– We suggest a new perspective to boost semantic segmentation performance,
i.e. bridging the semantic and resolution gap between low-level and high-level
features by more effective feature fusion.

– We propose a novel framework named ExFuse, which introduces more seman-
tic information into low-level features and more spatial high-resolution infor-
mation into high-level features. Significant improvements are obtained from
the enhanced feature fusion.

– Our fully-equipped model achieves the new state-of-the-art result on the test
set of PASCAL VOC 2012 segmentation benchmark.

2 Related Work

Feature Fusion in Semantic Segmentation. Feature fusion is frequently employed
in semantic segmentation for different purposes and concepts. A lot of methods
fuse low-level but high-resolution features and high-level low-resolution features
together [2,12,22,25,26,28]. Besides, ASPP module is proposed in DeepLab [4–
6] to fuse multi-scale features to tackle objects of different size. Pyramid pooling
module in PSPNet [40] serves the same purpose through different implementa-
tion. BoxSup [8] empirically fuses feature maps of bounding boxes and segmen-
tation maps to further enhance segmentation.

Deeply Supervised Learning. To the best of our knowledge, deeply supervised
training is initially proposed in [21], which aims to ease the training process of
very deep neural networks since depth is the key limitation for training mod-
ern neural networks until batch normalization [18] and residual networks [15]
are proposed. Extra losses are utilized in GoogleNet [33] for the same purpose.
Recently, PSPNet [40] also employs this method to ease the optimization when
training deeper networks.

Upsampling. There are mainly three approaches to upsample a feature map. The
first one is bilinear interpolation, which is widely used in [4–6,40]. The second
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Fig. 2. Overall architecture of our approach. Components with solid boxes belong to
the backbone GCN framework [26], while others with dashed lines are proposed in this
work. Similar to [26], Boundary Refinement blocks are actually used but omitted in the
figure. Numbers (H×W×C) in blocks specify the output dimension of each component.
SS – semantic supervision. ECRE – explicit channel resolution embedding. SEB –
semantic embedding branch. DAP – densely adjacent prediction. (Color figure online)

method is deconvolution, which is initially proposed in FCN [25] and utilized in
later work such as [2,3,22,26,28]. The third one is called “sub-pixel convolution”,
which derives from [1,30] in super resolution task and is widely broadcast to other
tasks such as semantic segmentation. For instance, [35] employs it to replace the
traditional deconvolution operation.

3 Approach

In this work we mainly focus on the feature fusion problem in “U-Net” segmenta-
tion frameworks [2,12,22,25,26,28]. In general, U-Net have an encoder-decoder
structure as shown in Fig. 1. Usually the encoder part is based on a convolutional
model pretrained on large-scale classification dataset (e.g. ImageNet [9]), which
generates low-level but high-resolution features from the bottom layers and high-
level low-resolution features from the top layers. Then the decoder part mixes
up the features to predict segmentation results. A common way of feature fusion
[2,12,14,22,26–28] is to formulate as a residual form:

yl = Upsample(yl+1) + F(xl) (1)

where yl is the fused feature at l-th level; xl stands for the l-th feature generated
by the encoder. Features with larger l have higher semantic level but lower spatial
resolution and vice versa (see Fig. 2).
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In Sect. 1 we argue that feature fusion could become less effective if there
is a large semantic or resolution gap between low-level and high-level features.
To study and verify the impact, we choose one of the start-of-the-art “U-Net”
frameworks – Global Convolutional Network (GCN) [26] – as our backbone seg-
mentation architecture (see Fig. 2 for details). In GCN, 4 different semantic levels
of feature maps are extracted from the encoder network, whose spatial resolu-
tions, given the 512 × 512 input, are {128, 64, 32, 16} respectively. To examine
the effectiveness of feature fusion, we select several subsets of feature levels and
use them to retrain the whole system. Results are shown in Table 1. It is clear
that even though the segmentation quality increases with the fusion of more
feature levels, the performance tends to saturate quickly. Especially, the lowest
two feature levels (1 and 2) only contribute marginal improvements (0.24% for
ResNet 50 and 0.05% for ResNeXt 101), which implies the fusion of low-level
and high-level features is rather ineffective in this framework.

In the following subsections we will introduce our solutions to bridge the
gap between low-level and high-level features – embedding more semantic infor-
mation into low-level features and more spatial resolution clues into high-level
features. First of all, we introduce our baseline settings:

Table 1. GCN [26] segmentation results using given feature levels. Performances are
evaluated by standard mean IoU(%) on PASCAL VOC 2012 validation set. Lower
feature level involves less semantic but higher-resolution features and vice versa (see
Fig. 2). The feature extractor is based on pretrained ResNet50 [15] and ResNeXt101
[37] model. Performance is evaluated in mIoU.

Feature levels ResNet 50 (%) ResNeXt 101 (%)

{4} 70.04 73.79

{3, 4} 72.17 75.97

{2, 3, 4} 72.28 75.98

{1, 2, 3, 4} 72.41 76.02

Baseline Settings. The overall semantic segmentation framework follows the
fully-equipped GCN [26] architecture, as shown in Fig. 2. For the backbone
encoder network, we use ResNeXt 101 [37] model pretrained on ImageNet by
default1 unless otherwise mentioned. We use two public-available semantic seg-
mentation benchmarks – PASCAL VOC 2012 [10] and Semantic Boundaries
Dataset [13] – for training and evaluate performances on PASCAL VOC 2012
validation set, which is consistent with many previous work [2–6,12,22,25–
27,35,38,40]. The performance is measured by standard mean intersection-over-
union (mean IoU). Other training and test details or hyper-parameters are
1 Though ResNeXt 101 performs much better than ResNet 101 [15] on ImageNet

classification task (21.2% vs. 23.6% in top-1 error), we find there are no significant
differences on the semantic segmentation results (both are 76.0% mIoU).
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exactly the same as [26]. Our reproduced GCN baseline score is 76.0%, shown
in Table 3 (#1).

3.1 Introducing More Semantic Information into Low-Level
Features

Our solutions are inspired by the fact: for convolutional neural networks, feature
maps close to semantic supervisions (e.g. classification loss) tend to encode more
semantic information, which has been confirmed by some visualization work [39].
We propose three methods as follows:

Layer Rearrangement. In our framework, features are extracted from the
tail of each stage in the encoder part (res-2 to res-5 in Fig. 2). To make low-
level features (res-2 or res-3) ‘closer’ to the supervisions, one straight-forward
approach is to arrange more layers in the early stages rather than the latter. For
example, ResNeXt 101 [37] model has {3, 4, 23, 3} building blocks for Stage 2–5
respectively; we rearrange the assignment into {8, 8, 9, 8} and adjust the number
of channels to ensure the same overall computational complexity. Experiment
shows that even though the ImageNet classification score of the newly designed
model is almost unchanged, its segmentation performance increases by 0.8%
(Table 3, compare #2 with #3), which implies the quality of low-level feature
might be improved.

Semantic Supervision. We come up with another way to improve low-level
features, named Semantic Supervision (SS), by assigning auxiliary supervisions
directly to the early stages of the encoder network (see Fig. 2). To generate
semantic outputs in the auxiliary branches, low-level features are forced to
encode more semantic concepts, which is expected to be helpful for later fea-
ture fusion. Such methodology is inspired by Deeply Supervised Learning used
in some old classification networks [21,33] to ease the training of deep networks.
However, more sophisticated classification models [15–17,32,34,37] suggest end-
to-end training without auxiliary losses, which is proved to have no convergence
issue even for models over 100 layers. Our experiment also shows that for ResNet
or ResNeXt models deeply supervised training is useless or even harms the clas-
sification accuracy (see Table 2). Therefore, our Semantic Supervision approach
mainly focuses on improving the quality of low-level features, rather than boost-
ing the backbone model itself.

Figure 3 shows the detailed structure of our Semantic Supervision block.
When pretraining the backbone encoder network, the components are attached
to the tail of each stage as auxiliary supervisions (see Fig. 2). The overall clas-
sification loss equals to a weighted summation of all auxiliary branches. Then
after pretraining, we remove these branches and use the remaining part for fine
tuning. Experiment shows the method boosts the segmentation result by 1.1%.
Moreover, we find that if features are extracted from the second convolutional
layer in the auxiliary module for fine tuning (Fig. 3), more improvement (1.5%)
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Table 2. Effects of Semantic Supervision (SS). Classification scores are evaluated on
ImageNet 2012 validation set.

Model Cls err (top-1, %) Seg mIoU (%)

Res50 24.15 72.4

SS Res50 24.77 73.5

is obtained (see Table 3, compare #1 with #2), which supports our intuition that
feature maps closer to the supervision tend to encode more semantic information.

Fig. 3. Details of Semantic Supervision (SS) component in our pipeline.

It is worth noting that the recent semantic segmentation work PSPNet [40]
also employs deeply supervised learning and reports the improvements. Different
from ours, the architecture of [40] do not extract feature maps supervised by the
auxiliary explicitly; and their main purpose is to ease the optimization during
training. However, in our framework we find the improvements may result from
different reasons. For instance, we choose a relatively shallower network ResNet
50 [15] and pretrain with or without semantic supervision. From Table 2, we find
the auxiliary losses do not improve the classification score, which implies ResNet
50 is unlikely to suffer from optimization difficulty. However, it still boosts the
segmentation result by 1.1%, which is comparable to the deeper case of ResNeXt
101 (1.0%). We believe the enhancement in our framework mainly results from
more “semantic” low-level features.

Semantic Embedding Branch. As mentioned above, many “U-Net” struc-
tures involve low-level feature as the residue to the upsampled high-level feature.
In Eq. 1 the residual term F(xl) is a function of low-level but high-resolution
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feature, which is used to fill the spatial details. However, if the low-level feature
contains little semantic information, it is insufficient to recover the semantic
resolution. To address the drawback, we generalize the fusion as follows:

yl = Upsample (yl+1) + F(xl,xl+1, . . . ,xL) (2)

where L is the number of feature levels. Our insight is to involve more semantic
information from high-level features to guide the resolution fusion.

The detailed design of function F (·) is illustrated in Fig. 4, named Semantic
Embedding Branch, (SEB). We use the component for features of Level 1-3 (see
Fig. 2). In our experiment SEB improves the performance by 0.7% (Table 3,
compare #3 with #5).

Fig. 4. Design of the Semantic Embedding Branch in Fig. 2. The “×” sign means
element-wise multiplication. If there are more than one groups of high-level features,
the component outputs the production of each feature map after upsampling.

3.2 Embedding More Spatial Resolution into High-Level Features

For most backbone feature extractor networks, high-level features have very lim-
ited spatial resolution. For example, the spatial size of top-most feature map in
ResNet or ResNeXt is 7 × 7 for 224 × 224 input size. To encode more spatial
details, a widely used approach is dilated strategy [4–6,35,38,40], which is able
to enlarge feature resolution without retraining the backbone network. However,
since high-level feature maps involve a lot of channels, larger spatial size sig-
nificantly increases the computational cost. So in this work we mainly consider
another direction – we do not try to increase the “physical” resolution of the
feature maps; instead, we expect more resolution information encoded
within channels. We propose the following two methods:

Explicit Channel Resolution Embedding. In our overall framework, seg-
mentation loss is only connected to the output of decoder network (see Fig. 2),
which is considered to have less impact on the spatial information of high-level
features by intuition. One straight-forward solution is to borrow the idea of
Semantic Supervision (Sect. 3.1) – we could add an auxiliary supervision branch
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Fig. 5. Illustration of the design of Explicit Channel Resolution Embedding (ECRE)
module in Fig. 2.

to the high-level feature map, upsample and force it to learn fine segmentation
map. Following the insight, firstly we try adding an extra segmentation loss to
the first deconvolution module (the light-blue component in Fig. 2), however, no
improvements are obtained (Table 4, #2).

Table 3. Ablation experiments of the methods in Sect. 3. Performances are evaluated
by standard mean IoU(%) on PASCAL VOC 2012 validation set. The baseline model
is [26] (our impl.) SS – semantic supervision. LR – layer rearrangement. ECRE –
explicit channel resolution embedding. SEB – semantic embedding branch. DAP –
densely adjacent prediction.

Index Baseline SS LR ECRE SEB DAP mIoU (%)

1 � 76.0

2 � � 77.5

3 � � � 78.3

4 � � � � 78.8

5 � � � � 79.0

6 � � � � � 79.6

7 � � � � � � 80.0

Why does the auxiliary loss fail to work? Note that the purpose of the super-
vision is to embed high resolution information “explicitly” into feature map
channels. However, since deconvolution layer includes weights, the embedding
becomes implicit. To overcome this issue, we adopt a parameter-free upsampling
method – Sub-pixel Upsample [1,30] – to replace the original deconvolution.
Since sub-pixel upsample enlarge the feature map just by reshaping the spatial
and channel dimensions, the auxiliary supervision is able to explicitly impact the
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features. Details of the component are shown in Fig. 5. Experiment shows that
it enhances the performance by 0.5% (see Tables 4 and 3).

Table 4. Ablation study on the design of Explicit Channel Resolution Embedding,
(ECRE). The baseline model is in Table 3 (#3)

Index Method mIoU (%)

1 Baseline 78.3

2 Deconv + Supervised 78.2

3 Sub-pixel upsample only 77.6

4 ECRE (Fig. 5) 78.8

Moreover, to demonstrate that the improvement is brought by explicit reso-
lution embedding rather than sub-pixel upsampling itself, we also try to replace
the deconvolution layer only without auxiliary supervision. Table 4 (#3) shows
the result, which is even worse than the baseline.

Densely Adjacent Prediction. In the decoder upstream of the original archi-
tecture (Fig. 2), feature point at the spatial location (i, j) mainly takes responsi-
bility for the semantic information at the same place. To encode as much spatial
information into channels, we propose a novel mechanism named Densely Adja-
cent Prediction (DAP), which allows to predict results at the adjacent position,
e.g. (i− 1, j + 1). Then to get the final segmentation map, result at the position
(i, j) can be generated by averaging the associated scores. Formally, given the
window size k × k, we divide the feature channels into k × k groups, then DAP
works as follows:

ri,j =
1

k × k

∑

0≤l,m<k

x(l×k+m)
i+l−�k/2�,j+m−�k/2� (3)

where ri,j denotes the result at the position (i, j) and x(c)
i,j stands for the features

at the position (i, j) belonging to channel group c. In Fig. 6 we illustrate the
concept of DAP.

We use DAP on the output of our decoder (see Fig. 2). In our experiment we
set k = 3. Note that DAP requires the number of feature channels increased by
k × k times, so we increase the output channels of each deconvolution block to
189 (21 × 3 × 3). For fair comparison, we also evaluate the baseline model with
the same number of channels. Results are shown in Table 5. It is clear that DAP
improves the performance by 0.6% while the counterpart model without DAP
only obtains marginal gain, which implies DAP may be helpful for feature maps
to embed more spatial information.
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Fig. 6. Illustration of Densely Adjacent Prediction (DAP) component in Fig. 2.

Table 5. Ablation study on the effect of Densely Adjacent Prediction (DAP). The
baseline model is in Table 3 (#5)

Index Method mIoU (%)

1 Baseline 79.0

2 Baseline (more channels) 79.1

3 DAP (Fig. 6) 79.6

3.3 Discussions

Is Feature Fusion Enhanced? At the beginning of Sect. 3 we demonstrate
that feature fusion in our baseline architecture (GCN [26]) is ineffective. Only
marginal improvements are obtained by fusing low-level features (Level 1 and
2), as shown in Table 1. We attribute the issue to the semantic and resolution
gap between low-level and high-level features. In Sects. 3.1 and 3.2, we propose a
series of solutions to introduce more semantic information into low-level features
and more spatial details into high-level features.

Despite the improved performance, a question raises: is feature fusion in the
framework really improved? To justify this, similar to Table 1 we compare several
subsets of different feature levels and use them to train original baseline (GCN)
and our proposed model (ExFuse) respectively. For the ExFuse model, all the
5 approaches in Sects. 3.1 and 3.2 are used. Table 6 shows the results. We find
that combined with low-level feature maps (Level 1 and 2) the proposed ExFuse
still achieves considerable performance gain (∼1.3%), while the baseline model
cannot benefit from them. The comparison implies our insights and methodology
enhance the feature fusion indeed.

Table 6 also shows that the proposed model is much better than the baseline
in the case that only top-most feature maps (Level 4) are used, which implies
the superior high-level feature quality to the original model. Our further study
shows that methods in Sect. 3.2 contribute most of the improvement. Empirically
we conclude that boosting high-level features not only benefits feature fusion,
but also contributes directly to the segmentation performance.
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Table 6. Comparison of original GCN [26] and ExFuse on segmentation results using
given feature levels. The backbone feature extractor networks are both ResNeXt 101.

Feature levels Original GCN [26] (%) ExFuse (%)

{4} 73.79 77.29

{3, 4} 75.97 78.69

{2, 3, 4} 75.98 79.11

{1, 2, 3, 4} 76.02 80.04

Could the Perspective and Techniques Generalize to Other Computer
Vision Tasks? Since U-Net structure is widely applied to other vision tasks
such as low-level vision [29] and detection [23], a question raises naturally: could
the proposed perspective and techniques generalize to other tasks? We carefully
conducted ablation experiments and observe positive results. We leave detailed
discussion for future work.

4 PASCAL VOC 2012 Experiment

In the last section we introduce our methodology and evaluate their effectiveness
via ablation experiments. In this section we investigate the fully-equipped system
and report benchmark results on PASCAL VOC 2012 test set.

To further improve the feature quality, we use deeper ResNeXt 131 as our
backbone feature extractor, in which Squeeze-and-excitation modules [17] are
also involved. The number of building blocks for Stage 2-5 is {8, 8, 19, 8} respec-
tively, which follows the idea of Sect. 3.1. With ResNeXt 131, we get 0.8% per-
formance gain and achieve 80.8% mIoU when training with 10582 images from
PASCAL VOC 2012 [10] and Semantic Boundaries Dataset (SBD) [13], which
is 2.3% better than DeepLabv3 [6] at the same settings.

Table 7. Strategies and results on PASCAL VOC 2012 validation set

Index ResNeXt 131 COCO Flip mIoU (%)

1 (ResNeXt 101) 80.0

2 � 80.8

3 � � 85.4

4 � � � 85.8

Following the same procedure as [2,4–6,12,22,26,35,40], we employ Microsoft
COCO dataset [24] to pretrain our model. COCO has 80 classes and we only
retain images including the same 20 classes in PASCAL VOC 2012 and all other
classes are regarded as background. Training process has 3 stages. In stage-1, we
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mix up all images in COCO, SBD and standard PASCAL VOC 2012. In stage-2,
we utilize SBD and PASCAL VOC 2012 training images. Finally for stage-3,
we only employ standard PASCAL VOC 2012 training set. We keep image crop
size unchanged during the whole training procedure and all other settings are
exactly the same as [26]. COCO pretraining brings about another 4.6% increase
in performance, as shown in Table 7 (#2 and #3).

We further average the score map of an image with its horizontal flipped
version and eventually get a 85.8% mIoU on PASCAL VOC 2012 validation set,
which is 2.3% better than DeepLabv3+ [7] (Table 7 #4).

Resembling [6], we then freeze the batch normalization parameters and
fine tune our model on official PASCAL VOC 2012 trainval set. In particu-
lar, we duplicate the images that contain hard classes (namely bicycle, chair,
dining table, potted plant and sofa). Finally, our ExFuse framework achieves
87.9% mIoU on PASCAL VOC 2012 test set without any DenseCRF [19] post-
processing, which surpasses previous state-of-the-art results, as shown in Table 8.
For fair comparison, we also evaluate our model using a standard ResNet101 and
it achieves 86.2% mIoU, which is better than DeepLabv3 at the same setting.

Table 8. Performance on PASCAL VOC 2012 test set

Method mIOU

Tusimple [35] 83.1

Large Kernel Matters [26] 83.6

Multipath RefineNet [22] 84.2

ResNet 38 MS COCO [36] 84.9

PSPNet [40] 85.4

DeepLabv3 [6] 85.7

SDN [11] 86.6

DeepLabv3+ (Xception) [7] 87.8

ExFuse ResNet101 (ours) 86.2

ExFuse ResNeXt131 (ours) 87.9

Figure 7 visualizes some representative results of the GCN [26] baseline and
our proposed ExFuse framework. It is clear that the visualization quality of our
method is much better than the baseline. For example, the boundary in ExFuse
is more precise than GCN.
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Fig. 7. Examples of semantic segmentation results on PASCAL VOC 2012 validation
set. (b) is our GCN [26] baseline which achieves 81.0% mIoU on val set. (c) is our
method which achieves 85.4% on val set, as shown in Table 7 #3.

5 Conclusions

In this work, we first point out the ineffective feature fusion problem in cur-
rent U-Net structure. Then, we propose our ExFuse framework to tackle this
problem via bridging the gap between high-level low-resolution and low-level
high-resolution features. Eventually, better feature fusion is demonstrated by the
performance boost when fusing with original low-level features and the overall
segmentation performance is improved by a large margin. Our ExFuse frame-
work also achieves new state-of-the-art performance on PASCAL VOC 2012
benchmark.
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