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Abstract. Generative adversarial networks (GANs) are powerful tools
for learning generative models. In practice, the training may suffer from
lack of convergence. GANs are commonly viewed as a two-player zero-
sum game between two neural networks. Here, we leverage this game
theoretic view to study the convergence behavior of the training process.
Inspired by the fictitious play learning process, a novel training method,
referred to as Fictitious GAN, is introduced. Fictitious GAN trains the
deep neural networks using a mixture of historical models. Specifically,
the discriminator (resp. generator) is updated according to the best-
response to the mixture outputs from a sequence of previously trained
generators (resp. discriminators). It is shown that Fictitious GAN can
effectively resolve some convergence issues that cannot be resolved by the
standard training approach. It is proved that asymptotically the average
of the generator outputs has the same distribution as the data samples.

1 Introduction

1.1 Generative Adversarial Networks

Generative adversarial networks (GANs) are a powerful framework for learn-
ing generative models. They have witnessed successful applications in a wide
range of fields, including image synthesis [23,25], image super-resolution [14,15],
and anomaly detection [28]. A GAN maintains two deep neural networks: the
discriminator and the generator. The generator aims to produce samples that
resemble the data distribution, while the discriminator aims to distinguish the
generated samples and the data samples.

Mathematically, the standard GAN training aims to solve the following opti-
mization problem:

min
G

max
D

V (G,D) = Ex∼pd(x){log D(x)} + Ez∼pz(z){log(1 − D(G(z)))}. (1)
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The global optimum point is reached when the generated distribution pg, which
is the distribution of G(z) given z ∼ pz(z), is equal to the data distribution.
The optimal point is reached based on the assumption that the discriminator and
generator are jointly optimized. Practical training of GANs, however, may not
satisfy this assumption. In some training process, instead of ideal joint optimiza-
tion, the discriminator and generator seek for best response by turns, namely the
discriminator (resp. generator) is alternately updated with the generator (resp.
discriminator) fixed.

Another conventional training methods are based on a gradient descent form
of GAN optimization. In particular, they simultaneously take small gradient
steps in both generator and discriminator parameters in each training itera-
tion [9]. There have been some studies on the convergence behaviors of gradient-
based training. The local convergence behavior has been studied in [11,18]. The
gradient-based optimization is proved to converge assuming that the discrimina-
tor and the generator is convex over the network parameters [20]. The inherent
connection between gradient-based training and primal-dual subgradient meth-
ods for solving convex optimizations is built in [4].

Despite the promising practical applications, a lot of works still witness the
lack of convergence behaviors in training GANs. Two common failure modes
are oscillation and mode collapse, where the generator only produces a small
family of samples [3,9,16]. One important observation in [17] is that such non
convergence behaviors stem from the fact that each generator update step is
a partial collapse towards a delta function, which is the best response to the
objective function. This motivates the study of this paper on the dynamics of
best-response training and the proposal of a novel training method to address
these convergence issues.

1.2 Contributions

In this paper, we view GANs as a two-player zero-sum game and the training
process as a repeated game. For the optimal solution to Eq. (1), the correspond-
ing generated distribution and discriminator (p∗

g,D
∗) is shown to be the unique

Nash equilibrium in the game. Inspired by the well-established fictitious play
mechanism in game theory, we propose a novel training algorithm to resolve the
convergence issue and find this Nash equilibrium.

The proposed training algorithm is referred to as Fictitious GAN, where the
discriminator (resp. generator) is updated based on the mixed outputs from the
sequence of historical trained generators (resp. discriminators). The previously
trained models actually carry important information and can be utilized for the
updates of the new model. We prove that Fictitious GAN achieves the optimal
solution to Eq. (1). In particular, the discriminator outputs converge to the opti-
mum discriminator function and the mixed output from the sequence of trained
generators converges to the data distribution.

Moreover, Fictitious GAN can be regarded as a meta-algorithm that can be
applied on top of existing GAN variants. Both synthetic data and real-world
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image datasets are used to demonstrate the improved performance due to the
fictitious training mechanism.

2 Related Works

The idea of training using multiple GAN models have been considered in other
works. In [1,12], the mixed outputs of multiple generators is used to approximate
the data distribution. The multiple generators with a modified loss function have
been used to alleviate the mode collapse problem [7]. In [17], the generator is
updated based on a sequence of unrolled discriminators. In [19], dual discrimina-
tors are used to combine the Kullback-Leibler (KL) divergence and reverse KL
divergences into a unified objective function. Using an ensemble of discrimina-
tors or GAN models has shown promising performance [6,27]. One distinguishing
difference between the above-mentioned methods and our proposed method is
that in our method only a single deep neural network is trained at each training
iteration, while multiple generators (resp. discriminators) only provide inputs
to a single discriminator (resp. generators) at each training stage. Moreover,
the outputs from multiple networks is simply uniformly averaged and serves as
input to the target training network, while other works need to train the optimal
weights to average the network models. The proposed method thus has a much
lower computational complexity.

The use of historical models have been proposed as a heuristic method to
increase the diversity of generated samples [24], while the theoretical convergence
guarantee is lacking. Game theoretic approaches have been utilized to achieve a
resource-bounded Nash equilibrium in GANs [21]. Another closely related work
to this paper is the recent work [10] that applies the Follow-the-Regularized-
Leader (FTRL) algorithm to train GANs. In their work, the historical models
are also utilized for online learning. There are at least two distinct features in
our work. First, we borrow the idea of fictitious play from game theory to prove
convergence to the Nash equilibrium for any GAN architectures assuming that
networks have enough capacity, while [10] only proves convergence for semi-
shallow architectures. Secondly, we prove that a single discriminator, instead of
a mixture of multiple discriminators, asymptotically converges to the optimal
discriminator. This provides important design guidelines for the training, where
asymptotically a single discriminator needs to be maintained.1

3 Toy Examples

In this section, we use two toy examples to show that both the best-response
approach and the gradient-based training approach may oscillate for simple min-
imax optimization problems.

1 Due to space constraints, all the proofs in the paper are omitted and can be found
in the Supplementary materials.
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Take the GAN framework for instance, for the best-response training app-
roach, the discriminator and the generator are updated to the optimum point at
each iteration. Mathematically, the discriminator and the generator is alternately
updated according to the following rules:

max
D

Ex∼pd(x){log D(x)} + Ez∼pz(z){log(1 − D(G(z))} (2)

min
G

Ez∼pz(z){log(1 − D(G(z)))} (3)

Example 1. Let the data follow the Bernoulli distribution pd ∼ Bernoulli (a),
where 0 < a < 1. Suppose the initial generated distribution pg ∼ Bernoulli (b),
where b �= a. We show that in the best-response training process, the generated
distribution oscillates between pg ∼ Bernoulli (1) and pg ∼ Bernoulli (0).

We show the oscillation phenomenon in training using best-response training
approach. To minimize (3), it is equivalent to find pg such that Ex∼pg(x){log(1−
D(x))} is minimized. At each iteration, the output distribution of the updated
generator would concentrate all the probability mass at x = 0 if D(0) > D(1),
or at x = 1 if D(0) < D(1). Suppose pg(x) = 1{x = 0}, where 1{·} is the
indicator function, then by solving (2), the discriminator at the next iteration is
updated as

D(x) =
pd(x)

pd(x) + pg(x)
, (4)

which yields D(1) = 1 and D(0) < D(1). Therefore, the generated distribu-
tion at the next iteration becomes pg(x) = 1{x = 1}. The oscillation between
pg ∼ Bernoulli (1) and pg ∼ Bernoulli (0) continues by induction. A similar
phenomenon can be observed for Wasserstein GAN.

The first toy example implies that the oscillation behavior is a fundamental
problem to the iterative best-response training. In practical training of GANs,
instead of finding the best response, the discriminator and generator are updated
based on gradient descent towards the best-response of the objective function.
However, the next example adapted from [8] demonstrates the failure of conver-
gence in a simple minimax problem using a gradient-based method.

Example 2. Consider the following minimax problem:

min
−10≤y≤10

max
−10≤x≤10

xy. (5)

Consider the gradient based training approach with step size �. The update
rule of x and y is: [

xn+1

yn+1

]
=

[
1 �

−� 1

] [
xn

yn

]
. (6)

By using the knowledge of eigenvalues and eigenvectors, we can obtain
[
xn

yn

]
=

[−cn1 c2 sin(nθ + β)
cn1 c2 cos(nθ + β)

]
, (7)
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(a) (b)

Fig. 1. Performance of gradient method with fixed step size for Example 2. (a) illus-
trates the choices of x and y as iteration processes, the red point (0.1, 0.1) is the initial
value. (b) illustrates the value of xy as a function of iteration numbers.

where c1 =
√

1 + �2 > 1 and c2, θ, β are constants depending on the initial
(x0, y0). As n → ∞, since c1 > 1, the process will not converge.

Figure 1 shows the performance of gradient based approach, the initial value
(x0, y0) = (0.1, 0.1) and step size is 0.01. It can be seen that both players’ actions
do not converge. This toy example shows that even the gradient based approach
with arbitrarily small step size may not converge.

We will revisit the convergence behavior in the context of game theory. A
well-established learning mechanism in game theory naturally leads to a training
algorithm that resolves the non-convergence issues of these two toy examples.

4 Nash Equilibrium in Zero-Sum Games

In this section, we introduce the two-player zero-sum game and describe the
learning mechanism of fictitious play, which provably achieves a Nash equilib-
rium of the game. We will show that the minimax optimization of GAN can be
formulated as a two-player zero-sum game, where the optimal solution corre-
sponds to the unique Nash equilibrium in the game. In the next section we will
propose a training algorithm which simulates the fictitious play mechanism and
provably achieves the optimal solution.

4.1 Zero-Sum Games

We start with some definitions in game theory. A game consists of a set of n play-
ers, who are rational and take actions to maximize their own utilities. Each player
i chooses a pure strategy si from the strategy space Si = {si,0, · · · , si,m−1}. Here
player i has m strategies in her strategy space. A utility function ui(si, s−i),
which is defined over all players’ strategies, indicates the outcome for player i,
where the subscript −i stands for all players excluding player i. There are two
kinds of strategies, pure and mixed strategy. A pure strategy provides a specific
action that a player will follow for any possible situation in a game, while a mixed
strategy μi = (pi(si,0), · · · , pi(si,m−1)) for player i is a probability distribution
over the m pure strategies in her strategy space with

∑
j pi(si,j) = 1. The set of
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possible mixed strategies available to player i is denoted by ΔSi. The expected
utility of mixed strategy (μi, μ−i) for player i is

E {ui(μi, μ−i)} =
∑
si∈Si

∑
s−i∈S−i

ui(si, s−i)pi(si)p−i(s−i). (8)

For ease of notation, we write ui(μi, μ−i) as E {ui(μi, μ−i)} in the following.
Note that a pure strategy can be expressed as a mixed strategy that places
probability 1 on a single pure strategy and probability 0 on the others. A game
is referred to as a finite game or a continuous game, if the strategy space is
finite or nonempty and compact, respectively. In a continuous game, the mixed
strategy indicates a probability density function (pdf) over the strategy space.

Definition 1. For player i, a strategy μ∗
i is called a best response to others’

strategy μ−i if ui(μ∗
i , μ−i) ≥ ui(μi, μ−i) for any μi ∈ ΔSi.

Definition 2. A set of mixed strategies μ∗ = (μ∗
1, μ

∗
2, · · · , μ∗

n) is a Nash equilib-
rium if, for every player i, μ∗

i is a best response to the strategies μ∗
−i played by

the other players in this game.

Definition 3. A zero-sum game is one in which each player’s gain or loss is
exactly balanced by the others’ loss or gain and the sum of the players’ payoff is
always zero.

Now we focus on a continuous two-player zero-sum game. In such a game, given
the strategy pair (μ1, μ2), player 1 has a utility of u(μ1, μ2), while player 2 has a
utility of −u(μ1, μ2). In the framework of GAN, the training objective (1) can be
regarded as a two-player zero-sum game, where the generator and discriminator
are two players with utility functions −V (G,D) and V (G,D), respectively. Both
of them aim to maximize their utility and the sum of their utilities is zero.

Knowing the opponent is always seeking to maximize its utility, Player 1 and
2 choose strategies according to

μ∗
1 = argmax

µ1∈ΔS1

min
µ2∈ΔS2

u(μ1, μ2) (9)

μ∗
2 = argmin

µ2∈ΔS2

max
µ1∈ΔS1

u(μ1, μ2). (10)

Define v = max
µ1∈ΔS1

min
µ2∈ΔS2

u(μ1, μ2) and v̄ = min
µ2∈ΔS2

max
µ1∈ΔS1

u(μ1, μ2) as the

lower value and upper value of the game, respectively. Generally, v ≤ v̄. Sion [26]
showed that these two values coincide under some regularity conditions:

Theorem 1 (Sion’s Minimax Theorem [26]). Let X and Y be convex, com-
pact spaces, and f : X×Y → R. If for any x ∈ X, f(x, ·) is upper semi-continuous
and quasi-concave on Y and for any y ∈ Y , f(·, y) is lower semi-continuous and
quasi-convex on X, then infx∈X supy∈Y f(x, y) = supy∈Y infx∈X f(x, y).
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Hence, in a zero-sum game, if the utility function u(μ1, μ2) satisfies the conditions
in Theorem 1, then v = v̄. We refer to v = v = v̄ as the value of the game. We
further show that a Nash equilibrium of the zero-sum game achieves the value
of the game.
Corollary 1. In a two-player zero-sum game with the utility function satisfying
the conditions in Theorem 1, if a strategy (μ∗

1, μ
∗
2) is a Nash equilibrium, then

u(μ∗
1, μ

∗
2) = v.

Corollary 1 implies that if we have an algorithm that achieves a Nash equi-
librium of a zero-sum game, we may utilize this algorithm to optimally train a
GAN. We next describe a learning mechanism to achieve a Nash equilibrium.

4.2 Fictitious Play

Suppose the zero-sum game is played repeatedly between two rational players,
then each player may try to infer her opponent’s strategy. Let sni ∈ Si denote
the action taken by player i at time n. At time n, given the previous actions
{s0

2, s
1
2, · · · , sn−1

2 } chosen by player 2, one good hypothesis is that player 2 is
using stationary mixed strategies and chooses strategy st2, 0 ≤ t ≤ n − 1, with
probability 1

n . Here we use the empirical frequency to approximate the proba-
bility in mixed strategies. Under this hypothesis, the best response for player 1
at time n is to choose the strategy μ∗

1 satisfying:

μ∗
1 = argmax

µ1∈ΔS1

u(μ1, μ
n
2 ), (11)

where μn
2 is the empirical distribution of player 2’s historical actions. Similarly,

player 2 can choose the best response assuming player 1 is choosing its strategy
according to the empirical distribution of the historical actions.

Notice that the expected utility is a linear combination of utilities under
different pure strategies, hence for any hypothesis μn

−i, player i can find a pure
strategy sni as a best response. Therefore, we further assume each player plays
the best pure response at each round. In game theory this learning rule is called
fictitious play, proposed by Brown [2].

Danskin [5] showed that for any continuous zero-sum games with any initial
strategy profile, fictitious play will converge. This important result is summarized
in the following theorem.
Theorem 2. Let u(s1, s2) be a continuous function defined on the direct product
of two compact sets S1 and S2. The pure strategy sequences {sn1} and {sn2} are
defined as follows: s0

1 and s0
2 are arbitrary, and

sn1 ∈ argmax
s1∈S1

1
n

n−1∑
k=0

u(s1, s
k
2), sn2 ∈ argmin

s2∈S2

1
n

n−1∑
k=0

u(sk1 , s2), (12)

then

lim
n→∞

1
n

n−1∑
k=0

u(sn1 , sk2) = lim
n→∞

1
n

n−1∑
k=0

u(sk1 , sn2 ) = v, (13)

where v is the value of the game.
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4.3 Effectiveness of Fictitious Play

In this section, we show that fictitious play enables the convergence of learning
to the optimal solution for the two counter-examples in Sect. 3.

Example 1: Figure 2 shows the performance of the best-response approach,
where the data follows a Bernoulli distribution pd ∼ Bernoulli (0.25), the ini-
tialization is D(x) = x for x ∈ [0, 1] and the initial generated distribution pg ∼
Bernoulli (0.1). It can be seen that the generated distribution based on best
responses oscillates between pg(x = 0) = 1 and pg(x = 1) = 1.

Assuming best response at each iteration n, under fictitious play, the discrim-
inator is updated according to Dn = arg maxD

1
n

∑n−1
w=0 V (pg,w,D) and the gen-

erated distribution is updated according to pg,n = arg maxpg

1
n

∑n−1
w=0 V (pg,Dw).

Figure 2 shows the change of Dn and the empirical mean of the generated dis-
tributions p̄g,n = 1

n

∑n−1
w=0 pg,w as training proceeds. Although the best-response

generated distribution at each iteration oscillates as in Fig. 2a, the learning mech-
anism of fictitious play makes the empirical mean p̄g,n converge to the data
distribution.

Fig. 2. Performance of best-response training for Example 1. (a) is Bernoulli distri-
bution of pg assuming best-response updates. (b) illustrates D(x) in Fictitious GAN
assuming best response at each training iteration. (c) illustrates the average of pg(x)
in Fictitious GAN assuming best response at each training iteration.

Example 2: At each iteration n, player 1 chooses x = arg maxx
1
n

∑n−1
i=0 xyi,

which is equal to 10 ∗ sign(
∑n−1

i=0 yi). Similarly, player 2 chooses y according to
y = −10 ∗ sign(

∑n−1
i=0 xi). Hence regardless of what the initial condition is, both

players will only choose 10 or −10 at each iteration. Consequently, as iteration
goes to infinity, the empirical mixed strategy only proposes density on 10 and
−10. It is proved in the Supplementary material that the mixed strategy (σ∗

1 , σ∗
2)

that both players choose 10 and −10 with probability 1
2 is a Nash equilibrium

for this game. Figure 3 shows that under fictitious play, both players’ empirical
mixed strategy converges to the Nash equilibrium and the expected utility for
each player converges to 0.

One important observation is fictitious play can provide the Nash equilibrium
if the equilibrium is unique in the game. However, if there exist multiple Nash
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Fig. 3. (a) and (b) illustrate the empirical distribution of x and y at 10 and −10,
respectively. (c) illustrates the expected utility for player 1 under fictitious play.

equilibriums, different initialization may yield different solutions. In the above
example, it is easy to check (0, 0) is also a Nash equilibrium, which means both
players always choose 0, but fictitious play can lead to this solution only when
the initialization is (0, 0). The good thing we show in the next section is, due
to the special structure of GAN (the utility function is linear over generated
distribution), fictitious play can help us find the desired Nash equilibrium.

5 Fictitious GAN

5.1 Algorithm Description

As discussed in the last section, the competition between the generator and dis-
criminator in GAN can be modeled as a two-player zero-sum game. The following
theorem proved in the supplementary material shows that the optimal solution
of (1) is actually a unique Nash equilibrium in the game.

Theorem 3. Consider (1) as a two-player zero-sum game. The optimal solution
of (1) with p∗

g = pd and D∗(x) = 1/2 is a unique Nash equilibrium in this game.
The value of the game is − log 4.

By relating GAN with the two-player zero-sum game, we can design a training
algorithm to simulate the fictitious play such that the training outcome converges
to the Nash equilibrium

Fictitious GAN, as described in Algorithm 1, adapts the fictitious play learn-
ing mechanism to train GANs. We use two queues D and G to store the histori-
cally trained models of the discriminator and the generator, respectively. At each
iteration, the discriminator (resp. generator) is updated according to the best
response to V (G,D) assuming that the generator (resp. discriminator) chooses
a historical strategy uniformly at random. Mathematically, the discriminator
and generator are updated according to (14) and (15), where the outputs due
to the generator and the discriminator is mixed uniformly at random from the
previously trained models. Note the back-propagation is still performed on a
single neural network at each training step. Different from standard training
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approaches, we perform k0 gradient descent updates when training the discrim-
inator and the generator in order to achieve the best response. In practical
learning, queues D and G are maintained with a fixed size. The oldest model is
discarded if the queue is full when we update the discriminator or the generator.

Algorithm 1. Fictitious GAN training algorithm.
Initialization: Set D and G as the queues to store the historical models of the
discriminators and the generators, respectively.
while the stopping criterion is not met do

for k = 1, · · · , k0 do
Sample data via minibatch x1, · · · ,xm.
Sample noise via minibatch z1, · · · , zm.
Update the discriminator via gradient ascent:

∇θθθd

1

m

m∑

i=1

[
log(D(xi)) +

1

|G|
∑

Gw∈G
log(1 − D(Gw(zi)))

]
. (14)

end for
for k = 1, · · · , k0 do

Sample noise via minibatch z1, · · · , zm.
Update the generator via gradient descent:

∇θθθg

[
1

m|G|
m∑

i=1

∑

Dw∈D
log(1 − Dw(G(zi)))

]
. (15)

end for
Insert the updated discriminator and the updated generator into D and G, respec-
tively.

end while

The following theorem provides the theoretical convergence guarantee for
Fictitious GAN. It shows that assuming best response at each update in Ficti-
tious GAN, the distribution of the mixture outputs from the generators converge
to the data distribution. The intuition of the proof is that fictitious play achieves
a Nash equilibrium in two-player zero-sum games. Since the optimal solution of
GAN is a unique equilibrium in the game, fictitious GAN achieves the optimal
solution.

Theorem 4. Suppose the discriminator and the generator are updated according
to the best-response strategy at each iteration in Fictitious GAN, then

lim
n→∞

1
n

n−1∑
w=0

pg,w(x) = pd(x), (16)

lim
n→∞ Dn(x) =

1
2
, (17)
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where Dw(x) is the output from the w-th trained discriminator model and pg,w
is the generated distribution due to the w-th trained generator.

5.2 Fictitious GAN as a Meta-Algorithm

One advantage of Fictitious GAN is that it can be applied on top of existing
GANs. Consider the following minimax problem:

min
G

max
D

V (G,D) = Ex∼pd(x){f0(D(x))} + Ez∼pz(z){f1(D(G(z)))}, (18)

where f0(·) and f1(·) are some quasi-concave functions depending on the GAN
variants. Table 1 shows the family of f -GAN [4,20] and Wasserstein GAN.

We can model these GAN variants as two-player zero-sum games and the
training algorithms for these variants of GAN follow by simply changing f0(·)
and f1(·) in the updating rule accordingly in Algorithm 1. Following the proof
in Theorem 4, we can show that the time average of generated distributions will
converge to the data distribution and the discriminator will converge to D∗ as
shown in Table 1.

Table 1. Variants of GANs under the zero-sum game framework.

Divergence metric f0(D) f1(D) D∗ value of the game

Kullback-Leibler log(D) 1 − D 1 0

Reverse KL −D log D 1 −1

Pearson χ2 D − 1
4
D2 − D 0 0

Squared Hellinger χ2 1 − D 1 − 1/D 1 0

Jensen-Shannon log(D) log(1 − D) 1
2

− log 4

WGAN D −D 0 0

6 Experiments

Our Fictitious GAN is a meta-algorithm that can be applied on top of existing
GANs. To demonstrate the merit of using Fictitious GAN, we apply our meta-
algorithm on DCGAN [22] and its extension conditional DCGAN. Conditional
DCGAN allows DCGAN to use external label information to generate images
of some particular classes. We evaluate the performance on a synthetic dataset
and three widely adopted real-world image datasets. Our experiment results
show that Fictitious GAN could improve visual quality of both DCGAN and
conditional GAN models.

Image dataset. (1) MNIST: contains 60,000 labeled images of 28 × 28
grayscale digits. (2) CIFAR-10: consists of colored natural scene images sized
at 32 × 32 pixels. There are 50,000 training images and 10,000 test images in
10 classes. (3) CelebA: is a large-scale face attributes dataset with more than
200K celebrity images, each with 40 attribute annotations.
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Parameter Settings. We used Tensorflow for our implementation. Due to GPU
memory limitation, we limit number of historical models to 5 in real-world image
dataset experiments. More architecture details are included in supplementary
material.

6.1 2D Mixture of Gaussian

Figure 4 shows the performance of Fictitious GAN for a mixture of 8 Gaussain
data on a circle in 2 dimensional space. We use the network structure in [17]
to evaluate the performance of our proposed method. The data is sampled from
a mixture of 8 Gaussians uniformly located on a circle of radius 1.0. Each has
standard deviation of 0.02. The input noise samples are a vector of 256 indepen-
dent and identically distributed (i.i.d.) Gaussian variables with mean zero and
unit standard deviation.

While the original GANs experience mode collapse [17,19], Fictitious GAN
is able to generate samples over all 8 modes, even with a single discriminator
asymptotically.

Iteration 0 Iteration 10k Iteration 20k Iteration 30k Iteration 34k

Fig. 4. Performance of Fictitious GAN on 2D mixture of Gaussian data. The data
samples are marked in blue and the generated samples are marked in orange. (Color
figure online)

6.2 Qualitative Results for Image Generation

We show visual quality of samples generated by DCGAN and conditional
DCGAN, trained by proposed Fictitious GAN. In Fig. 5 first row corresponds
to generated samples. We apply train DCGAN on CelebA dataset, and train
conditional DCGAN on MNIST and CIFAR-10. Each image in the first row
corresponds to the image in the same grid position in second row of Fig. 5.
The second row shows the nearest neighbor in training dataset computed by
Euclidean distance. The samples are randomly drawn without cherry picking,
they are representative of model output distribution.

In CelebA, we can generate face images with various genders, skin colors and
hairstyles. In MNIST dataset, all generated digits have almost visually identi-
cal samples. Also, digit images have diverse visual shapes and fonts. CIFAR-10
dataset is more challenging, images of each object have large visual appearance
variance. We observe some visual and label consistency in generated images and
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the nearest neigbhors, especially in the categories of airplane, horse and ship.
Note that though we theoretical proved that Fictitious GAN could improve
robustness of training in best response strategy, the visual quality still depends
on the baseline GAN architecture and loss design, which in our case is conditional
DCGAN.

Fig. 5. Generated images in CelebA, MNIST and CIFAR-10. Top row samples are
generated, bottom row images are corresponding nearest neighbors in training dataset.

6.3 Quantitative Results

In this section, we quantitatively show that DCGAN models trained by our
Fictitious GAN could gain improvement over traditional training methods. Also,
we may have a better performance by applying Fictitious gan on other existing
gan models. The results of comparison methods are directly copied as reported.

Metric. The visual quality of generated images is measured by the widely used
Inception score metric [24]. It measures visual objectiveness of generated image
and correlates well with human scoring of the realism of generated images. Fol-
lowing evaluation scheme of [24] setup, we generate 50,000 images from our
model to compute the score.

As shown in Table 2, Our method outperforms recent state-of-the-art meth-
ods. Specifically, we improve baseline DCGAN from 6.16 to 6.63; and conditional
DCGAN model from 7.16 to 7.27. It sheds light on the advantage of training
with the proposed learning algorithm. Note that in order to highlight the per-
formance improvement gained from fictitious GAN, the inception score of repro-
duced DCGAN model is 6.72, obtained without using tricks as [24]. Also, we
did not use any regularization terms such as conditional loss and entropy loss to
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Table 2. Inception Score on CIFAR-10.

Method Score

Fictitious cDCGAN* 7.27 ± 0.10

DCGAN* [13] (best variant) 7.16 ± 0.10

MIX+WGAN* [1] 4.04 ± 0.07

Fictitious DCGAN 6.63 ± 0.06

DCGAN [13] 6.16 ± 0.07

GMAN [6] 6.00 ± 0.19

WGAN [1] 3.82 ± 0.06

Real data 11.24 ± 0.12

Note: * denotes models that use labels for
training.

train DCGAN, as in [13]. We expect higher inception score when more training
tricks are used in addition to Fictitious GAN.

6.4 Ablation Studies

One hyperparameter that affects the performance of Fictitious GAN is the num-
ber of historical generator (discriminator) models. We evaluate the performance
of Fictitious GAN with different number of historical models, and report the
inception scores on the 150-th epoch in CIFAR-10 dataset in Fig. 6. We keep the
number of historical discriminators the same as the number of historical gener-
ators. We observe a trend of performance boost with an increasing number of
historical models in 2 baseline GAN models. The mean of inception score slightly
drops for Jenson-Shannon divergence metric when the copy number is 4, due to
random initialization and random noise generation in training.

Fig. 6. We show that Fictitious-GAN can improve Inception score as a meta-algorithm
with larger number of historical models, We select 2 divergence metrics from Table 1:
Jenson-Shanon and KL divergence.
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7 Conclusion

In this paper, we relate the minimax game of GAN to the two-player zero-sum
game. This relation enables us to leverage the mechanism of fictitious play to
design a novel training algorithm, referred to as fictitious GAN. In the training
algorithm, the discriminator (resp. generator) is alternately updated as best
response to the mixed output of the stale generator models (resp. discriminator).
This novel training algorithm can resolve the oscillation behavior due to the pure
best response strategy and the inconvergence issue of gradient based training in
some cases. Real world image datasets show that applying fictitious GAN on top
of the existing DCGAN models yields a performance gain of up to 8%.

References

1. Arora, S., Ge, R., Liang, Y., Ma, T., Zhang, Y.: Generalization and equilibrium
in generative adversarial nets (GANs). In: International Conference on Machine
Learning, pp. 224–232 (2017)

2. Brown, G.W.: Iterative solution of games by fictitious play. Act. Anal. Prod. Alloc.
13(1), 374–376 (1951)

3. Che, T., Li, Y., Jacob, A.P., Bengio, Y., Li, W.: Mode regularized generative adver-
sarial networks. In: Proceedings of International Conference on Learning Repre-
sentations (2017)

4. Chen, X., Wang, J., Ge, H.: Training generative adversarial networks via primal-
dual subgradient methods: a Lagrangian perspective on GAN. In: Proceedings of
International Conference on Learning Representations (2018)

5. Danskin, J.M.: Fictitious play for continuous games. Nav. Res. Logist. (NRL) 1(4),
313–320 (1954)

6. Durugkar, I., Gemp, I., Mahadevan, S.: Generative multi-adversarial networks.
arXiv preprint arXiv:1611.01673 (2016)

7. Ghosh, A., Kulharia, V., Namboodiri, V., Torr, P.H., Dokania, P.K.: Multi-agent
diverse generative adversarial networks. arXiv preprint arXiv:1704.02906 (2017)

8. Goodfellow, I.: Nips 2016 tutorial: generative adversarial networks. arXiv preprint
arXiv:1701.00160 (2016)

9. Chen, M., Denoyer, L.: Multi-view generative adversarial networks. In: Ceci, M.,
Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017.
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