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Abstract. In a world of pervasive cameras, public spaces are often cap-
tured from multiple perspectives by cameras of different types, both fixed
and mobile. An important problem is to organize these heterogeneous col-
lections of videos by finding connections between them, such as identify-
ing correspondences between the people appearing in the videos and the
people holding or wearing the cameras. In this paper, we wish to solve two
specific problems: (1) given two or more synchronized third-person videos
of a scene, produce a pixel-level segmentation of each visible person and
identify corresponding people across different views (i.e., determine who
in camera A corresponds with whom in camera B), and (2) given one
or more synchronized third-person videos as well as a first-person video
taken by a mobile or wearable camera, segment and identify the camera
wearer in the third-person videos. Unlike previous work which requires
ground truth bounding boxes to estimate the correspondences, we per-
form person segmentation and identification jointly. We find that solving
these two problems simultaneously is mutually beneficial, because better
fine-grained segmentation allows us to better perform matching across
views, and information from multiple views helps us perform more accu-
rate segmentation. We evaluate our approach on two challenging datasets
of interacting people captured from multiple wearable cameras, and show
that our proposed method performs significantly better than the state-
of-the-art on both person segmentation and identification.
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1 Introduction

There will be an estimated 45 billion cameras on Earth by 2022—more than
five times the number of people [25]! In a world with so many cameras, it will
be commonplace for a scene to be simultaneously recorded by multiple cameras
of different types. For example, a busy city street may be recorded by not only
fixed surveillance cameras, but also by mobile cameras on smartphones, laptops,
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tablets, self-driving cars, and even wearable devices like GoPro [1] and Snap
Spectacles [2]. As cameras continue to multiply, new techniques will be needed
to organize and make sense of these weakly-structured collections of video. For
example, a key problem in many applications is to detect, identify, and track
people. Combining data from multiple cameras could significantly improve per-
formance on this and other scene understanding problems, since evidence from
multiple viewpoints could help resolve ambiguities caused by occlusion, perspec-
tive distortion, etc. However, integrating evidence across heterogeneous cameras
in unconstrained dynamic environments is a challenge, especially for wearable
and mobile devices where the camera is moving unpredictably.

Fig. 1. Two or more people move around an environment while wearing cameras. We
are interested in two specific, related problems: (a) given one or more synchronized
third-person videos of a scene, segment all the visible people and identify corresponding
people across the different videos; and (b) given one or more synchronized third-person
videos of a scene as well as a video that was taken by a wearable first-person camera,
identify and segment the person who was wearing the camera in the third-person videos.

For example, consider a law enforcement scenario in which multiple police
officers chase a suspect through a crowded square. Body-worn police cameras
(which nearly 95% of U.S. police departments use or plan to deploy [24]) record
events from the officers’ perspectives. Investigators later want to reconstruct
the incident by combining the first-person wearable camera videos with third-
person views from surveillance cameras and civilian smartphone videos uploaded
to social media. In any given frame of any given camera, they may want to iden-
tify: (1) fine-grained, pixel-level segmentation masks for all people of interest,
including both the suspect and the officers (e.g., for activity or action recogni-
tion), (2) the instances in which one of the camera wearers (officers) was visible
in another camera’s view, and (3) instances of the same person appearing in
different views at the same time. The scene is complex and crowded, requiring
fine-grained segmentation masks to separate individual people (since frequent
occlusions would cause bounding boxes to overlap). The wearable camera videos
are particularly challenging because the cameras themselves are moving rapidly.
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While person tracking and (re-)identification are well-studied in computer
vision [37,44], only recently have they been considered in challenging scenarios
of heterogeneous first-person and traditional cameras. Ardeshir and Borji [4]
consider the case of several people moving around while wearing cameras, and
try to match each of these first-person views to one of the people appearing in a
third-person, overhead view of the scene. This is challenging because the camera
wearer is never seen in their own wearable video, so he or she must be identified
by matching their motion from a third-person perspective with the first-person
visual changes that are induced by their movements. That paper’s approach
is applicable in closed settings with overhead cameras (e.g., a museum), but
not in unconstrained environments such as our law enforcement example. Fan
et al. [14] relax many assumptions, allowing arbitrary third-person camera views
and including evidence based on scene appearance. Zheng et al. [43] consider the
distinct problem of identifying the same person appearing in multiple wearable
camera videos (but not trying to identify the camera wearers themselves). But
these techniques identify individual people using bounding boxes, which are too
coarse in crowded scenes with frequent occlusions. Moreover, these techniques
assume that accurate oracle bounding boxes are available (even at test time).

In this paper, we consider the more challenging problem of not only finding
correspondences between people in first- and third-person cameras, but also pro-
ducing pixel-level segmentation masks of the people in each view (see Fig. 1). We
define a first-person camera to be a wearable camera for which we care about the
identity of the camera wearer, while a third-person camera is either a static or
wearable camera for which we are not interested in determining the wearer. Our
hypothesis is that simultaneous segmentation and matching is mutually benefi-
cial: segmentation helps refine matching by producing finer-grained appearance
features (compared to bounding boxes), which are important in crowded scenes
with many occlusions, while matching helps locate a person of interest and pro-
duce better segmentation masks, which in turn help in tasks like activity and
action recognition. We show that previous work [14] is a special case of ours,
since we can naturally handle their first- and third-person cases. We evaluate on
two publicly available datasets augmented with pixel-level annotations, showing
that we achieve significantly better results than numerous baselines.

2 Related Work

We are not aware of work on joint person segmentation and identification in first-
and third-person cameras, so we draw inspiration from several related problems.

Object Segmentation in Images and Videos. Deep learning has achieved state-
of-the-art performance on semantic image segmentation [5,9,27,28,42], typically
using fully convolutional networks (FCNs) that extract low-resolution features
and then up-sample. Other approaches [18,26,30,31] are based on region pro-
posals, inspired by R-CNNs [16,32] for object detection. For example, Mask
R-CNNs [18] separately predict object masks and their class labels, avoiding
competition among classes and improving performance for overlapped instances.
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For object segmentation in video [7,20–22,38,39], most methods assume that the
object mask in the first frame is known (during both training and testing) and
the task is to propagate them to subsequent frames. Khoreva et al. [29] propose
guided instance segmentation that uses the object mask from the previous frame
to predict the next one. The network is pre-trained (off-line) on static images and
fine-tuned (on-line) on the first frame’s annotations for specific objects of inter-
est. We follow a similar formulation, except that we incorporate both appearance
and optical flow in a two-stream network, helping to better update the object
mask across time. Our work is also inspired by the pixel-level Siamese matching
network of Yoon et al. [41] that segments and identifies objects, even those not
seen during training. We extend to multiple cameras by using object instances
across multiple synchronized videos to learn variations and correspondences
in appearance across views. Cheng et al. [10] propose a two-stream network
which outputs segmentation and optical flow simultaneously, where segmenta-
tion focuses on objectness and optical flow exploits motion. Inspired by their
observation that segmentation and optical flow benefit each other, we propose a
novel architecture that jointly performs person segmentation and identification.

Co-segmentation. Our work is related to co-segmentation of objects appearing
in multiple images [33] or videos [8,11,15,17,34]. Several methods use Markov
Random Fields with a regularized difference of feature histograms, for example,
by assuming a Gaussian prior on the objectness appearance [33] or comput-
ing sum squared differences [6]. Chiu et al. [11] use distance-dependent Chinese
Restaurant Processes as priors on both appearance and motion for unsupervised
(not semantic) co-segmentation. Fu et al. [15] address video co-segmentation as
CRF inference on an object co-selection graph, but segmentation candidates are
computed only by a category-independent method [13] and are not refined from
information across multiple videos. Guo et al. [17] perform iterative constrained
clustering using seed superpixels and pairwise constraints, and refine the seg-
mentation with a multi-class MRF. Most of these methods assume that either a
target object appears in all videos or that videos contain at least one common
target object, and none apply deep learning. To the best of our knowledge, ours
is the first paper to propose a deep learning approach to co-segmentation in
videos, and is applicable both to single and multiple camera scenarios.

First-Person Cameras. Ardeshir and Borji [4] match a set of first-person videos to
a set of people appearing in a top-view video using graph matching, but assume
there are multiple first-person cameras sharing the same field of view at any time
and only consider third-person cameras that are overhead. Fan et al. [14] identify
a first-person camera wearer in a third-person video using a two-stream semi-
Siamese network that incorporates spatial and temporal information from both
views, and learns a joint embedding space from first- and third-person matches.
Zheng et al. [43] identify people appearing in multiple wearable camera videos
(but do not identify the camera wearers themselves).

The above work assumes that the people have been detected with accurate
bounding boxes in both training and test datasets. We build on these meth-
ods, proposing a novel architecture that simultaneously segments and identifies
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camera wearers and others. We find that segmenting and identifying are mutually
beneficial; in the law scenario described above with crowded scenes and occluded
people, for example, fine-grained segmentation masks are needed to accurately
extract visual features specific to any given person, while identity information
from multiple views helps accurately segment the person in any individual view.

3 Our Approach

Given two or more videos taken from a set of cameras (potentially both static
and wearable cameras), we wish to segment each person appearing in these
videos, identify matches between segments that correspond to the same person
across different views, and identify the segments that correspond to the wearer
of each first-person camera. The main idea is that despite having very different
perspectives, synchronized cameras recording the same environment should be
capturing some of the same people and background objects. This overlap per-
mits finding similarities and correspondences among these videos in both visual
and motion domains, as long as differences caused by differing viewpoints are
ignored. Unlike prior work [14] which assumes a ground truth bounding box is
available for each person in each frame, we perform segmentation and match-
ing simultaneously. We hypothesize that these two tasks are mutually beneficial:
person segmentations provide more accurate information than coarse bounding
boxes for people matching, while people’s appearance and motion from different
perspectives produce better segmentation masks.

More concretely, we formulate our problem as two separate tasks. The third-
third problem is to segment each person and find person correspondences across
different views captured from a pair of third-person cameras. The third-first
problem is to segment and identify the camera wearer of a given first-person
video in third-person videos. We first introduce a basic network architecture for
both problems: a two-stream fully convolutional network (FCN) that estimates
a segmentation mask for each person using the current RGB frame, stacked
optical flow fields, and segmentation result of the previous frame (which we call
the pre-mask) (Sect. 3.1). We then introduce a Siamese network for each of our
two problems, that incorporates the FCN and allows person segmentation and
identification to benefit each other (Sect. 3.2). Finally we describe our loss used
for segmentation and distance metric learning (Sect. 3.3).

3.1 Two-Stream FCN Network

We use FCN8s [28] as the basis of our framework but with several important
modifications. We chose FCN8s due to their effectiveness and compactness,
although other architectures such as DeepLabv3+ [9] and Mask R-CNN [18]
could be easily used. Figure 2 presents our novel architecture. To take advantage
of video and incorporate evidence from both appearance and motion, we expand
FCN8s to a two-stream architecture, where a visual stream receives RGB frames
(top of Fig. 2) and a motion stream receives stacked optical flow fields (bottom).
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This design is inspired by Simonyan and Zisserman [35], although their network
was proposed for a completely different problem (action recognition from a sin-
gle static camera). To jointly consider both spatial and temporal information,
we use “early” fusion to concatenate features at levels pool3, pool4, and pool5
(middle of Fig. 2). Following FCN8s to incorporate “coarse, high level informa-
tion with fine, low level information” [28] for more accurate segmentation, we
combine the fused features from these different levels.

Fig. 2. Visualization of our two-stream FCN network. We feed RGB frames with pre-
masks to the visual stream (top, dark grey) and stacked optical flow fields with pre-
mask to the motion stream (bottom, light grey). The spatial and temporal features at
pool3, pool4, and pool5 are fused to predict the segmentation of the target person. We
downsample the extracted features of the softmax layer by 16, then tile the background
and foreground channels by 512, separately.

However, in contrast to Long et al.’s FCN8s, our two-stream FCN targets
instance segmentation: we want to segment specific people, not just all instances
of the “person” class. We address this with an instance-by-instance strategy in
both training and test, in which we only consider a single person at a time.
In order to guide the network to segment a specific person among the many
that may appear in a frame, we append that person’s binary pre-mask (without
any semantic information) to the input of each stream as an additional channel.
This pre-mask provides a rough estimate of the person’s location and his or her
approximate shape in the current frame. In training, our network is pre-trained
by taking ground truth pre-masks as inputs, and then fine-tuned with estimated
masks from the previous frame. In testing, we assume that we have a (possibly
quite coarse) segmentation of each person in the first frame and propagate this
mask forward by evaluating each subsequent unlabeled frame in sequence. A
pixel-level classification loss function is used to guide learning (Sect. 3.3).

3.2 Siamese Networks

The network in the last section learns to estimate the segmentation mask of a
specific person across frames of video. We now use this network in a Siamese
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structure with a contrastive loss to match person instances across different
third- and first-person views. The main idea behind our Siamese networks is
to learn an embedding space such that features captured by different cameras
from different perspectives are close together only if they actually belong to the
same person—i.e., so that a person’s appearance features are invariant to cam-
era viewpoint. The Siamese formulation allows us to simultaneously learn the
viewpoint-invariant embedding space for matching identities and the pixel-wise
segmentation network described above in an end-to-end fashion. Moreover, our
Siamese (or semi-Siamese) FCN architecture improves the invariance of object
segmentation across different perspectives and transformations. In contrast to
co-segmentation methods that require pairs of images or videos in both training
and testing, our approach only need pairs in the training phase. In testing, our
two-stream FCN network can be applied to any single stream input, and uses
the embedding space to match with others. To allow the segmentation network
to receive arbitrary sizes of inputs, our contrastive loss function is generalized
to a 3D representation space, with a Euclidean distance for positive exemplars
and a hinge loss for negative ones.

In particular, we explore two Siamese network structures, customized for our
two tasks: the third-third problem of segmenting and matching people across a
pair of cameras, and the third-first problem of segmenting a person of interest
and identifying if he or she is the wearer of a first-person camera. The third-third
problem considers a more general case in which the cameras may be static or may
be wearable, but they are all viewing a person of interest from a third-person
viewpoint; we thus use a full-Siamese network that shares all convolution layers
in the FCN branch and the embedding layers. In contrast, the third-first problem
must match feature representations from different perspectives (identifying how
a camera wearer’s ego-motion visible in a first-person view correlates with that
same motion’s appearance from a third-person view). As in [14], our third-first
network is formulated in a semi-Siamese structure, where separate shallow layers
capture different low-level features while deeper ones are shared.

Third-Third Network. Figure 3 shows the architecture of our third-third network,
which segments and matches people in common from a pair of third-person cam-
era views. We use a Siamese structure with two branches of the FCN network
from Fig. 2 (and discussed in Sect. 3.1), where all corresponding convolution
layers are shared. The Siamese branch is thus encouraged to learn relation-
ships between people’s appearance in different views by optimizing a generalized
embedding space. The key idea is that despite being captured from very dif-
ferent perspectives, the same person in synchronized videos should have some
correspondences in both visual and motion domains.

In more detail, given an RGB frame and optical flow fields (appended with
the pre-mask of the person of interest) as inputs, each of size W × H, the
FCN branch estimates a binary-valued person segmentation mask of the same
size. The Siamese branch is then appended to the pool5 layer of both visual
and motion streams with an input size of 512 × W ′ × H ′, where W ′ = W

16

and H ′ = H
16 , for matching. To obtain more accurate representations for each
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Fig. 3. Our third-third network segments and identifies the people in common across
different videos. The network is composed of two FCN branches with a Siamese struc-
ture, where all convolution layers (shown in the same color) are shared. (Color figure
online)

“target” person, we re-weight the spatial and temporal features by multiplying
them with the confidence outputs of the FCN branch. To emphasize the pixel
positions belonging to the person while retaining some contextual information,
we use soft attention maps after the softmax layer rather than the estimated
segmentation mask. We first resize the soft attention of the foreground from
1 ×W ×H to 1 ×W ′ ×H ′ and tile it to 512 ×W ′ ×H ′ to fit the size of pool5
outputs. For both visual and motion streams, we multiply this resized confidence
map with the features, which gives a higher score to the person’s pixels and a
low score to the background. By “cropping out” the region corresponding to a
person from the feature maps, the match across two views should receive a higher
correspondence. This correspondence will also back-propagate its confidence to
improve segmentation. Finally, the re-weighted spatial and temporal features are
concatenated together for matching each person instance.

Third-First Network. Figure 4 shows the architecture of our third-first network,
the goal of which is to segment a first-person camera wearer in third-person
videos and to recognize the correspondence between the first-person view and
its representation in third-person videos. To be specific, given a first-person
video, our network must decide which, if anyone, of the people appearing in
a third-person video is the wearer of this first-person camera, and to estimate
the wearer’s segmentation. In contrast to the third-third network which has two
FCN branches focusing on the same task (person segmentation), the second
branch of the third-first network receives the first-person videos as inputs and
is designed to extract the wearer’s ego-motion and the visual information of
the background, which hopefully also provides constraints for the segmentation.
We thus propose a semi-Siamese network to learn the first- and third-person
distance metric, where the first-person branch has a similar structure to the
FCN but without the up-sampling layers or the segmentation loss. The structure
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Fig. 4. Our third-first network segments and identifies the first-person camera wearer
in third-person videos. The network is formulated in a semi-Siamese structure where
only convolution layers of the embedding space (shown in the same color) are shared.
(Color figure online)

of the Siamese branch is similar to that of the third-third network, but with a
different re-weighting method: we multiply the spatial features with the soft
attention of the background but the temporal features with the soft attention
of the foreground. We do this because camera wearers do not appear in their
own first-person videos (with occasional exceptions of arms or hands), but the
backgrounds reflect some similarities between different perspectives; meanwhile,
motion features of camera wearers in third-person videos is related to the ego-
motion in first-person videos. The re-weighted appearance and motion features
are then concatenated after several convolution operations, as discussed above.

3.3 Loss Functions

We propose two loss functions for joint segmentation and distance metric opti-
mization for a batch of N training exemplars. First, sigmoid cross entropy loss
compares a predicted segmentation mask to ground truth,

Lseg = −
N∑

i

W∑

w

H∑

h

(
Si,w,h · log Ŝi,w,h + (1 − Si,w,h) · log(1 − Ŝi,w,h)

)
, (1)

where Ŝi ∈ {0, 1}W×H is the predicted segmentation mask of exemplar i and
Si ∈ {0, 1}W×H is the corresponding ground truth mask. Second, generalized
contrastive loss encourages low distances between positive exemplars (pairs of
corresponding people) and high distances between negative ones,

Lsiam =
N∑

i

C∑

c

W ′′∑

w

H′′∑

h

yi ||ai,c,w,h − bi,c,w,h||2

+ (1 − yi)max(m − ||ai,c,w,h − bi,c,w,h||, 0)2,

(2)
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where m is a constant, ai and bi are two features corresponding to exemplar i,
and yi is 1 if i is a correct correspondence and 0 otherwise. This loss enables our
model to learn an embedding space for arbitrary input sizes.

4 Experiments

We test our third-third and third-first networks on joint person segmentation
and identification in two datasets of synchronized first- and third-person videos,
collected by two different authors. We primarily evaluate on the publicly avail-
able IU ShareView dataset [14], consisting of 9 sets of two 5–10 min first-person
videos. Each set contains 3–4 participants performing a variety of everyday activ-
ities (shaking hands, chatting, eating, etc.) in one of six indoor environments.
Each person in each frame is annotated with a ground truth bounding box and
a unique person ID. To evaluate our methods on person segmentation, we man-
ually augmented a subset of the dataset with pixel-level person annotations, for
a total of 1,277 labeled frames containing 2,654 annotated person instances. We
computed optical flow fields for all videos using FlowNet2.0 [19].

Since adjacent frames are typically highly correlated, we split the training
and test datasets at the video level, with 6 video sets used for training (875
annotated frames) and 3 sets for testing (402 annotated frames). In each set of
videos, there are 3–4 participants, two of which wear first-person cameras. Note
that a first-person camera never sees its own wearer, so the people not wearing
cameras are the ones who are in common across the first-person videos. Since
our approach uses sequences of contiguous frames and pairs of instances (either
a pair of two people or a pair of one person and one camera view), we divide
each video set into several short sequences, each with 10–15 consecutive frames.
More specifically, in training we create 484 positive and 1,452 negative pairs for
the third-third problem, and 865 positive and 1,241 negative pairs for the third-
first problem (about a 1:3 ratio). In testing, each problem has 10 sequences of
pairs of videos, and each video has 20 consecutive frames (about 4 s). Thus we
have about 400 annotated test frames for evaluating matching, and about 1,000
person instances for evaluating segmentation (since every frame has 2–3 people).

We also evaluate our models on a subset of UTokyo Ego-Surf [40], which
contains 8 diverse groups of first-person videos recorded synchronously during
face-to-face conversations in both indoor and outdoor environments. Limited
by the size of the dataset (only 3 available pairs of short videos including 3–4
participants), we use it only for testing, and still train on IU ShareView. As
before, we manually created pixel-level person annotations for 10 sequences of
pairs of videos, each with 20 consecutive frames.

4.1 Evaluation Protocol

We implemented our networks in PyTorch [3], and performed all experiments on
a single Nvidia Titan X Pascal GPU.
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Training. Our training process consisted of two stages: (a) optimizing only the
FCN branch supervised by the pixel-level classifier for providing imperfect but
reasonable soft attentions, and (b) optimizing the joint model (either the third-
third or third-first network) based on the person segmentation and identification
tasks, simultaneously. Our two-stream FCN network is built on VGG16 [36],
and we initialized both visual and motion streams using weights pre-trained
on ImageNet [12]. The FCN branch was then optimized with an instance-by-
instance strategy, which only considers one particular person of interest at a
time, and uses the ground truth pre-mask as an additional channel to indicate
which person the network should focus on. We used stochastic gradient descent
(SGD) with fixed learning rate 10−4, momentum 0.9, weight decay 0.0005, and
batch size 25. Learning was terminated after 30 epochs. Our joint model was then
initialized with the weights of the pre-trained FCN and fine-tuned by considering
pairs of instances as inputs for person segmentation and identification. We again
used SGD optimization but with learning rate 10−5. For the first 20 epochs, we
froze the weights of the FCN branch, and optimized the Siamese branch to make
the contrastive loss converge to a “reasonable” range (not too large to destroy
the soft attention). We then started the joint learning process, and terminated
after another 40 epochs.

Fig. 5. IoU and precision-recall curves of our models on IU ShareView dataset [14]

Testing. In contrast to training, which requires pairs of videos as inputs, our
joint model can be applied to an individual stream, where each video frame is
processed to simultaneously estimate each person’s segmentation and extract
corresponding features for matching between different streams. In testing, all
possible pairs of instances are considered as candidate matches: each pair con-
tains either two people from different videos in the third-third problem, or a
first-person camera view and a person appearing in a third-person video in the
third-first problem. Unlike methods that require a pair of instances as input, our
approach only needs to process each person and camera view once.
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4.2 Evaluation

For both third-first and third-third problems, we evaluate our method with two
tasks: person (1) segmentation and (2) identification across multiple cameras.

Person Segmentation is evaluated in terms of intersection over union (IoU)
between the estimated segmentation maps and the ground truth. This is mea-
sured over each video in the test dataset by applying our models to each frame.
Our model sequentially takes the segmentation results from the previous frame
(the pre-mask) as input to guide the segmentation of the next frame. In the
evaluation, the ground segmentation mask of the first (and only the first) video
frame is assumed to be available.

Person Identification is evaluated with Mean average precision (mAP) and Accu-
racy (ACC), each of which takes a different view of the problem. mAP treats peo-
ple matching as a retrieval problem: given all possible pairs of person instances
from two different cameras (i.e., two person instances from different third-person
videos in the third-third problem or one person instance from third-person video
and one first-person video in the third-first problem), we wish to retrieve all pairs
corresponding to the same person. ACC evaluates whether the single best match
for a given candidate is correct: for every person instance in each view, the clas-
sifier is forced to choose a single matching instance in all other views, and we
calculate the percentage of matches that are correct. This setting is the same
to the one used in Fan et al. [14], except that their task is significantly easier
because they assume person ground-truth bounding boxes are available during
both training and testing, whereas our approach must infer the person’s position
(as well as segmentation mask) automatically.

4.3 Experimental Results

Baselines. To characterize the difficulty of segmentation in this dataset, we first
test several baselines, shown in Table 1 for IU ShareView. Copy First simply
propagates the ground truth segmentation mask from the first frame to all fol-
lowing frames in the sequence. In a completely static scenes with no motion, the
IoU of Copy First should be 100.0, but our dataset includes frequent motion of
both the wearable cameras and people, and thus shows a relatively low IoU of
41.9. A second baseline consisting of a single-stream FCN using only image infor-
mation achieves somewhat better IoU of 47.1, while a third baseline consisting of
a single-stream FCN using only optical flow achieves 50.9. A two-stream baseline
FCN that combines both visual and motion performs significantly better than
either one-stream network, achieving IoU of 57.3.

Our Models. We next test our approach that jointly performs segmentation with
person instance matching. On segmentation, our full model produces an IoU of
62.7 for the third-third scenario and 61.9 for third-first, compared to 57.3 for
the two-stream baseline that performs only segmentation. Figure 5(a) reports
more detailed analysis of the segmentation performance (Y-axis) based on the
length of video sequences (X-axis), and shows that our approach is still able to
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predict reasonable results on long videos. To permit a fair comparison across
models, both the one- and two-stream FCNs were optimized with the same
hyper-parameters (discussed in Sect. 4.1). Table 1 also presents results on person
instance matching on IU ShareView. We achieved mAP scores of 49.0 and 65.2
on the third-third and third-first problems, respectively, and ACCs of 55.5 and
73.1. We compare these results with the state-of-the-art method of Fan et al. [14].
Their task is to match first-person camera views to camera wearers in static
third-person video, so we extend it to our third-third and third-first problems
by re-implementing their best model using VGG16 [36] (instead of AlexNet [23])
and training on our new, augmented dataset. The results show that our joint
model outperforms in both third-third (mAP of 49.0 vs. 44.2) and third-first
(mAP of 65.2 vs. 64.1) problems. This is likely due to learning a more accurate
embedding space, with the help of jointly learning to perform segmentation. More
importantly, our approach is able to obtain more accurate feature representations
from people’s pixel-level locations rather than simply relying on rough bounding
boxes. Figure 5(b) compares the precision-recall curves of the different techniques
for person matching.

Table 1. Experimental results of our models on IU ShareView dataset [14]

Network architecture Evaluation

Backbone Streams Re-weighting Segmentation Identification

Image Optical flow IoU mAP ACC

Baselines Copy first - 41.9 - -

FCN X - 47.1 - -

FCN X - 50.9 - -

FCN X X - 57.3 - -

Third-third VGG X X Bounding box [14] - 44.2 40.1

FCN X Soft attention 49.3 44.3 44.5

FCN X Soft attention 54.1 48.4 46.2

FCN X X W/o 60.6 45.6 48.9

FCN X X Soft attention 62.7 49.0 55.5

Third-first VGG X X Bounding box [14] - 64.1 50.6

FCN X Soft attention 47.4 51.4 52.7

FCN X Soft attention 58.9 55.1 53.1

FCN X X W/o 59.8 64.0 61.7

FCN X X Soft attention 61.9 65.2 73.1

UTokyo Ego-Surf Dataset. We also test our models on our subset of UTokyo
Ego-Surf (without retraining), and Table 2 summarizes the results. Though per-
forming worse than on the IU ShareView dataset on which they were trained,
the models still give reasonable results, indicating robustness even though the
datasets are recorded by different cameras (Xiaoyi Yi vs. Panasonic HX-A500)
and scenarios (indoor vs. outdoor).
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Table 2. Experimental results of our models on UTokyo Ego-Surf dataset [40]

Network architecture Evaluation

Backbone Streams Re-weighting Segmentation Identification

Image Optical flow IoU mAP ACC

Third-third FCN X X W/o 42.1 43.8 36.7

FCN X X Soft attention 43.0 45.5 42.0

Third-first FCN X X W/o 41.4 45.2 44.0

FCN X X Soft attention 43.6 52.0 55.2

Ablation Studies. We also test simpler variants of our technique. To evaluate
our re-weighting method that incorporates estimated soft attention maps, we
tried not re-weighting the spatial and temporal features and simply using pool5
layer outputs. We also compare with the results of [14], which uses ground truth
bounding boxes to “crop out” regions of interest. As shown in Tables 1 and 2,
using re-weighting with soft attention not only outperforms for the matching
task but also generates better segmentation maps. Our ablation study also tested
the relative contribution of each of our motion and visual feature streams. As
shown in Table 1, our dual-stream approach performs significantly better than
either single-stream optical flow or visual information on both the third-third
and third-first problems, evaluated on both segmentation and matching (Fig. 6).

Fig. 6. Sample results of the third-third and third-first problems, where two videos of
each sample are from two synchronized wearable cameras. The color of person segmen-
tation masks and camera views indicates the correspondences across different cameras.
(Color figure online)

5 Conclusion

We presented a novel fully convolutional network (FCN) with Siamese and semi-
Siamese structures for joint person instance segmentation and identification. We
also prepared a new, challenging dataset with person pixel-level annotations
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and correspondences in multiple first- and third-person cameras. Our results
demonstrated the effectiveness and robustness of our approach on joint per-
son segmentation and identification. The results suggested that jointly inferring
pixel-level segmentation maps and correspondences of people helps perform each
individual task more accurately, and that incorporating both visual and motion
information works better than either individually.

Although our results are encouraging, our techniques have limitations and
raise opportunities for future work. First, the joint models assume people appear
in every frame of the video, so that our approach will treat someone who dis-
appears from the scene and then re-enters as a new person instance. While this
assumption is reasonable for the relatively short video sequences we consider
here, future work could easily add a re-identification module to recognize people
who have appeared in previous frames. Second, the joint models perform a FCN
forward pass for every individual person in each frame; future work could explore
sharing computation costs to improve the efficiency of our method, especially for
real-time applications. Lastly, we plan to further evaluate our approach on larger
datasets including more diverse scenarios.
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34. Rubio, J.C., Serrat, J., López, A.: Video co-segmentation. In: Lee, K.M.,
Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7725, pp. 13–24.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37444-9 2

35. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: NIPS (2014)

36. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556 (2014)

37. Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah,
M.: Visual tracking: an experimental survey. PAMI 36, 1442–1468 (2014)

38. Tokmakov, P., Alahari, K., Schmid, C.: Learning video object segmentation with
visual memory. arXiv:1704.05737 (2017)

39. Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for
video object segmentation. arXiv:1706.09364 (2017)

40. Yonetani, R., Kitani, K.M., Sato, Y.: Ego-surfing first-person videos. In: CVPR
(2015)

41. Yoon, J.S., Rameau, F., Kim, J., Lee, S., Shin, S., Kweon, I.S.: Pixel-level
matching for video object segmentation using convolutional neural networks.
arXiv:1708.05137 (2017)

42. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network.
arXiv:1612.01105 (2016)

43. Zheng, K., et al.: Learning view-invariant features for person identification in tem-
porally synchronized videos taken by wearable cameras. In: ICCV (2017)

44. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and
future. arXiv:1610.02984 (2016)

https://doi.org/10.1007/978-3-642-37444-9_2
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1704.05737
http://arxiv.org/abs/1706.09364
http://arxiv.org/abs/1708.05137
http://arxiv.org/abs/1612.01105
http://arxiv.org/abs/1610.02984

	Joint Person Segmentation and Identification in Synchronized First- and Third-Person Videos
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Two-Stream FCN Network
	3.2 Siamese Networks
	3.3 Loss Functions

	4 Experiments
	4.1 Evaluation Protocol
	4.2 Evaluation
	4.3 Experimental Results

	5 Conclusion
	References




