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Abstract. In this paper, we aim to reduce the computational cost
of spatio-temporal deep neural networks, making them run as fast as
their 2D counterparts while preserving state-of-the-art accuracy on video
recognition benchmarks. To this end, we present the novel Multi-Fiber
architecture that slices a complex neural network into an ensemble of
lightweight networks or fibers that run through the network. To facilitate
information flow between fibers we further incorporate multiplexer mod-
ules and end up with an architecture that reduces the computational cost
of 3D networks by an order of magnitude, while increasing recognition
performance at the same time. Extensive experimental results show that
our multi-fiber architecture significantly boosts the efficiency of existing
convolution networks for both image and video recognition tasks, achiev-
ing state-of-the-art performance on UCF-101, HMDB-51 and Kinetics
datasets. Our proposed model requires over 9× and 13× less computa-
tions than the I3D [1] and R(2+1)D [2] models, respectively, yet provid-
ing higher accuracy.
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1 Introduction

With the aid of deep convolutional neural networks, image understanding has
achieved remarkable success in the past few years. Notable examples include
residual networks [3] for image classification, FastRCNN [4] for object detection,
and Deeplab [5] for semantic segmentation, to name a few. However, the progress
of deep neural networks for video analysis still lags their image counterparts,
mostly due to the extra computational cost and complexity of spatio-temporal
inputs.

The temporal dimension of videos contains valuable motion information that
needs to be incorporated for video recognition tasks. A popular and effective
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way of reasoning spatio-temporally is to use spatio-temporal or 3D convolu-
tions [6,7] in deep neural network architectures to learn video representations.
A 3D convolution is an extension of the 2D (spatial) convolution, which has
three-dimensional kernels that also convolve along the temporal dimension. The
3D convolution kernels can be used to build 3D CNNs (Convolutional Neural
Networks) by simply replacing the 2D spatial convolution kernels. This keeps the
model end-to-end trainable. State-of-the-art video understanding models, such
as Res3D [7] and I3D [1] build their CNN models in this straightforward manner.
They use multiple layers of 3D convolutions to learn robust video representations
and achieve top accuracy on multiple datasets, albeit with high computational
overheads. Although recent approaches use decomposed 3D convolutions [2,8]
or group convolutions [9] to reduce the computational cost, the use of spatio-
temporal models still remains prohibitive for practical large-scale applications.
For example, regular 2D CNNs require around 10s GFLOPs for processing a
single frame, while 3D CNNs currently require more than 100 GFLOPs for a
single clip1. We argue that a clip-based model should be able to highly outper-
form frame-based models at video recognition tasks for the same computational
cost, given that it has the added capacity of reasoning spatio-temporally.

In this work, we aim to substantially improve the efficiency of 3D CNNs while
preserving their state-of-the-art accuracy on video recognition tasks. Instead of
decomposing the 3D convolution filters as in [2,8], we focus on the other source
of computational overhead for 3D CNNs, the large input tensors. We propose
a sparsely connected architecture, the Multi-Fiber network, where each unit
in the architecture is essentially composed of multiple fibers, i.e. lightweight
3D convolutional networks that are independent from each other as shown in
Fig. 1(c). The overall network is thus sparsely connected and the computational
cost is reduced by approximately N times, where N is the number of fibers
used. To improve information flow across fibers, we further propose a lightweight
multiplexer module, that redirects information between parallel fibers if needed
and is attached at the head of each residual block. This way, with a minimal
computational overhead, representations can be shared among multiple fibers,
and the overall capacity of the model is increased.

Our main contributions can be summarized as follows:

(1) We propose a highly efficient multi-fiber architecture, verify its effectiveness
by evaluating it 2D convolutional neural networks for image recognition and
show that it can boost performance when embedded on common compact
models.

(2) We extend the proposed architecture to spatio-temporal convolutional net-
works and propose the Multi-Fiber network (MF-Net) for learning robust
video representations with significantly reduced computational cost, i.e.
about an order of magnitude less than the current state-of-the-art 3D
models.

1 E.g. the popular ResNet-152 [3] and VGG-16 [10] models require 11 GFLOPs and
15 GFLOPs, respectively, for processing a frame, while I3D [1] and R(2+1)D-34 [2]
require 108 GFLOPs and 152 GFLOPs, respectively.
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(3) We evaluate our multi-fiber network on multiple video recognition bench-
marks and outperform recent related methods with several times lower com-
putational cost on the Kinetics, UCF-101 and HMDB51 datasets.

2 Related Work

When it comes to video models, the most successful approaches utilize deep
learning and can be split into two major categories: models based on spatial or
2D convolutions and those that incorporate spatio-temporal or 3D convolutions.

The major advantage of adopting 2D CNN based methods is their compu-
tational efficiency. One of the most successful approaches in this category is the
Two-stream Network [13] architecture. It is composed of two 2D CNNs, one
working on frames and another on optical flow. Features from the two modal-
ities are fused at the final stage and achieved high video recognition accuracy.
Multiple approaches have extended or incorporated the two-stream model [14–
17] and since they are built on 2D CNNs are very efficient, usually requiring less
than 10 GFLOPS per frame. In a very interesting recent approach, CoViAR [18]
further reduces computations to 4.2 GFLOPs per frame in average, by directly
using the motion information from compressed frames and sharing motion fea-
tures across frames. However, as these approaches rely on pre-computed motion
features to capture temporal dependencies, they usually perform worse than 3D
convolutional networks, especially when large video datasets are available for
pre-training, such as Sports-1M [19] and Kinetics [20].

On the contrary, 3D convolution neural networks are naturally able to learn
motion features from raw video frames in an end-to-end manner. Since they use
3D convolution kernels that model both spatial and temporal information, rather
than 2D kernels which just model spatial information, more complex relations
between motion and appearance can be learned and captured. C3D [7] is one
of the early methods successfully applied to learning robust video features. It
builds a VGG [10] alike structure but uses 3 × 3 × 3 kernels to capture motion
information. The Res3D [23] makes one step further by taking the advantage
of residual connections to ease the learning process. Similarly, I3D [1] proposes
to use the Inception Network [24] as the backbone network rather than residual
networks to learn video representations. However, all of the methods suffer from
high computational cost compared with regular 2D CNNs due to the newly
added temporal dimension. Recently, S3D [8] and R(2+1)D [2] are proposed to
use one 1 × 3 × 3 convolution layer followed by another 3 × 1 × 1 convolutional
layer to approximate a full-rank 3D kernel to reduce the computations of a full-
rank 3 × 3 × 3 convolutional layer while achieving better precision. However,
these methods still suffer from an order of magnitude more computational cost
than their 2D competitors, which makes it difficult to train and deploy them in
practical applications.

The idea of using spare connections to reduce the computational cost is simi-
lar to low-power networks built for mobile devices [25–27] as well as other recent
approaches that try to sparsify parts of the network either through group convo-
lutions [28] or through learning connectivity [29]. However, our proposed network
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Fig. 1. From ResNet to multi-fiber. (a) A residual unit with two 3 × 3 convolution
layers. (b) Conventional Multi-Path design, e.g. ResNeXt [28]. (c) The proposed multi-
fiber design consisting of multiple separated lightweight residual units, called fibers. (d)
The proposed multi-fiber architecture with a multiplexer for transferring information
across separated fibers. (e) The architecture details of a multiplexer. It consists of
two linear projection layers, one for dimension reduction and the other for dimension
expansion.

is built for solving video recognition tasks and proposed different strategies that
can also benefit existing low-power models, e.g. MobileNet-v2 [26]. We further
discuss the differences of our architecture and compare against the most related
and state-of-the-art methods in Sects. 3 and 4.

3 Multi-fiber Networks

The success of models that utilize spatio-temporal convolutions [1,2,7–9] sug-
gests that it is crucial to have kernels spanning both the spatial and temporal
dimensions. Spatio-temporal reasoning, however, comes at a cost: Both the con-
volutional kernels and the input-output tensors are multiple times larger.

In this section, we start by describing the basic module of our proposed
model, i.e., the multi-fiber unit. This unit can effectively reduce the number of
connections within the network and enhance the model efficiency. It is generic
and compatible with both 2D and 3D CNNs. For clearer illustration, we first
demonstrate its effectiveness by embedding it into 2D convolutional architec-
tures and evaluating its efficiency benefits for image recognition tasks. We then
introduce its spatio-temporal 3D counterpart and discuss specific design choices
for video recognition tasks.

3.1 The Multi-fiber Unit

The proposed multi-fiber unit is based on the highly modularized residual
unit [3], which is easy to train and deploy. As shown in Fig. 1(a), the conventional
residual unit uses two convolutional layers to learn features, which is straightfor-
ward but computationally expensive. To see this, let Min denote the number of
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input channels, Mmid denote the number of middle channels, and Mout denote
the number of output channels. Then the total number of connections between
these two layers can be computed as

# Connections = Min ×Mmid + Mmid ×Mout. (1)

For simplicity, we ignore the dimensions of the input feature maps and con-
volution kernels which are constant. Equation (1) indicates that the number of
connections is quadratic to the width of the network, thus increasing the width
of the unit by a factor of k would result in k2 times more computational cost.

To reduce the number of connections that are essential to the overall com-
putation cost, we propose to slice the complex residual unit into N parallel
and separated paths (called fibers), each of which is isolated from the others, as
shown in Fig. 1(c). In this way, the overall width of the unit remains the same,
but the number of connections is reduced by a factor of N :

# Connections = N × (Min/N ×Mmid/N + Mmid/N ×Mout/N)
= (Min ×Mmid + Mmid ×Mout)/N. (2)

We set N = 16 for all our experiments, unless otherwise stated. As we show
experimentally in the following section, such a slicing strategy is intuitively sim-
ple yet effective. At the same time, however, slicing isolates each path from
the others and blocks any information flow across them. This may result in
limited learning capacity for data representations since one path cannot access
and utilize the feature learned from the others. In order to recover part of the
learning capacity, recent approaches that partially use slicing like ResNeXt [28],
Xception [30] and MobileNet [25,26] choose to only slice a small portion of lay-
ers and still use fully connected parts. The majority of layers (>60%) remains
unsliced and dominates the computational cost, becoming the efficiency bot-
tleneck. ResNeXt [28], for example, uses fully connected convolution layers at
the beginning and end of each unit, and only slices the second layer as shown
on Fig. 1(b). However, these unsliced layers dominate the computation cost and
become the bottleneck. Different from only slicing a small portion of layers, we
propose to slice the entire residual unit creating multiple fibers. To facilitate
information flow, we further attach a lightweight bottleneck component we call
the multiplexer that operates across fibers, in a residual manner.

The multiplexer acts as a router that redirects and amplifies features from
all fibers. As shown in Fig. 1(e), the multiplexer first gathers features from all
fibers using a 1 × 1 convolution layer, and then redirects them to specific fibers
using the following 1× 1 convolution layer. The reason for using two 1× 1 layers
instead of just one is to lower the computational overhead: we set the number of
the first-layer output channels to be k times smaller than its input channels, so
that the total cost would be reduced by a factor of k/2 compared with using a
single 1 × 1 layer. The parameters within the multiplexer are randomly initial-
ized and automatically adjusted by back-propagation end-to-end to maximize
the performance gain for the given task. Batch normalization and ReLU nonlin-
earities are used before each layer. Figure 1(d) shows the full multi-fiber network,
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where the proposed multiplexer is attached at the beginning of the multi-fiber
unit for routing features extracted from other paralleled fibers.

We note that, although the proposed multi-fiber architecture is motivated to
reduce the number of connections for 3D CNNs to alleviate high computational
cost, it is also applicable to 2D CNNs to further enhance efficiency of existing
2D architectures. To demonstrate this and verify effectiveness of the proposed
architecture, we conduct several studies on 2D image classification tasks at first.

3.2 Justification of the Multi-fiber Architecture

We experimentally study the effectiveness of the proposed multi-fiber architec-
ture by applying it on 2D CNNs for image classification and the ImageNet-1k
dataset [31]. We use one of the most popular 2D CNN model, residual network
(ResNet-18) [3], and the most computationally efficient ModelNet-v2 [26] as the
backbone CNN in the following studies.

Our implementation is based on the code released by [32] using MXNet [33]
on a cluster of 32 GPUs. The initial learning rate is set to 0.5 and decreases
exponentially. We use a batch size of 1,024 and train the network for 360,000
iterations. As suggested by prior work [25], we use less data augmentations for
obtaining better results. Since the above training strategy is different from the
one used in our baseline methods [3,26], we report both our reproduced results
and the reported results in their papers for fair comparison.

2 2.5 3 3.5
Iterations 105

65

70

75

80

85

To
p-

1 
A

cc
ur

ac
y

ResNet-18
ResNet-18 (MF embedded)

(a) ResNet-18

2 2.5 3 3.5
Iterations 10 5

60

65

70

75

To
p-

1 
A

cc
ur

ac
y

MobileNet-v2
MobileNet-v2 (MF embedded)

(b) MobileNet-v2

Fig. 2. Training and validation accuracy on the ImagaNet-1k dataset for (a) ResNet-18
and (b) MobileNet-v2 backbones respectively. The red lines stand for performance of
the model with our proposed multi-fiber unit. The black lines show performance of our
reproduced baseline model using exactly the same training settings as our method. The
line thickness indicates results on the validation set (the ticker one) or the training set
(the thinner one). (Color figure online)

The training curves in Fig. 2 plot the training and validation accuracy on
ImageNet-1k during the last several iterations. One can observe that the network
with our proposed Multi-fiber (MF) unit can consistently achieve higher train-
ing and validation accuracy than the baseline models, with the same number of
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Table 1. Efficiency comparison on the ImageNet-1k validation set. “MF” stands for
“multi-fiber unit”, and Top-1/Top-5 accuracies are evaluated on a 224 × 224 single
center crop [3]. “MF-Net” is our proposed network, with the architecture shown in
Table 2. The ResNeXt row presents results for a ResNeXt-26 model of our design that
has about the same number of FLOPS as MF-Net.

Model Top-1 Acc. Top-5 Acc. #Params FLOPs

ResNet-18 [3] 69.6% 89.2% 11.7 M 1.8 G

ResNet-18 (reproduced) 71.4% 90.2% 11.7 M 1.8 G

ResNet-18 (MF embedded) 74.3% 92.1% 9.6 M 1.6 G

ResNeXt-26 (8 × 16d) 72.8% 91.1% 6.3 M 1.1 G

ResNet-50 [3] 75.3% 92.2% 25.5 M 4.1 G

MobileNet-v2 (1.4) [26] 74.7% – 6.9 M 585 M

MobileNet-v2 (1.4) (reproduced) 72.2% 90.8% 6.9 M 585 M

MobileNet-v2 (1.4) (MF embedded) 73.0% 91.1% 6.0 M 578 M

MF-Net (N = 12) 74.5% 92.0% 5.9 M 895 M

MF-Net (N = 16) 74.6% 92.0% 5.8 M 861 M

MF-Net (N = 24) 75.4% 92.5% 5.8 M 897 M

MF-Net (N = 16, w/o multiplexer) 70.2% 89.4% 4.5 M 600 M

MF-Net (N = 16, w/o multiplexer, deeper & wider) 71.0% 90.0% 6.4 M 897 M

iterations. Moreover, the resulted model has a smaller number of parameters and
is more efficient (see Table 1). This demonstrates that embedding the proposed
MF unit indeed helps reduce the model redundancy, accelerates the learning pro-
cess and improves the overall model generalization ability. Considering the final
training accuracy of the “MF embedded” network is significantly higher than
the baseline networks and all the network models adopt the same regularization
settings, the MF units are also demonstrated to be able to improve the learning
capacity of the baseline networks.

Table 1 presents results on the validation set for Imagenet-1k. By simply
replacing the original residual unit with our proposed multi-fiber one, we improve
the Top-1/Top-5 accuracy by 2.9%/1.9% upon ResNet-18 with smaller model size
(9.6M vs. 11.7M) and lower FLOPs (1.6G vs. 1.8G). The performance gain also
stands for the more efficient low-complexity MobileNet-v2: introducing the multi-
fiber unit also boosts its Top-1/Top-5 accuracy by 0.8%/0.3% with smaller model
size (6.0M vs. 6.9M) and lower FLOPs (578M vs. 585M), clearly demonstrating
its effectiveness. We note that our reproduced MobileNet-v2 has slightly lower
accuracy than the reported one in [26] due to difference in the batch size, learning
rate and update policy. But with the same training strategy, our reproduced
ResNet-18 is 1.8% better than the reported one [3].

The two bottom sections of Table 1 further show ablation studies of our MF-
Net, with respect to the number of fibers N and with/without the use of the mul-
tiplexer. As we see, increasing the number of fibers increases performance, while
performance drops significantly when removing the multiplexer unit, demon-
strating the importance of sharing information between fibers. Overall, we see
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Fig. 3. Architecture of 3D multi-fiber network. (a) The overall architecture of 3D Multi-
fiber Network. (b) The internal structure of each Multi-fiber Unit. Note that only the
first 3 × 3 convolution layer has expanded on the 3rd temporal dimension for lower
computational cost.

that our 2D multi-fiber network can perform as well as the much larger ResNet-
50 [3], that has 25.5M parameters and requires 4.1 GFLOPS2.

3.3 Spatio-Temporal Multi-fiber Networks

In this subsection, we extend out multi-fiber architecture to spatio-temporal
inputs and present a new architecture for 3D convolutional networks and video
recognition tasks. The design of our spatio-temporal multi-fiber network follows
that of the “ResNet-34” [3] model, with a slightly different number of channels
for lower GPU memory cost on processing videos. In particular, we reduce the
number of channels in the first convolution layer, i.e. “Conv1”, and increase the
number of channels in the following layers, i.e. “Conv2-5”, as shown in Table 2.
This is because the feature maps in the first several layers have high resolutions
and consume exponentially more GPU memory than the following layers for
both training and testing.

The detailed network design is shown in Table 2, where we first design a 2D
MF-Net and then “inflate” [1] its 2D convolutional kernels to 3D ones to build
the 3D MF-Net. The 2D MF-Net is used as a pre-trained model for initializing
the 3D MF-Net. Several recent works advocate separable convolution which uses
two separate layers to replace one 3 × 3 layer [2,8]. Even though it may further
reduce the computational cost and increase the accuracy, we do not use the
separable convolution due to its high GPU memory consumption, considering
video recognition application.

2 It is worth noting that in terms of wall-clock time measured on our server, our MF-
Net is only slightly (about 30%) faster than the highly optimized implementation
of ResNet-50. We attribute this to the unoptimized implementation of group convo-
lutions in CuDNN and foresee faster actual running times in the near future when
group convolution computations are well optimized.
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Table 2. Multi-fiber Network architecture. The “2D MF-Net” takes images as input,
while the “3D MF-Net” takes frames, i.e. video clips, as input. Note, the complexity is
evaluated with FLOPs, i.e. floating-point multiplication-adds. The stride of “3D MF-
Net” is denoted by “(temporal stride, height stride, width stride)”, and the stride of
“2D MF-Net” is denoted by “(height stride, width stride)”.

Layer Repeat #Channel 2D MF-Net 3D MF-Net

Output size Stride Output size Stride

Input 3 224 × 224 16 × 224 × 224

Conv1 1 16 112 × 112 (2,2) 16 × 112 × 112 (1,2,2)

MaxPool 56 × 56 (2,2) 16 × 56 × 56 (1,2,2)

Conv2 1 96 56 × 56 (1,1) 8 × 56 × 56 (2,1,1)

2 (1,1) (1,1,1)

Conv3 1 192 28 × 28 (2,2) 8 × 28 × 28 (1,2,2)

3 (1,1) (1,1,1)

Conv4 1 384 14 × 14 (2,2) 8 × 14 × 14 (1,2,2)

5 (1,1) (1,1,1)

Conv5 1 768 7 × 7 (2,2) 8 × 7 × 7 (1,2,2)

2 (1,1) (1,1,1)

AvgPooling 1 × 1 1 × 1 × 1

FC 1000 400

#Params 5.8 M 8.0 M

FLOPs 861 M 11.1 G

Figure 3 shows the inner structure of each 3D multi-fiber unit after the “infla-
tion” from 2D to 3D. We note that all convolutional layers use 3D convolutions
thus the input and output features contain an additional temporal dimension
for preserving motion information.

4 Experiments

We evaluate the proposed multi-fiber network on three benchmark datasets,
Kinetics [20], UCF-101 [34] and HMDB51 [35], and compare the results with
other state-of-the-art models. All experiments are conducted using PyTorch [36]
with input size of 16 × 224 × 224 for both training and testing. Here 16 is
the number of frames for each input clip. During testing, videos are resized to
resolution 256 × 256, and we average clip predictions randomly sampled from
the long video sequence to obtain the video predictions.

4.1 Video Classification with Motion Trained from Scratch

In this subsection, we study the effectiveness of the proposed model on learning
video representations when motion features are trained from scratch. We use
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Fig. 4. Results on the Kinetics dataset (RGB Only). (a) The training and validation
accuracy for multi-fiber network. (b) Efficiency comparison between different 3D con-
volutional networks. The area of each circle is proportional to the total parameter
number of the model.

Table 3. Comparison on action recognition accuracy with state-of-the-arts on Kinetics.
The complexity is measured using FLOPs, i.e. floating-point multiplication-adds. All
results are only using RGB information, i.e. no optical flow. Results with citation
numbers are copied from the respective papers.

Method #Params FLOPs Top-1 Top-5

Two-Stream [1] 12 M – 62.2% –

ConvNet+LSTM [1] 9 M – 63.3% –

S3D [8] 8.8 M 66.4 G 69.4% 89.1%

I3D-RGB [1] 12.1 M 107.9 G 71.1% 89.3%

R(2+1)D-RGB [2] 63.6 M 152.4 G 72.0% 90.0%

MF-Net (Ours) 8.0 M 11.1 G 72.8% 90.4%

the large-scale Kinetics [20] benchmark dataset for evaluation, which consists of
approximately 300, 000 videos from 400 action categories.

In this experiment, the 3D MF-Net model is initialized by inheriting parame-
ters from a 2D one (see Sect. 3.3) pre-trained on the ImageNet-1k dataset. Then
the 3D MF-Net is trained on Kinetics with an initial learning rate 0.1 which
decays step-wisely with a factor 0.1. The weight decay is set to 0.0001 and we
use SGD as the optimizer with a batch size 1, 024. We train the model on a clus-
ter of 64 GPUs. Figure 4(a) shows the training and validation accuracy curves,
from which we can see the network converges fast and the total training process
only takes about 36,000 iterations.

Table 3 shows video action recognition results of different models trained on
Kinetics. The models pre-trained on other large-scale video datasets, e.g. Sports-
1M [19], using substantially more training videos are excluded in the table for fair
comparison. As can be seen from the results, 3D based CNN models significantly
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Fig. 5. Visualization of the learned filters. The filters initialized by the ImageNet pre-
trained model using inflating are shown on the top. The corresponding learned 3D
filters on Kinetics are shown at the bottom. (upscaled by 15x). Best viewed in color.
(Color figure online)

improve the Top-1 accuracy upon 2D CNN based models. This performance gap
is because 2D CNNs extract features from each frame separately and thus are
incapable of modeling complex motion features from a sequence of raw frames
even when LSTM is used, which limits their performance. On the other hand, 3D
CNNs can learn motion features end-to-end from raw frames and thus are able
to capture effective spatio-temporal information for video classification tasks.
However, these 3D CNNs are computationally expensive compared 2D ones.

In contrast, our proposed MF-Net is more computationally efficient than
existing 3D CNNs. Even with a moderate number of fibers, the computational
overhead introduced by the temporal dimension is effectively compensated and
our multi-fiber network only costs 11.1 GFLOPs, as low as regular 2D CNNs.
Regarding performance and parameter efficiency, our proposed model achieves
the highest Top-1/Top-5 accuracy and meanwhile it has the smallest model size.
Compared with the best R(2 + 1)D-RGB, our model is over 13× faster with
8× less parameters, yet achieving 0.8% higher Top-1 accuracy. We note that
the proposed model also costs the lowest GPU memory for both training and
testing, benefiting from the optimized architecture mentioned in Sect. 3.3.

To get further insights into what our network learns, we visualize all 16 spatio-
temporal kernels of the first convolutional layer in Fig. 5. Each 2-by-3 block cor-
responds to two 3 × 3 × 5 × 5 filters, with the top and bottom rows showing the
filter before and after learning, respectively. As the filters are initialized from a
2D network pretrained on ImageNet and inflated in the temporal dimension, all
three sub-kernels are identical in the beginning. After learning, however, we see fil-
ters evolving along the temporal dimension with diverse patterns, indicating that
spatio-temporal features are learned effectively and embedded in these 3D kernels.

4.2 Video Classification with Fine-Tuned Models

In this experiment, we evaluate the generality and robustness of the proposed
multi-fiber network by transferring the features learned on Kinetics to other
datasets. We are interested in examining whether the proposed model can learn
robust video representations that can generalize well to other datasets. We use
the popular UCF-101 [34] and HMDB51 [35] as evaluation benchmarks.

The UCF-101 contains 13, 320 videos from 101 categories and the HMDB51
contains 6, 766 videos from 51 categories. Both are divided into 3 splits. We
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Table 4. Action recognition accuracy on UCF-101 and HMDB51. The complexity is
evaluated with FLOPs, i.e. floating-point multiplication-adds. The top part of the table
refers to related methods based on 2D convolutions, while the lower part to methods
utilizing spatio-temporal convolutions. Column “+OF” denotes the use of Optical Flow.
FLOPs for computing optical flow are not considered.

Method FLOPs +OF UCF-101 HMDB51

ResNet-50 [37] 3.8 G 82.3% 48.9%

ResNet-152 [37] 11.3 G 83.4% 46.7%

CoViAR [18] 4.2 G 90.4% 59.1%

Two-Stream [13] 3.3 G � 88.0% 59.4%

TSN [38] 3.8 G � 94.2% 69.4%

C3D [7] 38.5 G 82.3% 51.6%

Res3D [23] 19.3 G 85.8% 54.9%

ARTNet [16] 25.7 G 94.3% 70.9%

I3D-RGB [1] 107.9 G 95.6% 74.8%

R(2+1)D-RGB [2] 152.4 G 96.8% 74.5%

MF-Net (Ours) 11.1 G 96.0% 74.6%

follow experiment settings in [2,7,8,23] and report the averaged three-fold cross
validation accuracy. For model training on both datasets, we use an initial learn-
ing rate 0.005 and decrease it for three times with a factor 0.1. The weight decay
is set to 0.0001 and the momentum is set to 0.9 during the SGD optimization.
All models are fine-tuned using 8 GPUs with a batch size of 128 clips.

Table 4 shows results of the multi-fiber network and comparison with state-of-
the-art models. Consistent with above results, the multi-fiber network achieves
the state-of-the-art accuracy with much lower computation cost. In particu-
lar, on the UCF-101 dataset, the proposed model achieves 96.0% Top-1 clas-
sification accuracy which is comparable with the sate-of-the-arts, but it is sig-
nificantly more computationally efficient (11.1 vs. 152.4 GFLOPs). Compared
with Res3D [23] which is also based on ResNet backbone and costs about 19.3
GFLOPs, the multi-fiber network achieves over 10% improvement in Top-1 accu-
racy (96.0% v.s. 85.8%) with 42% less computational cost.

Meanwhile, the proposed multi-fiber network also achieves the state-of-the-
art accuracy on the HMDB51 dataset with significantly less computational cost.
Compared with the 2D CNN based models that also only use RGB frames, our
proposed model improves the accuracy by more than 15% (74.6% v.s. 59.1%).
Even compared with the methods that using extra optical information, our pro-
posed model still improves the accuracy by over 5%. This advantage partially
benefits from richer motion features that learned from large-scale video pre-
training datasets, while 2D CNNs cannot. Figure 6 shows the results in details.
It is clear that our model provides an order of magnitude higher efficiency than
previous state-of-the-arts in terms of FLOPs but still enjoys the high accuracy.
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Fig. 6. Efficiency comparison between different methods. We use the area of each circle
to show the total number of parameters for each model.

4.3 Discussion

The above experiments clearly demonstrate outstanding performance and effi-
ciency of the proposed model. In this section, we discuss its potential limitations
through success and failure case analysis on Kinetics.

We first study category-wise recognition accuracy. We calculate the accuracy
for each category and sort them in a descending order, shown in Fig. 7(left).
Among all 400 categories, we notice that 190 categories have an accuracy higher
than 80% and 349 categories have an accuracy higher than 50%. Only 17
categories cannot be recognized well and have an accuracy lower than 30%.
We list some examples along the spectrum in the right panel of Fig. 7. We
find that in categories with highest accuracy there are either some specific
objects/backgrounds clearly distinguishable from other categories or specific
actions spanning long duration. On the contrary, categories with low accuracy
usually do not display any distinguishing object and the target action usually
lasts for a very short time within a long video.

To better understand success and failure cases, we visualize some of the video
sequences in Fig. 8. The frames are evenly selected from the long video sequence.

Fig. 7. Statistical results on Kinetics validation dataset. Left: Accuracy distribution
of the proposed model on the validation set of Kinetics. The category is sorted by
accuracy in a descending order. Right: Selected categories and their accuracy.
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Fig. 8. Predictions made on the most difficult eight categories in Kinetics validation
set. Left: Easy samples. Right: Hard samples. Top-5 confidence scores are shown below
each video sequence. Underlines are used to emphasize correct prediction. Videos within
the same row are from the same ground truth category.
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As can be seen from the results, the algorithm is more likely to make mistakes
on videos without any distinguishable object or containing an action lasting a
relatively short period of time.

5 Conclusion

In this work, we address the problem of building highly efficient 3D convolution
neural networks for video recognition tasks. We proposed a novel multi-fiber
architecture, where sparse connections are introduced inside each residual block
effectively reducing computations and a multiplexer is developed to compensate
the information loss. Benefiting from these two novel architecture designs, the
proposed model greatly reduces both model redundancy and computational cost.
Compared with existing state-of-the-art 3D CNNs that usually consume an order
of magnitude more computational resources than regular 2D CNNs, our proposed
model costs significantly less resources yet achieves the state-of-the-art video
recognition accuracy on Kinetics, UCF-101, HMDB51. We also showed that the
proposed multi-fiber architecture is a generic method which can also benefit
existing networks on image classification task.
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C67-646, ECRA R-263-000-C87-133 and MOE Tier-II R-263-000-D17-112.

References

1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the
kinetics dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 4724–4733. IEEE (2017)

2. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer
look at spatiotemporal convolutions for action recognition (2017). arXiv preprint:
arXiv:1711.11248

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

4. Girshick, R.: Fast R-CNN (2015). arXiv preprint: arXiv:1504.08083
5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab:

semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected CRFs (2016). arXiv preprint: arXiv:1606.00915

6. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, pp. 1725–1732
(2014)

7. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3D convolutional networks. In: 2015 IEEE International Con-
ference on Computer Vision (ICCV), pp. 4489–4497. IEEE (2015)

8. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature
learning for video understanding (2017). arXiv preprint: arXiv:1712.04851

http://arxiv.org/abs/1711.11248
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1606.00915
http://arxiv.org/abs/1712.04851


Multi-fiber Networks 379

9. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history
of 2D CNNs and imagenet. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 18–22 (2018)

10. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2014). arXiv preprint: arXiv:1409.1556

11. Shou, Z., Wang, D., Chang, S.F.: Temporal action localization in untrimmed videos
via multi-stage CNNs. In: CVPR (2016)

12. Shou, Z., Chan, J., Zareian, A., Miyazawa, K., Chang, S.F.: CDC: convolutional-
de-convolutional networks for precise temporal action localization in untrimmed
videos. In: CVPR (2017)

13. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: Advances in Neural Information Processing Systems, pp. 568–
576 (2014)

14. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network
fusion for video action recognition. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2016)

15. Ng, J.Y.H., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,
Toderici, G.: Beyond short snippets: deep networks for video classification. In:
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
4694–4702. IEEE (2015)

16. Wang, L., Li, W., Li, W., Van Gool, L.: Appearance-and-relation networks for
video classification (2017). arXiv preprint: arXiv:1711.09125

17. Tran, A., Cheong, L.F.: Two-stream flow-guided convolutional attention networks
for action recognition. In: International Conference on Computer Vision (2017)

18. Wu, C.Y., Zaheer, M., Hu, H., Manmatha, R., Smola, A.J., Krähenbühl, P.: Com-
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