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Abstract. In current face recognition approaches with convolutional
neural network (CNN), a pair of faces to compare are independently fed
into the CNN for feature extraction. For both faces the same kernels
are applied and hence the representation of a face stays fixed regardless
of whom it is compared with. As for us humans, however, one gener-
ally focuses on varied characteristics of a face when comparing it with
distinct persons as shown in Fig. 1. Inspired, we propose a novel CNN
structure with what we referred to as contrastive convolution, which
specifically focuses on the distinct characteristics between the two faces
to compare, i.e., those contrastive characteristics. Extensive experiments
on the challenging LFW, and IJB-A show that our proposed contrastive
convolution significantly improves the vanilla CNN and achieves quite
promising performance in face verification task.
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1 Introduction

Face recognition is of great practical values as an effective approach for bio-
metric authentication. The task of face recognition includes two categories, face
identification which classifies a given face to a specific identity, and face verifi-
cation which determines whether a pair of faces are of the same identity. The
face verification task appears in a wide range of practical scenarios, e.g., phone
unlocking with faces, remote bank account opening that uses faces for identity
check, electronic payment with face, criminal tracking from surveillance cameras
and etc. Though it has been studied for a long time, there still exist a great
many challenges for accurate face verification, which is the focus of this work.

The most effective solutions for the face verification at present are employing
the powerful CNN models. To verify whether a given pair of faces A and B are
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Fig. 1. Illustration of how we humans do face verification by focusing on distinct face
characteristics when the same face A is compared with different persons. (a) When
comparing A with B1 who features small eyes, our focus is attracted to regions around
the eyes of A; (b) when comparing A with B2 whose face is round, we pay more
attention to the contour of A. This reveals that a face should be described differently
by using contrastive charateristics for example, when being compared with different
persons.

of the same identity, most CNN-based methods generally first feed the two faces
into a CNN to obtain their feature representations. Then, the similarity of the
two features is calculated to determine whether they are the same person. Since
the parameters of convolutional kernels are fixed once the training of CNN is
completed, all faces are processed with identical kernels and thus mapped into a
common discriminative feature space. This means that the representation of A
stays unchanged regardless of who it is compared with, and this representation
has to be discriminative enough to distinguish A from all other persons, which is
quite challenging. By contrast, when we humans compare two faces, the obser-
vation of one face is guided by that of the other, i.e., finding the differences and
putting more attention on them for better distinguishing of the two faces. Taking
Fig. 1 for example, the same face A is compared with two different faces B1 and
B2. When comparing with B1 who features small eyes relative to A’s big eyes,
our focus on A will be attracted to regions around the eyes. When comparing
with B2 whose face is round relative to A’s oval face, we will tend to pay more
attention to the contour of face A during the observation. Naturally, we depict
a face differently when comparing it with different persons so as to distinguish
them more accurately.

Inspired by this observation, we propose a novel CNN structure with what we
referred to as contrastive convolution, whose kernels are carefully designed and
mainly focus on those distinct characteristics, i.e., contrastive features, between
the two faces for better verification of them. Specifically, a kernel generator mod-
ule is designed to generate personalized kernels of a face first. As personalized
kernels of a specific person often have high correlation with its own features,
the difference of the personalized kernels of the two faces are exploited as the
contrastive convolutional kernels, which are expected to focus on the difference
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between the two faces. This contrastive convolution can be embedded into any
kind of convolutional neural networks, and in this work it is embedded into
the popular CNN, forming an novel face verification model as shown in Fig. 2,
which is referred to as Contrastive CNN. To demonstrate the effectiveness of the
proposed contrastive convolution, extensive experiments are performed on the
challenging LFW and IJB-A dataset, and our contrastive CNN achieves quite
promising performance.

The rest of this work is organized as follows: Sect. 2 reviews works related
to face recognition in the wild and adaptative convolution. Section 3 describes
the proposed deep convolutional neural network with contrastive convolution.
Section 4 presents experimental results, and finally Sect. 5 concludes this work.

2 Related Work

Face Recognition. Face recognition is an important and classical topic in com-
puter vision, in which face feature learning plays a significant role. An expressive
feature descriptor can substantially improve the accuracy of face recognition.
Some early works mainly focus on hand-crafted features, such as the well-known
Local Binary Pattern (LBP) [2] and Gabor [34,36] which achieved favorable
results in controlled environment. The discrimination ability of hand-crafted
features heavily depends on the design principal which may be not beneficial for
classification. Go a step further, a few learning-based approaches are proposed
to learn more informative but mostly linear feature representation, including the
famous Eigenfaces [28] and Fisherfaces [3,6]. Recently, deep convolutional neural
networks (CNNs) arise with great performance improvement [13,16] benefitted
from its excellent non-linear modeling capability. In [27], a CNN is proposed to
extract deep features of the faces that are aligned to frontal through a general 3D
shape model and performs better than many traditional face recognition meth-
ods. Afterwards, the performance of face recognition is further improved in quick
succession by Deep ID2 [7], Deep ID2+ [26], which even surpass the human’s
performance for face verification on the Labeled Face in the Wild (LFW). Sev-
eral recent works mainly focus on exploring better loss functions to imporve the
performance of face recognition. In [9], a method named FaceNet is proposed to
employ triplet loss for training on large-scale face images without alignment, and
it achieves state-of-the-art on multiple challenging benchmarks including LFW
[9] and YouTubeFaces [30]. In [18], Large-Margin softmax (L-Softmax) loss is
proposed to explicitly reduce the intra-personal variations while enlarging the
inter-personal differences. In SphereFace [17], a new loss of angular softmax (A-
Softmax) is proposed and achieves excellent results on MageFace challenge [21].
Although the performance of face recognition on LFW and YTF datasets has
reached human level [22,25–27], there still is a gap between human performance
and automatic face recognition with extreme pose, illumination, expression, age,
resolution variation in unconstrained environment [23] such as the challenging
IJB-A [14], mainly due to the different perception mechanism. Therefore in this
work, inspired by the human perception mechanism, we propose a new con-
trastive convolution for better face recognition.
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Adaptive Convolution. There are some works exploring adaptive convolution to
further improve the performance of CNN. In [4], kernels corresponding to an
objective style can transform a given image from the original style to the objec-
tive style when convolving with the given image. In [38], scale-adaptive convolu-
tion is proposed to acquire flexible-size receptive fields during scene parsing for
tackling the issue of inconsistent predictions of large objects and invisibility of
small objects in conventional CNN. Most related to our work is those of dynamic
input conditioned kernel generation, which includes, as far as we konw, dynamic
convolution [15], dynamic filter network [11], and adaptive convolution [12]. Our
work is fundamentally different from those works in two folds. First, the purpose
of creating conditioned kernels is different. [11,15] focus on image prediction
task, and the dynamically-generated filters are mainly used to predict the move-
ment of pixels between frames. [12] focuses on the supervised learning, and the
dynamically-generated kernels aim at incorporating the given side information
(e.g., camera tilt angle and camera height) into image features. Differently, our
dynamically-generated kernels attempt to highlight the difference between two
images for better face verification. Second, the mechanism of kernel generation is
different. In [11,12,15], kernels are generated only according to one input, which
thus characterize the specific feature of input relative to common or general
feature, while our contrastive kernels are created according to a pair of images,
which characterize the specific feature of an image relative to another.

Fig. 2. The pipeline of our contrastive CNN. Given a pair of face images, A and B, a
common feature extractor C consisting of several cascaded convolution layers is firstly
used to obtain expressive feature representations FA and FB of them. Then, the kernel
generator G consisting of several sub-generators generates personalized kernels for A
and B respectively, based on which the contrastive kernels are achieved as |KA −KB |.
Finally, with those contrastive kernels, the contrastive features of A and B are extracted
via convolution operations respectively for the final similarity calculation. Note the
subscript ∗ of S in kernel generator can be A or B.
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3 Contrastive CNN

As mentioned above, the conventional CNN-based methods use the same feature
of a face image no matter who it is compared with, while our proposed CNNs
extract contrastive features of a face image based on who it is compared with.
Contrastive features mainly describe those distinct characteristics between two
faces which are extracted by the contrastive convolution proposed in this work.
An overview of our method can be seen in Fig. 2.

Specifically, the whole verification model, referred to as Contrastive CNN,
consists of a trunk CNN and a kernel generator, forming a successive architec-
ture. The truck CNN C is designed for base feature representation, which is
shared between the two images for efficiency although it can be generally differ-
ent. Based on these base feature representation, the kernel generator G produces
personalized kernels for a face image, attempting to highlight those salient fea-
tures of a face relative to the mean face. And the contrastive kernels are designed
as the difference of personalized kernels of two faces, attempting to focus on those
contrastive characteristics between them. By performing convolution with those
contrastive kernels, contrastive features of two faces are extracted respectively
for the similarity calculation.

3.1 Kernel Generator

Denote a pair of face images as (A,B,LAB), where A and B are face images,
and LAB is the label for them, with LAB = 1 meaning that A and B are the
same person, and LAB = 0 meaning that A and B are different persons. The
feature maps of A and B extracted from the feature extractor C are denoted as
FA and FB respectively, i.e.

FA = C(A), FB = C(B) ∈ R
hF ×wF ×cF (1)

where hF , wF and cF are the height, width, and number of channels respectively.
The kernel generator aims at producing kernels specific to A or B, which is

referred to as personalized kernels. Taking A as an example, the kernel generator
G takes the feature maps FA as input, and outputs a set of personalized kernels
KA, generally formulated as follows:

KA = G(FA) (2)

Given only one face image A, i.e. with no reference face, it is impossible to obtain
kernels depicting contrastive characteristics. So here, the generated kernels KA

is expected to highlight those intrinsic and salient features of A, which is the
foundation of constructing contrastive convolutional kernels.

What’s more, the kernel generator is designed with a hierarchical structure,
allowing the personalized kernels to capture face characteristics at various scales,
which can further effect on contrastive kernels KAB . As shown in Fig. 2, there
are multiple layers in kernel generator network, one sub-generator for each layer,
obtaining kernels with different receptive field as different layers are usually with
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feature map in different scale. Generally, the generator G consists of multiple
layers, e.g. T layers, and on each layer a sub-generator is designed, forming T
sub-generators in total:

G = {g1, g2, · · · , gT }. (3)

Specifically, the feature maps from ith layer are denoted as Si
A|Ti=1, which are

usually obtained by using the convolving or fully connected operations on the
feature maps of (i − 1)th layer, i.e., Si−1

A with S0 = FA.
On each layer, the sub-generator gi is constructed to generate a group of

kernels in the same scale as below:

Ki
A = {ki1

A , ki2
A , . . . , kiNi

A }, (4)

where Ni is the number of kernels generated from gi. Each kernel kij
A is expected

to portray the characteristics of a local component of face image A, achieved by
using a local patch as input:

kij
A = gi(p

ij
A), (5)

pijA = R(Si
A, cij , hK , wK), (6)

where pijA is a local patch cropped from Si
A with the center at cij , height of hK ,

and width of wK . Here, R denotes the image crop operation. Generally, these
patches can be taken at regular grid for easy implementation. The sub-generator
gi can be any kind of deep network structure, such as convolution layer or full
connection layer, and a small one is preferable. In all our experiments, the gi
consists of only one fully connected layer.

The kernels from one sub-generator share similar receptive field but focus
on different components. Kernels from different sub-generators have different
receptive fields paying attention to characteristics in different scales. Altogether,
a set of personalized kernels can be obtained as the union of kernels from all the
sub-generators as below:

KA = {k11
A , . . . , k1N1

A , . . . , kij
A , . . . , kT1

A , . . . , kTNT

A }. (7)

The personalized kernels generated from the generator G are expected to
capture the intrinsic characteristics of an image, regardless of pose, illuminations,
expression and etc., leading to a loss in Eq. (15). The personalized kernels KB

of B can be generated similarly.
Finally, the contrastive kernels are achieved as the difference of personalized

kernels of two face images, attempting to only focus on those distinct character-
istics between two faces and subtract the commonality, formulated as follows:

KAB = |KA − KB |. (8)

The contrastive kernels are dynamically generated by considering the two faces
to compare in testing stage, which is flexible and adaptive to the testing faces,
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resulting in more accurate feature representation. As shown in Fig. 4, the con-
trastive kernels created by Eq. (8) have high response to those different fea-
tures, while low response to those common features between of the two faces as
expected.

3.2 Contrastive Convolution

The contrastive convolution is very similar to conventional convolution, except
that kernels used in contrastive convolution are dynamically generated according
to different pairs being compared in the process of testing, while kernels used
in conventional convolution are learned by large scale data and are fixed after
training.

When comparing a pair of face images A and B, the contrastive features
between A and B are extracted by convolving FA and FB with the contrastive
kernels KAB as follows:

FB
A = KAB

⊗
FA = [k11

AB ⊗ FA; · · · ; kij
AB ⊗ FA; · · · , kTNT

AB ⊗ FA] (9)

FA
B = KAB

⊗
FB = [k11

AB ⊗ FB; · · · ; kij
AB ⊗ FB; · · · , kTNT

AB ⊗ FB ] (10)

where
⊗

means element-wise convolution. KAB

⊗
FA means each contrastive

kernel in set KAB is convolved with FA.
With the contrastive feature representation of A and B, a simple linear regres-

sion followed by sigmoid activation is used to calculate the similarity SB
A and

SA
B between A and B as follows:

SB
A = σ(FB

A · W ) (11)

SA
B = σ(FA

B · W ) (12)

Here, σ is sigmoid function with σ(x) = ex

1+ex , and · means dot product.
The final similarity SAB between A and B is calculated as the average of the

two similarities, i.e.

SAB =
1
2
(SB

A + SA
B). (13)

3.3 Overall Objective

With the contrastive convolution, the similarity between a pair of images from
the same person is expect to be 1, i.e. sAB = 1 and that from different persons
is expect to be 0, i.e. sAB = 0. The cross entropy loss is used to maximize the
similarity of same face pairs, while minimize the similarity of different face pairs
as follows:

min
C,G,W

L1 = − 1
N

∑

A,B

[LAB log(SAB) + (1 − LAB) log(1 − SAB)] (14)
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Here, N means the number of face pairs, LAB is the label of the face pair of A
and B, in which LAB = 1 means the positive face pair, and LAB = 0 means the
negative face pair.

Moreover, the personalized kernels is expected to capture the intrinsic char-
acteristics of a face, which means that the personalized kernels of face images of
the same person should have high similarity even if with various pose, illumina-
tions or expressions, forming another cross entropy loss in the following:

L2 = − 1
2N

[
∑

A

lA log(H(KA)) +
∑

B

lB log(H(KB))

]
(15)

where lA ∈ {0, 1}M and lB ∈ {0, 1}M are the identity coding of A and B
respectively in the form of one-hot coding with the number of persons as M .
Here, H(K) ∈ RM×1 is a small network used to regress the kernels to a one-hot
code for classification.

Overall, the objective function of our CNN with contrastive convolution can
be formulated as follows:

min
C,G,W,H

L1 + αL2 (16)

The α is a balance parameter, and is set as 1 in our experiments in addition to
special instructions. This objective can be easily optimized by using the gradient
decent same as most CNN based methods.

4 Experiments

In this section, we will evaluated our proposed CNN with contrastive convolution
w.r.t. different architectures and compare with the state-of-art methods for face
verification task on two wild challenging datasets: Labeled Faces in the Wild
(LFW) [10], and IARPA Janus Benchmark A (IJB-A) [14].

4.1 Experimental Settings

Datasets. Three datasets are used for evaluation. The CASIA-WebFace [35]
dataset is used for training, the LFW [10], and IJB-A [14] datasets are used for
testing. The details of each dataset are as follows.

The CASIA-WebFace [35] dataset is a large scale face dataset contain-
ing about 10,000 subjects and 500,000 images collected from the internet. This
dataset is often used to develop a deep network for face recognition in the wild,
such as in [8,17,18,35].

The LFW dataset [10] includes 13,233 face images from 5,749 different iden-
tities with large variations in pose, expression and illuminations. On this dataset,
we follow the standard unrestricted protocol of with labeled outside data, i.e.
training on the outside labeled CASIA-WebFace, and testing on 6,000 face pairs
from LFW. Please refer to [10] for more details.
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Table 1. Architectures of the CNN used in our method with 4, 10, 16 layers respec-
tively. Conv1.x, Conv2.x, Conv3.x and Conv4.x mean convolution layers that contain
multiple convolution units. For example, conv[256, 3, 1] denotes convolution with 256
filters of size 3 × 3, and stride 1. The max[3, 2] denotes the max pooling within a
region of size 3 × 3, and stride 2. In CNNs with 10 and 16 layers, the residual net-
work structure is used for better performance and the residual units are shown in the
double-column brackets. In the last contrastive convolutional layer, the convolution is
the same as conventional convolution except that its kernels are dynamically generated
during testing.

Layer 4-layer CNN 10-layer CNN 16-layer CNN

Input 112 × 112 × 3

Conv1.x conv[64, 3, 1] conv[64, 3, 1] conv[64, 3, 1]

Pool1 max[3, 2]

Conv2.x conv[128, 3, 1] conv[128, 3, 1][
conv[128, 3, 1]

conv[128, 3, 1]

]
× 1

conv[128, 3, 1][
conv[128, 3, 1]

conv[128, 3, 1]

]
× 2

Pool2 max[3, 2]

Conv3.x conv[256, 3, 1] conv[256, 3, 1][
conv[256, 3, 1]

conv[256, 3, 1]

]
× 2

conv[256, 3, 1][
conv[256, 3, 1]

conv[256, 3, 1]

]
× 3

Pool3 max[3, 2]

Conv4.x conv[512, 3, 1] conv[512, 3, 1] conv[512, 3, 1][
conv[512, 3, 1]

conv[512, 3, 1]

]
× 1

Pool4 max[3, 2]

Contrastive Conv conv[14, 3, 1] conv[14, 3, 1] conv[14, 3, 1]

Features 686 dimensions

Fig. 3. Examplar images of a person from IJB-A dataset. Note the extreme variations
of head poses, expression and image resolutions.
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The IJB-A dataset [14] contains 5,712 images and 2,085 videos from 500
subjects captured from the wild environment. Because of the extreme variation
in head pose, illumination, expression and resolution, so far IJB-A is regarded
as the most challenging dataset for both verification and identification. A few
example images of a subject from IJB-A can be seen in Fig. 3. The standard
protocol on this dataset performs evaluations by using template-based manner,
instead of image-based or video-based. A template may include images and/or
videos of a subject.

Preprocessing. For all three datasets, [31] is firstly used to detect the faces, then
each detected face is aligned to a canonical one according to the five landmarks
(2 eyes centers, 1 nose tip, and 2 mouth corners) obtained from CFAN [37], and
finally all aligned images are resized into 128 × 128 for training or testing.

Settings of CNNs. Tensorflow is used to implement all our experiments. For
extensive investigation of our method, the proposed contrastive CNNs with base
layers of 4, 10, and 16 are evaluated respectively. The detailed settings of the
three CNNs are given in Table 1. Note that kernels in the last convolutional layer
of our contrastive CNNs are dynamically generated in the testing stage with the
kernel generator learnt in the training stage. We also compare our contrastive
CNN with the conventional CNN, which is constructed by adding additional layer
to the base CNN (referred to as L-Vanilla CNN) so that it has the same network
structure as ours for fair comparison. The batch size is 128 for both methods, i.e.
128 images for baseline models and 64 pairs for our models. The face image pairs
used in our method are randomly chosen from CASIA-WebFace with the same
possibility between positive pairs and negative pairs when training. The length
of personalized kernels are normalized to be 1 before they are used to calculate
contrastive kernel. All models are trained with iterations as 200K, with learning
rate as 0.1, 0.01 and 0.001 at the beginning, 100K iterations, and 160K iterations.
Our contrastive CNN is designed with 3 sub-generators which generate 9, 4, and
1 contrastive kernels respectively, i.e. T = 3, N1 = 9, N2 = 4, N3 = 1.

Table 2. Comparion between the vanilla CNN and our contrastive CNN. They share
the same architecture for fair comparison.

Method Loss mAcc on LFW (%) TAR(%)@FAR on IJB-A

0.1 0.01 0.001

L-VanillaCNN Pairwise Loss 91.80 64.13 22.43 5.88

Contrastive CNN 95.20 78.73 52.51 31.37

L-VanillaCNN Pairwise Loss 97.50 88.43 71.51 52.72

Contrastive CNN +Softmax Loss 98.20 90.24 74.55 58.04
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Table 3. Performance of our Contrastive CNN with different number of sub-generators
on LFW in terms of mean accuracy (mAcc) and IJB-A in terms of TAR (%) at
FAR = 0.1, 0.01, and 0.001.

# sub-generator mAcc on LFW TAR(%)@FAR on IJB-A

0.1 0.01 0.001

1 97.83 87.06 64.95 37.32

2 98.17 89.92 75.08 57.08

3 98.20 90.24 74.55 58.04

Table 4. Results of our Contrastive CNN with different base CNNs on LFW in terms
of mean accuracy (mAcc) and IJB-A in terms of TAR at FAR = 0.1, 0.01, 0.001. Three
base CNN structures with layers 4, 10, 16 are evaluated respectively, with architecture
detailed in Table 1.

# Layers of base CNN mAcc on LFW(%) TAR(%)@FAR on IJB-A

0.1 0.01 0.001

4 98.20 90.24 74.55 58.04

10 98.93 93.17 80.35 61.83

16 99.12 95.31 84.01 63.91

4.2 Ablation Study of Contrastive Convolution

Effectiveness of Contrastive Convolution. To show the improvement of our con-
trastive convolution, we compare our contrastive CNN with what we referred to
as L-Vanilla CNN, which is constructed by adding additional layers that have
similar structure with our kernel generator to the base CNN so that it has the
same network structure as ours. In our contrastive CNN, a kernel classification
loss in Eq. (15) is used to make the personalized kernels of a specific face image
capture the intrinsic characteristics regardless of pose, illumination or expression.
Therefore, the comparison is conducted on two cases that one is with pairwise
loss + softmax loss, and the other is with only pairwise loss. The results are
shown in Table 2. As can be seen, for both vanilla CNN and our contrastive
CNN, the results with softmax loss+pairwise loss are better than that only with
pairwise loss, demonstrating the superiority of the softmax loss as that in [33].
More importantly, for both cases with softmax loss+pairwise loss and pairwise
loss only, our proposed contrastive convolution performs much better than the
conventional convolution, with an improvement up to 30% at FAR = 0.01. These
comparison clearly and convincingly show that our contrastive CNN can signif-
icantly improve the conventional CNN.

Contrastive Convolution w.r.t. Number of Sub-generator. Our kernel generator
is organized with a hierarchical structure consisting of several sub-generators,
where kernels created from different sub-generators are equipped with differ-
ent scales. Here, we investigate the influence of the number of sub-generator,
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i.e. three contrastive CNNs of which the number of sub-generator is 1, 2, 3,
respectively and accordingly there are 9, 13, 14 contrastive kernels orderly in
the 4-layer CNN shown in Table 1. The performance of Contrastive CNN with
different number of sub-generator can be found in Table 3, where the perfor-
mance is constantly improved with the increasing of number of sub-generator.

Low response High response

A B1 B2 B10B3 B4 B5 B6 B7 B8 B9

Contrastive 
CNN

Vanilla 
CNN

Fig. 4. Feature maps from our Contrastive CNN and Vanilla CNN for a given image
A when comparing to images B1–B10. These feature maps for contrastive CNN mainly
focus on the region of eyes and eyebrows.

Vanilla 
CNN

Contrastive 
CNN

Vanilla 
CNN

Contrastive 
CNN

A1

B1

A2

B2
Low

High

Fig. 5. Illustration of feature maps from contrastive CNN and vanilla CNN on the toy
data for A1 comparing with B1, and A2 comparing with B2.

Contrastive Convolution w.r.t. Different Architectures. To further investigation,
we demonstrate our contrastive convolution with different base CNNs. Three
types of architecture with 4, 10, and 16 layers are used for evaluation, and the
results are shown in Table 4. As can be seen, performance of our contrastive
CNNs is constantly improved with the increasing of the depth of base CNN.

Visualization Comparison of Contrastive Features and Vanilla Features. To fur-
ther verify that those contrastive kernels can capture the differences between
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the two faces being compared. We visualize those feature maps from our con-
trastive CNN and vanilla CNN in Fig. 4. Specifically, an image A is compared to
10 images from B1 to B10. As can be seen, the high response of our contrastive
CNN only lies in the area where A differs from the compared image, while the
high response of conventional CNN scatters over the whole image. Moreover,
a toy experiment with images filled in simple geometry patterns is designed for
more obvious illustration of feature maps from our contrastive CNN and conven-
tional CNN, and the visualization is shown in Fig. 5. Both experiments clearly
demonstrate that our contrastive CNN can focuses on the distinct characteristics
between the two faces to compare as claimed.

Table 5. Comparison on LFW in terms of mean accuracy (mAcc). * denotes the
outside data is private (not publicly available).

Methods # Models Depth Data mAcc on LFW

DeepFace [27] 3 7 4M* 97.35

DeepID2+ [26] 1 5 300K* 98.70

Deep FR [22] 1 15 2.6M 98.95

FaceNet [25] 1 14 200M* 99.65

Yi et al. [35] 1 10 WebFace 97.73

Ding et al. [8] 1 14 WebFace 98.43

LargeMargin [18] 1 17 WebFace 98.71

SphereFace [17] 1 64 WebFace 99.42

Contrastive CNN (ours) 1 16 WebFace 99.12

4.3 Comparison with Existing Methods

Furthermore, our proposed method is compared with a few state-of-the-art meth-
ods. In this experiment, contrastive CNN with 16 layers is used for fair compari-
son as most existing methods are equipped with large architectures. All methods
are tested on the LFW and IJB-A datasets as shown in Tables 5 and 6. In Table 5,
the proposed contrastive convolution outperforms all methods that are trained
on WebFace with reasonable number of layer. In Table 6, our method achieves the
best results of TAR = 63.91% for FAR = 0.001 on IJB-A, which demonstrates
the effectiveness of our contrastive CNN.

5 Conclusion

In this work, we propose a novel CNN architecture with what we referred to
as contrastive convolution for face verification. Instead of extracting the same
features of a face no matter who it is compared in conventional CNN, our method
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Table 6. Comparison on IJB-A in terms of TAR (%) at FAR = 0.1, 0.01, and 0.001.
Results of GOTS and OPENBR are from [14]. It is worth noting that our Contrastive
CNN is not finetuned on the training splits of IJB-A, while some of those methods,
such as [5,24] are finetuned on the training splits of IJB-A for better performance.

Methods TAR(%)@FAR on IJB-A

0.1 0.01 0.001

OPENBR 43.3 23.6 10.4

GOTS 62.7 40.6 19.8

ReST [32] - 63.0 54.8

FastSearch [29] 89.3 72.9 51.0

PAM [20] - 73.3 55.2

DR-GAN [19] - 75.5 51.8

Deep Multi-pose [1] 91.1 78.7 -

Triplet Similarity [24] 94.5 79.0 59.0

Joint Bayesian [5] 96.1 81.8 -

Contrastive CNN (ours) 95.31 84.01 63.91

extracts contrastive features of a given face according to who it is compared
with. The contrastive convolution is beneficial owing to its dynamitic generation
of contrastive kernels based on the pair of faces being compared. The proposed
contrastive convolution can be incorporated into any kind of CNN architecture.
As evaluated on two wild benchmarks of LFW and IJB-A, the contrastive CNN
achieves promising performance with significant improvement, demonstrating its
effectiveness.
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