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Abstract. In this paper, we propose a graininess-aware deep feature
learning method for pedestrian detection. Unlike most existing pedes-
trian detection methods which only consider low resolution feature maps,
we incorporate fine-grained information into convolutional features to
make them more discriminative for human body parts. Specifically, we
propose a pedestrian attention mechanism which efficiently identifies
pedestrian regions. Our method encodes fine-grained attention masks
into convolutional feature maps, which significantly suppresses back-
ground interference and highlights pedestrians. Hence, our graininess-
aware features become more focused on pedestrians, in particular those of
small size and with occlusion. We further introduce a zoom-in-zoom-out
module, which enhances the features by incorporating local details and
context information. We integrate these two modules into a deep neural
network, forming an end-to-end trainable pedestrian detector. Compre-
hensive experimental results on four challenging pedestrian benchmarks
demonstrate the effectiveness of the proposed approach.

Keywords: Pedestrian detection · Attention · Deep learning
Graininess

1 Introduction

Pedestrian detection is an important research topic in computer vision and has
attracted a considerable attention over past few years [4,7,9,11,18,32,37,39,43,
45,48]. It plays a key role in several applications such as autonomous driving,
robotics and intelligent video surveillance. Despite the recent progress, pedes-
trian detection task still remains a challenging problem because of large varia-
tions, low resolution and occlusion issues.

Existing methods for pedestrian detection can mainly be grouped into two
categories: hand-crafted features based [7,9,40,44] and deep learning features
based [4,11,18,48]. In the first category, human shape based features such as
Haar [39] and HOG [7] are extracted to train SVM [7] or boosting classifiers [9].
While these methods are sufficient for simple applications, these hand-crafted
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Fig. 1. Overview of our proposed framework. The model includes three key parts:
convolutional backbone, pedestrian attention module and zoom-in-zoom-out module
(ZIZOM). Given an image, the backbone generates multiple features representing
pedestrians of different scales. The attention masks are encoded into backbone feature
maps to highlight pedestrians and suppress background interference. ZIZOM incorpo-
rates local details and context information to further enhance the feature maps.

feature representations are not robust enough for detecting pedestrian in complex
scenes. In the second category, deep convolutional neural network (CNN) learns
high-level semantic features from raw pixels, which shows more discriminative
capability to recognize pedestrian with complex poses from noisy background.
Deep learning features have considerably improved pedestrian detection perfor-
mance. While many CNN based methods have been proposed [4,11,18,26,48],
there are still some shortcomings for methods in this category. On one hand,
most methods employ heavy deep network and need refinement stage to boost
the detection results. The inference time is scarified to ensure accuracy, making
these methods unsuitable for real-time application. On the other hand, feature
maps of coarse resolution and fixed receptive field are often used for prediction,
which is inefficient for distinguishing targets of small size from background.

In this paper, we propose a graininess-aware deep feature learning (GDFL)
based detector for pedestrian detection. We exploit fine-grained details into deep
convolutional features for robust pedestrian detection. Specifically, we propose
a scale-aware pedestrian attention module to guide the detector to focus on
pedestrian regions. It generates pedestrian attentional masks which indicate the
probability of human at each pixel location. With its fine-grained property, the
attention module has high capability to recognize small size target and human
body parts. By encoding these masks into the convolutional feature maps, they
significantly eliminate background interference while highlight pedestrians. The
resulting graininess-aware deep features have much more discriminative capabil-
ity to distinguish pedestrians, especially the small-size and occluded ones from
complex background. In addition, we introduce a zoom-in-zoom-out module to
further alleviate the detection of targets at small size. It mimics our intuitive
zoom in and zoom out processes, when we aim to locate an object in an image.
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The module incorporates local details and context information in a convolu-
tional manner to enhance the graininess-aware deep features for small size target
detection. Figure 1 illustrates the overview of our proposed framework. The pro-
posed two modules can be easily integrated into a basic deep network, leading
to an end-to-end trainable model. This results in a fast and robust single stage
pedestrian detector, without any extra refinement steps. Extensive experimental
results on four widely used pedestrian detection benchmarks demonstrate the
effectiveness of the proposed method. Our GDFL approach achieves competi-
tive performance on Caltech [10], INRIA [7], KITTI [14] and MOT17Det [29]
datasets and executes about 4 times faster than competitive methods.

2 Related Work

Pedestrian Detection: With the prevalence of deep convolutional neural net-
work, which has achieved impressive results in various domains, most recent
pedestrian detection methods are CNN-based. Many methods were variations
of Faster R-CNN [35] which has shown great accuracy in general object detec-
tion. RPN+BF [43] replaced the downstream classifier of Faster R-CNN with
a boosted forest and used aggregated features with a hard mining strategy to
boost the small size pedestrian detection performance. SA-FastRCNN [19] and
MS-CNN [5] extended Fast and Faster R-CNN [15,35] with a multi-scale network
to deal with the scale variations problem, respectively. Instead of a single down-
stream classifier, F-DNN [11] employed multiple deep classifiers in parallel to
post verify each region proposal using a soft-reject strategy. Different from these
two stages methods, our proposed approach directly outputs detection results
without post-processing [23,34]. Apart the above full-body detectors, several
human part based methods [12,31,32,37,47,48] have been introduced to handle
occlusion issues. These occlusion-specific methods learned a set of part-detector,
where each one was responsive to detect a human part. The results from these
part detections were then fused properly for locating partially occluded pedes-
trians. The occlusion-specific detectors were able to give a high confidence score
based on the visible parts when the full-body detector was confused by the pres-
ence of background. Instead of part-level classification, we explore pixel-level
masks which guide the detector to pay more attention to human body parts.

Segmentation in Detection: Since our pedestrian attention masks are gen-
erated in a segmentation manner [17,25], we present here some methods that
have also exploited semantic segmentation information. Tian et al. [38] opti-
mized pedestrian detection with semantic tasks, including pedestrian attributes
and scene attributes. Instead of simple binary detection, this method consid-
ered multiple classes according to the attributes to handle pedestrian varia-
tions and discarded hard negative samples with scene attributes. Mao et al. [27]
have demonstrated that fusing semantic segmentation features with detection
features improves the performance. Du et al. [11] exploited segmentation as a
strong cue in their F-DNN+SS framework. The segmentation mask was used in



748 C. Lin et al.

Input Image conv4_3 conv5_3 conv_fc7 conv6_2

Fig. 2. Visualization of feature maps from different convolutional layers. Shallow layers
have strong activation for small size targets but are unable to recognize large size
instances. While deep layers tend to encode pedestrians of large size and ignore small
ones. For clarity, only one channel of feature maps is shown here. Best viewed in color.

a post-processing manner to suppress prediction bounding boxes without any
pedestrian. Brazil et al. [4] extended Faster R-CNN [35] by replacing the down-
stream classifier with an independent deep CNN and added a segmentation loss
to implicitly supervise the detection, which made the features be more seman-
tically meaningful. Instead of exploiting segmentation mask for post-processing
or implicit supervision, our attention mechanism directly encodes into feature
maps and explicitly highlights pedestrians.

3 Approach

In this section, we present the proposed GDFL method for pedestrian detec-
tion in detail. Our framework is composed of three key parts: a convolutional
backbone, a scale-aware pedestrian attention module and a zoom-in-zoom-out
module. The convolutional backbone generates multiple feature maps for rep-
resenting pedestrian at different scales. The scale-aware pedestrian attention
module generates several attention masks which are encoded into these con-
volutional feature maps. This forms graininess-aware feature maps which have
more capability to distinguish pedestrians and body parts from background. The
zoom-in-zoom-out module incorporates extra local details and context informa-
tion to further enhance the features. We then slide two sibling 3× 3 convolutional
layers over the resulting feature maps to output a detection score and a shape
offset relative to the default box at each location [23].

3.1 Multi-layer Pedestrian Representation

Pedestrians have a large variance of scales, which is a critical problem for an accu-
rate detection due to the difference of features between small and large instances.
We exploit the hierarchical architecture of the deep convolutional network to
address this multi-scale issue. The network computes feature maps of different
spatial resolutions with successive sub-sampling layers, which forms naturally
a feature pyramid [22]. We use multiple feature maps to detect pedestrians at
different scales. Specifically, we tailor the VGG16 network [36] for detection, by
removing all classification layers and converting the fully connected layers into
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Fig. 3. Visualization of pedestrian attention masks generated from Caltech test images.
From left to right are illustrated: images with the ground truth bounding boxes, pedes-
trian v.s. background mask, small-size pedestrian mask, and large-size pedestrian mask.
The pedestrian/background mask corresponds to the sum of the last two masks and
can be seen as a single scale pedestrian mask. Best viewed in color.

convolutional layers. Two extra convolutional layers are added on the end of the
converted-VGG16 in order to cover large scale targets. The architecture of the
network is presented on the top of Fig. 1. Given an input image, the network
generates multiple convolutional feature layers with increasing sizes of recep-
tive field. We select four intermediate convolutional layers {conv4 3, conv5 3,
conv fc7, conv6 2} as detection layers for multi-scale detection. As illustrated
in Fig. 2, shallower convolutional layers with high resolution feature maps have
strong activation for small size targets, while large-size pedestrians emerge at
deeper layers. We regularly place a series of default boxes [23] with different
scales on top of the detection layers according to their representation capability.
The detection bounding boxes are predicted based on the offsets with respect to
these default boxes, as well as the pedestrian probability in each of those boxes.
The high resolution feature maps from layers conv4 3 and conv5 3 are associated
with default boxes of small scales for detecting small target, while those from
layers conv fc7 and conv6 2 are designed for large pedestrian detection.

3.2 Pedestrian Attention Module

Despite the multi-layer representation, the feature maps from the backbone are
still too coarse, e.g., stride 8 on conv4 3, to effectively locate small size pedes-
trians and recognize human body parts. In addition, even if each detection layer
tends to represent pedestrian of particular size, it would also consider target of
other scales, which is undesirable and may lead to box-in-box detection. We pro-
pose a scale-aware pedestrian attention module to make our detector pay more
attention to pedestrians, especially small size ones, and guide feature maps to
focus on target of specific scale via pixel-wise attentional maps. By encoding the
fine-grained attention masks into the convolutional feature maps, the features



750 C. Lin et al.

Input image

Small-size Pedestrian A en on Large-size Pedestrian A en on

conv4_3 conv5_3 conv_fc7 conv6_2

Fig. 4. Visualization of feature maps from detection layers of the backbone network
(top), and visualization of feature maps with pedestrian attention (bottom). With our
attention mechanism, the background interference is significantly attenuated and each
detection layer is more focused on pedestrians of specific size. Best viewed in color.

representing pedestrian are enhanced, while the background interference is sig-
nificantly reduced. The resulting graininess-aware features have more powerful
capability to recognize human body parts and are able to infer occluded pedes-
trian based on the visible parts.

The attention module is built on the layers conv3 3 and conv4 3 of the back-
bone network. It generates multiple masks that indicate the probability of pedes-
trian of specific size at each pixel location. The architecture of the attention mod-
ule is illustrated in Fig. 1. We construct a max-pooling layer and three atrous
convolutional layers [20] on top of conv4 3 to get conv mask layer which has high
resolution and large receptive field. Each of conv3 3, conv4 3 and conv mask lay-
ers is first reduced into (Sc +1)-channel maps and spatially up-sampled into the
image size. They are then concatenated and followed by a 1× 1 convolution and
softmax layer to output attention maps. Where Sc corresponds to the number of
scale-class. In default, we distinguish small and large pedestrians according to a
height threshold of 120 pixels and set Sc = 2. Figure 3 illustrates some examples
of pedestrian masks, which effectively highlight pedestrian regions.

Once the attention masks M ∈ RW×H×3 are generated, we encode them into
the feature maps from the convolutional backbone to obtain our graininess-aware
feature maps by resizing the spatial size and element-wise product:

F̃i = Fi � R(MS , i), i ∈ {conv4, conv5} (1)
F̃j = Fj � R(ML, j), j ∈ {conv fc7, conv6} (2)

where MS ∈ RW×H×1 and ML ∈ RW×H×1 correspond to attention masks
highlighting small and large pedestrians, respectively. W and H are the size of
input image. R(·, i) is the function that resizes the input into the size of ith layer.
� is the channel element-wise dot product operator. Fi represents the feature
maps from backbone network while F̃i is the graininess-aware feature maps with
pedestrian attention. The mask R(MS , i) is encoded into the feature maps from
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Fig. 5. Zoom-in-zoom-out module. (a) According to their receptive fields, the layer
conv5 3 has more capability to get context information while the layer conv3 3 is
able to get more local details. (b) Architecture of the module. Features from adjacent
detection layers are re-sampled and encoded with the corresponding attention mask
before to be fused with current detection features.

layers conv4 3 and conv5 3, which are responsive for small pedestrian detection.
While the mask R(ML, i) is encoded into the feature maps from conv fc7 and
conv6 2, which are used for large pedestrian detection. The feature maps with
and without attention masks are shown in Fig. 4, where pedestrian information
is highlighted while background is smoothed with masks.

3.3 Zoom-In-Zoom-Out Module

When our human annotators try to find and recognize a small object in an image,
we often zoom in and zoom out several times to correctly locate the target.
The zoom-in process allows to get details information and improve the location
precision. While the zoom-out process permits to import context information,
which is a key factor when reasoning the probability of a target in the region,
e.g., pedestrians tend to appear on the ground or next to cars than on sky.
Inspired by these intuitive operations, we introduce a zoom-in-zoom-out module
(ZIZOM) to further enhance the features. It explores rich context information
and local details to facilitate detection.

We implement the zoom-in-zoom-out module in a convolutional manner by
exploiting the feature maps of different receptive fields and resolutions. Feature
maps with smaller receptive fields provide rich local details, while feature maps
with larger receptive fields import context information. Figure 5(b) depicts the
architecture of the zoom-in-zoom-out module. Specifically, given the graininess-
aware feature maps F̃i, we incorporate the features from directly adjacent layers
Fi−1 and Fi+1 to mimic zoom-in and zoom-out processes. Each adjacent layer is
followed by an 1 × 1 kernel convolution to select features and an up- and down-
sampling operation to harmonize the spatial size of feature maps. The sampling



752 C. Lin et al.

operations consist of max-pooling and bi-linear interpolation without learning
parameters for simplicity. The attention mask of the current layer, Maski, is
encoded into these sampled feature maps, making them focus on targets of the
corresponding size. We then fuse these feature maps along their channel axis
and generate the feature maps for final prediction with an 1 × 1 convolutional
layer for dimension reduction as well as features recombination. Since the feature
maps from different layers have different scales, we use L2-normalization [24] to
rescale their norm to 10 and learn the scale during the back propagation.

Figure 5(a) analyzes the effects of the ZIZOM in terms of receptive field
with some convolutional layers. The features from conv5 3 enhance the context
information with the presence of a car and another pedestrian. Since the recep-
tive field of conv3 3 matches with size of target, its features are able to import
more local details about the pedestrian. The concatenation of these two adja-
cent features with conv4 3 results in more powerful feature maps as illustrated
in Fig. 5(b).

3.4 Objective Function

All the three components form a unified framework which is trained end-to-end.
We formulate the following multi-task loss function L to supervise our model:

L = Lconf + λlLloc + λmLmask (3)

where Lconf is the confidence loss, Lloc corresponds to the localization loss and
Lmask is the loss function of pedestrian attention masks. λl and λm are two
parameters to balance the importance of different tasks. In our experiments we
empirically set λl to 2 and λm to 1.

The confidence score branch is supervised by a Softmax loss over two classes
(pedestrian vs. background). The box regression loss Lloc targets at minimizing
the Smooth L1 loss [15], between the predicted bounding-box regression offsets
and the ground truth box regression targets. We develop a weighted Softmax loss
to supervise our pedestrian attention module. There are two main motivations
for this weighting policy: (1) Most regions are background, but only few pixels
correspond to pedestrians. This imbalance makes the training inefficient; (2) The
large size instance occupies naturally larger area compared to the small ones.
This size inequality pushes the classifier to ignore small pedestrians. To address
the above imbalances, we introduce a instance-sensitive weight ωi = α+β 1

hi
and

define the attention mask loss Lmask as a weighted Softmax loss:

Lmask = − 1
Ns

Ns∑

i=1

Sc∑

ls=0

1{yi = ls}ω
1{ls �=0}
i log(clsi ) (4)

where Ns is the number of pixels in mask, Sc is the number of scale-class, and
hi is the height of the target representing by the ith pixel. 1{·} is the indicator
function. yi is the ground truth label, ls = 0 corresponds to the background label
and clsi is the predicted score of ith pixel for ls class. The constants α and β are
set to 3 and 10 by cross validation.
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4 Experiments and Analysis

4.1 Datasets and Evaluation Protocols

We comprehensively evaluated our proposed method on 3 benchmarks: Caltech
[10], INRIA [7] and KITTI [14]. Here we give a brief description of these bench-
marks.

The Caltech dataset [10] consists of ∼10 h of urban driving video with 350K
labeled bounding boxes. It results in 42,782 training images and 4,024 test
images. The log-average miss rate is used to evaluate the detection performance
and is calculated by averaging miss rate on false positive per-image (FPPI)
points sampled within the range of [10−2, 100]. As the purpose of our approach
is to alleviate occlusion and small-size issues, we evaluated our GDFL on three
subsets: Heavy Occlusion, Medium and Reasonable. In the Heavy Occlusion sub-
set, pedestrians are taller than 50 pixels and 36 to 80% occluded. In the Medium
subset, people are between 30 and 80 pixels tall, with partial occlusion. The Rea-
sonable subset consists of pedestrians taller than 50 pixels with partial occlusion.

The INRIA dataset [7] includes 614 positive and 1,218 negative training
images. There are 288 test images available for evaluating pedestrian detection
methods. The evaluation metric is the log-average miss rate on FPPI. Due to
limited available annotations, we only considered the Reasonable subset for com-
parison with state-of-the-art methods.

The KITTI dataset [14] consists of 7,481 training images and 7,518 test
images, comprising about 80K annotations of cars, pedestrians and cyclists.
KITTI evaluates the PASCAL-style mean Average Precision (mAP) with three
metrics: easy, moderate and hard. The difficulties are defined based on minimum
pedestrian height, occlusion and truncation level.

The MOT17Det dataset [29] consists of 14 video sequences in unconstrained
environments, which results in 11,235 images. The dataset is split into two parts
for training and testing, which are composed of 7 video sequences respectively.
The Average Precision (AP) is used for evaluating different methods.

4.2 Implementation Details

Weakly Supervised Training for Attention Module: To train the pedes-
trian attention module, we only use the bounding box annotations in order to be
independent of any pixel-wise annotation. To achieve this, we explore a weakly
supervised strategy by creating artificial foreground segmentation using bound-
ing box information. In practice, we consider pixels within the bounding box as
foreground while the rest are labeled as background. We assign the pixels that
belong to multiple bounding boxes to the one that has the smallest area. As illus-
trated in Fig. 3, despite the weak supervised training, our generated pedestrian
masks carry significant semantic segmentation information.

Training: Our network is trained end-to-end using stochastic gradient descent
algorithm (SGD). We partially initialize our model with the pre-trained model
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Table 1. Comparison with the state-of-the-art methods on the Caltech heavy occlusion
subset in terms of speed and miss rate.

Method Miss rate (%) Computing time (s)

FPDW [8] 95.56 0.2

DeepCascade+ [1] 82.19 0.06

RPN+BF [43] 74.36 0.36

SA-FastRCNN [19] 64.35 0.59

DeepParts [37] 60.42 1

MS-CNN [5] 59.94 0.10

SDS-RCNN [4] 58.55 0.26

F-DNN+SS [11] 53.76 2.48

JL-TopS [48] 49.20 0.6

Our GDFL 43.18 0.05

in [23], and all new additional layers are randomly initialized with the “xavier”
method [16]. We adopt the data augmentation strategies as in [23] to make
our model more robust to scale and illumination variations. Besides, during the
training phase, negative samples largely over-dominate positive samples, and
most are easy samples. For more stable training, instead of using all negative
samples, we sort them by the highest loss values and keep the top ones so that
the ratio between the negatives and positives is at most 3:1.

Inference: We use the initial size of input image to avoid loss of information
and save inference time: 480 × 640 for Caltech and INRIA, and 384 × 1280 for
KITTI. In inference stage, a large number of bounding boxes are generated by
our detector. We perform non-maximum suppression (NMS) with a Intersection
over Union (IoU) threshold of 0.45 to filter redundant detection. We use a single
GeForce GTX 1080 Ti GPU for computation and our detector executes about
20 frames per second with inputs of size 480 × 640 pixels.

4.3 Results and Analysis

Comparison with State-of-the-Art Methods: We evaluated our proposed
GDFL method on four challenging pedestrian detection benchmarks, Caltech
[10], INRIA [7], KITTI [14] and MOT17Det [29].

Caltech: We trained our model on the Caltech training set and evaluated on the
Caltech testing set. Table 1 lists the comparison with state-of-the-art methods
on Caltech heavy occlusion subset in terms of execution time and miss rate.
Figure 6 illustrates the ROC plot of miss rate against FPPI for the available
top performing methods reported on Caltech medium and reasonable subsets
[1,4–6,8,11,19,37,43]. In heavy occlusion case, our GDFL achieves 43.18% miss
rate, which is significantly better than the existing occlusion-specific detectors.
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Fig. 6. Comparison with state-of-the-art methods on the Caltech dataset.
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Fig. 7. Comparison with state-of-the-art methods on the INRIA dataset using the
reasonable setting.

This performance suggests that our detector, guided by fine-grained information,
has better capability to identify human body parts and thus to locate occluded
pedestrians. In Caltech medium subset, our method has a miss rate of 32.50%
which is slightly better than the previous best method [11]. In more reasonable
scenarios, our approach achieves comparable performance with the method that
achieves best results on Caltech reasonable subset [4].

Since our goal is to propose a fast and accurate pedestrian detector, we have
also examined the efficiency of our method. Table 1 compares the running time
on Caltech dataset. Our GDFL method is much faster than F-DNN+SS [11]
and is about 10× faster than the previous best method on Caltech heavy occlu-
sion subset, JL-TopS [48]. While SDS-RCNN [4] performs slightly better than
our method on Caltech reasonable subset (7.36% vs. 7.84%), it needs 4× more
inference times than our approach. The comparison shows that our pedestrian
detector achieves a favorable trade-off between speed and accuracy.

INRIA: We trained our model with 614 positive images by excluding the negative
images and evaluated on the test set. Figure 7 illustrates the results of our app-
roach and the methods that perform best on the INRIA set [2,3,21,28,30,33,44].
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Table 2. Comparison with published pedestrian detection methods on the KITTI
dataset. The mAP (%) and running time are collected from the KITTI leaderboard.

Method mAP on easy mAP on moderate mAP on hard Time (s)

FilteredICF [46] 69.05 57.12 51.46 2

DeepParts [37] 70.49 58.68 52.73 1

CompACT-deep [6] 69.70 58.73 52.73 1

RPN+BF [43] 77.12 61.15 55.12 0.6

SDS-RCNN [4] - 63.05 - 0.21

CFM [18] 74.21 63.26 56.44 2

MS-CNN [5] 83.70 73.62 68.28 0.4

Ours (384 × 1280) 83.78 67.73 60.07 0.15

Ours (576 × 1920) 84.61 68.62 66.86 0.27

Table 3. Comparison with published state-of-the-art methods on MOT17Det bench-
mark. The symbol ∗ means that external data are used for training.

Method KDNT∗ [42] Our GDFL SDP [41] FRCNN [35] DPM [13]

Average precision 0.89 0.81 0.81 0.72 0.61

Our detector yields the state-of-the-art performance with 5.04% miss rate, out-
performing the competitive methods by more than 1%. It proves that our method
can achieve great results even if the training set is limited.

KITTI: We trained our model on the KITTI training set and evaluated on
the designated test set. We compared our proposed GDFL approach with the
current pedestrian detection methods on KITTI [4–6,18,37,43,46]. The results
are listed in Table 2. Our detector achieves competitive performance with MS-
CNN [5] yet executes about 3× faster with the original input size. Apart its
scale-specific property, MS-CNN [5] has explored input and feature up-sampling
strategies which are crucial for improving the small objects detection perfor-
mance. Following this process, we up-sampled the inputs by 1.5 times and we
observed a significant improvement on the hard subset but with more execution
time. Note that in the KITTI evaluation protocol, cyclists are regarded as false
detections while people-sitting are ignored. With this setting, our pedestrian
attention mechanism is less helpful since it tends to highlight all human-shape
targets including person riding a bicycle. This explains the reason our model
does not perform as well as on KITTI than that on Caltech or INRIA.

MOT17Det: We trained and evaluated our detector on the designated training
and testing sets, respectively and compared with existing methods. Table 3 tab-
ulates the detection results of our method and the state-of-the-art approaches.
Our proposed detector achieves competitive 0.81 average precision without using
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Table 4. Ablation experiments evaluated on the Caltech test set. Analysis show the
effects of various components and design choices on detection performance.

Component Choice

Single-layer detection �
Multi-layer detection � � � � � � �
Instance-sensitive weight � � � �
Single scale attention �
Scale-aware attention � � � �
ZIZOM on F̃conv4 3 � �
ZIZOM on F̃conv5 3 �
ZIZOM on Fconv4 3 �
Miss rate on reasonable 16.86 9.44 9.16 8.44 9.59 7.36 8.01 8.86

Miss rate on medium 42.96 36.49 34.36 33.45 34.40 32.50 32.99 35.74

Miss rate on heavy occlusion 53.44 50.21 47.60 44.68 47.69 43.18 42.86 45.73

external datasets for training. This performance demonstrates the generalization
capability of our model.

Ablation Experiments: To better understand our model, we conducted abla-
tion experiments using the Caltech dataset. We considered our convolutional
backbone as baseline and successively added different key components to exam-
ine their contributions on performance. Table 4 summarizes our comprehensive
ablation experiments.

Multi-layer Detection: We first analyzed the advantages of using multiple detec-
tion layers. To this end, instead of multi-layer representation, we only used
conv fc7 layer to predict pedestrians of all scales. The experimental results of
these two architectures demonstrate the superiority of multi-layer detection with
a notable gain of 7% on Caltech Reasonable subset.

Attention Mechanism: We analyzed the effects of our attention mechanism, in
particular the difference between single scale attention mask and multiple scale-
aware attention masks. To control this, we compared two models with these
two attention designs. From Table 4, we can see that both models improve the
results, but the model with scale-aware attention has clearly better results. The
confusions, such as box-in-box detection, are suppressed with our scale-aware
attention masks. We observe an impressive improvement on the Caltech heavy
occlusion subset, which demonstrates that the fine-grained masks better capture
body parts. Some examples of occlusion cases are depicted in Fig. 8. We can see
that the features without attention are unable to recognize human parts and
tend to ignore occluded pedestrians. When we encode the pedestrian masks into
these feature maps, human body parts are considerably highlighted. The detector



758 C. Lin et al.

Fig. 8. Hard detection samples where box-based detector is often fooled due to noisy
representation. The first row illustrates the images with pedestrians located by green
bounding boxes. The second and third rows show the feature maps without attention
masks and the graininess-aware feature maps, respectively. Best viewed in color.

becomes able to deduce the occluded parts by considering visible parts, which
makes plausible the detection of occluded targets.

Instance-Sensitive Weight in Softmax Loss: During the training stage, our atten-
tion module was supervised by a weighted Softmax loss and we examined how
the instance-sensitive weight contributed to the performance. We compared two
models trained with and without the weight term. As listed in the 5th column of
Table 4, the performance drops on all three subsets of Caltech with the conven-
tional Softmax loss. In particular, the miss rate increases from 44.68% to 47.69%
in heavy occlusion case. The results point out that the instance-sensitive weight
term is a key component for accurate attention masks generation.

ZIZOM: We further built the zoom-in-zoom-out module on our model with
attention masks. Table 4 shows that with the ZIZOM on top of the graininess-
aware features F̃conv4 3, the performance is ameliorated by 1% on all subsets
of Caltech. However, when we further constructed a ZIZOM on F̃conv5 3, the
results were nearly the same. Since the feature maps F̃conv5 3 represent pedes-
trians with about 100 pixels tall, these results confirm our intuition that context
information and local details are important for small targets but are less helpful
for large ones. To better control the effectiveness of this module, we disabled the
attention mechanism and considered a convolutional backbone with the ZIZOM
on Fconv4 3 model. The comparison with the baseline shows a gain of 4% on
the Caltech heavy occlusion subset. The results prove the effectiveness of the
proposed zoom-in-zoom-out module.

5 Conclusion

In this paper, we have proposed a framework which incorporates pixel-wise
information into deep convolutional feature maps for pedestrian detection. We
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have introduced scale-aware pedestrian attention masks and a zoom-in-zoom-
out module to improve the capability of the feature maps to identify small
and occluded pedestrians. Experimental results on three widely used pedestrian
benchmarks have validated the advantages on detection robustness and efficiency
of the proposed method.
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