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Abstract. We present a data-driven approach to reconstructing high-
resolution and detailed volumetric representations of 3D shapes.
Although well studied, algorithms for volumetric fusion from multi-view
depth scans are still prone to scanning noise and occlusions, making it
hard to obtain high-fidelity 3D reconstructions. In this paper, inspired
by recent advances in efficient 3D deep learning techniques, we introduce
a novel cascaded 3D convolutional network architecture, which learns to
reconstruct implicit surface representations from noisy and incomplete
depth maps in a progressive, coarse-to-fine manner. To this end, we also
develop an algorithm for end-to-end training of the proposed cascaded
structure. Qualitative and quantitative experimental results on both sim-
ulated and real-world datasets demonstrate that the presented approach
outperforms existing state-of-the-art work in terms of quality and fidelity
of reconstructed models.
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1 Introduction

High-quality reconstruction of 3D objects and scenes is key to 3D environment
understanding, mixed reality applications, as well as the next generation of
robotics, and has been one of the major frontiers of computer vision and com-
puter graphics research for years [13,18,30,39,42]. Meanwhile, the availability
of consumer-grade RGB-D sensors, such as the Microsoft Kinect and the Intel
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RealSense, involves more novice users to the process of scanning surrounding 3D
environments, opening up the need for robust reconstruction algorithms which
are resilient to errors in the input data (e.g., noise, distortion, and missing areas).

In spite of recent advances in 3D environment reconstruction, acquiring high-
fidelity 3D shapes with imperfect data from casual scanning procedures and
consumer-level RGB-D sensors is still a particularly challenging problem. Since
the pioneering KinectFusion work [39], many 3D reconstruction systems, both
real-time [18,29,32,52,59] and offline [13], have been proposed, which often use
a volumetric representation of the scene geometry, i.e., the truncated signed
distance function (TSDF) [17]. However, depth measurement acquired by con-
sumer depth cameras contains a significant amount of noise, plus limited scan-
ning angles lead to missing areas, making vanilla depth fusion suffer from blur-
ring surface details and incomplete geometry. Another line of research [30,40,46]
focuses on reconstructing complete geometry from noisy and sparsely-sampled
point clouds, but cannot process point clouds with a large percentage of missing
data and may produce bulging artifacts.

Fig. 1. Illustration of a two-stage 3D-CFCN architecture. Given partial and noisy
raw depth scans as input, a fused low-resolution TSDF volume is fed to the stage-1
3D fully convolutional network (3D-FCN), producing an intermediate representation.
Exploiting this intermediate feature, the network then (1) regresses a low-resolution
but complete TSDF and (2) predicts which TSDF patches should be further refined.
For each patch that needs further refinements, the corresponding block is cropped
from a fused high-resolution input TSDF, and the stage-2 3D-FCN uses it to infer a
detailed high-resolution local TSDF volume, which substitutes the corresponding region
in the aforementioned regressed TSDF and thus improves the output’s resolution. Note
a patch of the global intermediate representation also flows into stage 2 to provide
structure guidance. The rightmost column shows the high-quality reconstruction. Close-
ups show accurately reconstructed details, e.g., facial details, fingers, and wrinkles on
clothes. Note the input scan is fused from 4 viewpoints.

The wider availability of large-scale 3D model repositories [6,61] stimulates
the development of data-driven approaches for shape reconstruction and com-
pletion. Assembly-based methods, such as [10,49], require carefully segmented
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3D databases as input, operate on a few specific classes of objects, and can only
generate shapes with limited variety. On the other hand, recent deep learning-
based approaches [14,22,28,48,50,51,54,55,60,63,64] mostly focus on inferring
3D geometry from single-view images [22,50,51,54,55,63,64] or high-level infor-
mation [48,60] and often get stuck at low resolutions (typically 323 voxel res-
olution) due to high memory consumption, which is far too low for recovering
geometric details.

In this work, we present a coarse-to-fine approach to high-fidelity volu-
metric reconstruction of 3D shapes from noisy and incomplete inputs using a
3D cascaded fully convolutional network (3D-CFCN) architecture, which out-
performs state-of-the-art alternatives regarding the resolution and accuracy of
reconstructed models. Our approach chooses recently introduced octree-based
efficient 3D deep learning data structures [43,53,56] as the basic building block,
however, instead of employing a standard single-stage convolutional neural net-
work (CNN), we propose to use multi-stage network cascades for detailed shape
information reconstruction, where the object geometry is predicted and refined
progressively via a sequence of sub-networks. The rationale for choosing the cas-
caded structure is two-fold. First, to predict high-resolution (e.g., 5123, 10243,
or even higher) geometry information, one may have to deploy a deeper 3D
neural network, which could significantly increase memory requirements even
using memory-efficient data representations. Second, by splitting the geometry
inference into multiple stages, we also simplify the learning tasks, since each
sub-network now only needs to learn to reconstruct 3D shapes at a certain res-
olution.

Training a cascaded architecture is a nontrivial task, particularly when
octree-based data representations are employed, where both the structure and
the value of the output octree need to be predicted. We thus design the sub-
networks to learn where to refine the 3D space partitioning of the input volume,
and the same information is used to guide the data propagation between con-
secutive stages as well, which makes end-to-end training feasible by avoiding
exhaustively propagating every volume block.

The primary contribution of our work is a novel learning-based, progres-
sive approach for high-fidelity 3D shape reconstruction from imperfect data. To
train and quantitatively evaluate our model on real-world 3D shapes, we also
contribute a dataset containing both detailed full body reconstructions and raw
depth scans of 10 subjects. We then conduct careful experiments on both sim-
ulated and real-world datasets, comparing the proposed framework to a variety
of state-of-the-art alternatives. These experiments show that, when dealing with
noisy and incomplete inputs, our approach produces 3D shapes with significantly
higher accuracy and quality than other existing methods.1

1 We will make our 3D-CFCN implementation publicly available.



3D-CFCN 629

2 Related Work

There has been a large body of work focused on 3D reconstruction over the
past a few decades. We refer the reader to [2] and [9] for detailed surveys of
methods for reconstructing 3D objects from point clouds and RGB-D streams,
respectively. Here we only summarize the most relevant previous approaches and
categorize them as geometric, assembly-based, and learning-based approaches.

Geometric Approaches. In the presence of sample noise and missing data,
many choose to exploit the smoothness assumption, which constrains the recon-
structed geometry to satisfy a certain level of smoothness. Gradient-domain
methods [1,4,30] require that the input point clouds be equipped with (ori-
ented) normals and utilize them to estimate an implicit soft indicator function
which discriminates the interior region from the exterior of a 3D shape. Simi-
larly, [5,36] use globally supported radial basis functions (RBFs) to interpolate
the surface. On the other hand, a series of moving least squares (MLS) -based
methods [25,41] attack 3D reconstruction by fitting the input point clouds to
a spatially varying low-degree polynomial. By assuming local or global surface
smoothness, these approaches, to a certain extent, are robust to noise, outliers,
and missing data.

Sensor visibility is another widely used prior in scan integration for object and
scene reconstruction [17,23], which acts as an effective regularizer for structured
noise [65] and can be used to infer empty spaces. For large-scale indoor scene
reconstruction, since the prominent KinectFusion, plenty of systems [13,18,29]
have been proposed. However, they are mostly focused on improving the accuracy
and robustness of camera tracking in order to obtain a globally consistent model.

Compared to these methods, we propose to learn natural 3D shape priors
from massive training samples for shape completion and reconstruction, which
better explores the 3D shape space and avoids undesired reconstructed geome-
tries resulted from hand-crafted priors.

Assembly-Based Approaches. Another line of work assumes that a target
object can be described as a composition of primitive shapes (e.g., planes,
cuboids, spheres, etc.) or known object parts. [8,45] detect primitives in input
point clouds of CAD models and optimize their placement as well as the spa-
tial relationship between them via graph cuts. The method introduced in [47]
first interactively segments the input point cloud and then retrieves a complete
and similar 3D model to replace each segment, while [10] extends this idea by
exploiting the contextual knowledge learned from a scene database to automate
the segmentation as well as improve the accuracy of shape retrieval. To increase
the granularity of the reconstruction to the object component level, [49] proposes
to reassemble parts from different models, aiming to find the combination of can-
didates which conforms the input RGB-D scan best. Although these approaches
can deal with partial input data and bring in semantic information, 3D models
obtained by them still suffer from the lack of geometric diversity.

Learning-Based Approaches. 3D deep neural networks have achieved impres-
sive results on various tasks [7,15,61], such as 3D shape classification, retrieval,
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and segmentation. As for generative tasks, previous research mostly focuses on
inferring 3D shapes from (single-view) 2D images, either with only RGB chan-
nels [14,28,50,54,55,60,63], or with depth information [22,51,64]. While showing
promising advances, these techniques are only capable of generating rough 3D
shapes at low resolutions. Similarly, in [48,57], shape completion is also per-
formed on low-resolution voxel grids due to the high demand of computational
resources.

Aiming to complete and reconstruct 3D shapes at higher resolutions, [19]
proposes a 3D Encoder-Predictor Network (3D-EPN) to firstly predict a coarse
but complete shape volume and then refine it via an iterative volumetric patch
synthesis process, which copy-pastes voxels from k-nearest-neighbors to improve
the resolution of each predicted patch. [26] extends 3D-EPN by introducing a
local 3D CNN to perform patch-level surface refinement. However, these meth-
ods both need separate and time-consuming steps before local inference, either
nearest neighbor queries [19], or 3D boundary detection [26]. By contrast, our
approach only requires a single forward pass for 3D shape reconstruction and pro-
duces higher-resolution results (e.g., 5123 vs. 1283 or 2563). On the other hand,
[27,53] propose efficient 3D convolutional architectures by using octree represen-
tations, which are designed to decode high-resolution geometry information from
dense intermediate features; nevertheless, no volumetric convolutional encoders
and corresponding shape reconstruction architectures are provided. While [42]
presents an OctNet-based [43] end-to-end deep learning framework for depth
fusion, it refines the intermediate volumetric output globally, which makes it
infeasible for producing reconstruction results at higher resolutions even with
memory-efficient data structures. Instead, our 3D-CFCN learns to refine output
volumes at the level of local patches, and thus significantly reduces the memory
and computational cost.

3 Method

This section introduces our 3D-CFCN model. We first give a condensed review
of relevant concepts and techniques in Sect. 3.1. Then we present the pro-
posed architecture and its corresponding training pipeline in Sects. 3.2 and 3.3.
Section 3.4 summaries the procedure of collecting and generating the data which
we used for training our model.

3.1 Preliminaries

Volumetric Representation and Integration. The choice of underlying data
representation for fusing depth measurements is key to high-quality 3D recon-
struction. Approaches varies from point-based representations [31,58], 2.5D fields
[24,38], to volumetric methods based on occupancy maps [62] or implicit surfaces
[17,18]. Among them, TSDF-based volumetric representations have become the
preferred method due to their ability to model continuous surfaces, efficiency for
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incremental updates in parallel, and simplicity for extracting surface interfaces.
In this work, we adopt the definition of TSDF from [39]:

V(p) = Ψ(S(p)), (1)

S(p) =
{ ‖p − ∂Ω‖2, if p ∈ Ω

−‖p − ∂Ω‖2, if p ∈ Ωc , (2)

Ψ(η) =
{

min(1, η
μ ) sgn(η), if η ≥ −μ

invalid, otherwise
, (3)

where S is the standard signed distance function (SDF) with Ω being the object
volume, and Ψ denotes the truncation function with μ being the corresponding
truncation threshold. The truncation is performed to avoid surface interference,
since in practice during scan fusion, the depth measurement is only locally reli-
able due to surface occlusions. In essence, a TSDF obliviously encodes free space,
uncertain measurements, and unknown areas.

Given a set of depth scans at hand, we follow the approach in [17] to integrate
them into a TSDF volume:

V(p) =
∑

wi(p)Vi(p)∑
wi(p)

, (4)

where Vi(p) and wi(p) are the TSDFs and weight functions from the i-th depth
scan, respectively.

OctNet. 3D CNNs are a natural choice for operating TSDF volumes under the
end-to-end learning framework. However, the cubic growth of computational and
memory requirements becomes a fundamental obstacle for training and deploying
3D neural networks at high resolution. Recently, there emerges several work
[43,53,56] that propose to exploit the sparsity in 3D data and employ octree-
based data structures to reduce the memory consumption, among which we take
OctNet [43] as our basic building block.

In OctNet, features and data are organized in the grid-octree data structure,
which consists of a grid of shallow octrees with maximum depth 3. The struc-
ture of shallow octrees are encoded as bit strings so that the features and data
of sparse octants can be packed into continuous arrays. Common operations in
convolutional networks (e.g., convolution, pooling and unpooling) are defined
on the grid-octree structure correspondingly. Therefore, the computational and
memory cost are significantly reduced, while the OctNet itself, as a processing
module, can be plugged into most existing 3D CNN architectures transparently.
However, one major limitation of OctNet is that the structure of grid-octrees
is determined by the input data and keeps fixed during training and inference,
which is undesirable for reconstruction tasks where hole filling and detail refine-
ment need to be performed. We thus propose an approach to eliminate this
drawback in Sect. 3.2.
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Fig. 2. Architecture of a two-stage 3D-CFCN. In this case, the network takes a pair
of low- and high-resolution (i.e., 1283 and 5123) noisy TSDF volume {Vl, Vh} as input,
and produces a refined TSDF at 5123 voxel resolution.

3.2 Architecture

Our 3D-CFCN is a cascade of volumetric reconstruction modules, which are
OctNet-based fully convolutional sub-networks aiming to infer missing surface
areas and refine geometric details. Each module Mi operates at a given voxel
resolution and spatial extent. We find 5123 voxel resolution and a correspond-
ing two-stage architecture suffice to common daily 3D scanning tasks in our
experiments, and thus will concentrate on this architecture in the rest of the
paper; nevertheless, the proposed 3D-CFCN framework can be easily extended
to support arbitrary resolutions and number of stages.

In our implementation, for both sub-networks, we adopt the U-net archi-
tecture [44] while substituting convolution and pooling layers with the corre-
sponding operations from OctNet. Skip connections are also employed between
corresponding encoder and decoder layers to make sure the structures of input
volumes are preserved in the inferred output predictions. To complete the partial
input data and refine its grid-octree structure, we refrain from using OctNet’s
unpooling operation and propose a structure refinement module, which learns to
predict whether an octant needs to be split for recovering finer geometric details.

The first sub-network, M0, receives the encoded low-resolution (i.e., 1283)
TSDF volume V l (see Sect. 3.4), which is fused from raw depth scans {Di} of an
3D object S, as input and produces a feature map F l as well as a reconstructed
TSDF volume Rl at the same resolution. Then for each 163 patch F̃ l

k of F l, we
use a modified structure refinement module to predict if its corresponding block
in Rl needs further improvement.

If a TSDF patch R̃l
k is predicted to be further refined, we then crop its

corresponding 643 patch Ṽ h
k from V h, which is an encoded TSDF volume fused

from the same depth scans {Di}, but at a higher voxel resolution, i.e., 5123.
Ṽ h

k is next fed to the second stage M1 to produce a local feature map F̃h
k with

increased spatial resolution and reconstruct a more detailed local 3D patch R̃h
k
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of S. Meanwhile, since input local TSDF patches {Ṽ h
k } may suffer from a large

portion of missing data, we also propagate {F̃ l
k} to incorporate global guidance.

More specifically, a propagated F̃ l
k is concatenated with the high-level 3D feature

map after the second pooling layer in M1 (see Fig. 2). Note this extra path, in
return, also helps to refine F l during back propagation. Finally, the regressed
local TSDF patch {R̃h

k} is substituted back into the global TSDF, which can be
further used to extract surfaces.

To avoid inconsistency across TSDF patch boundaries, we add interval over-
laps when cropping feature maps and TSDF volumes. When cropping {F̃ l

k}, we
expand two more voxels on each side of the 3D patch, making the actual res-
olution of {F̃ l

k} grow to 203; similarly, for {Ṽ h
k } and {F̃h

k }, we apply 8-voxel
overlapping and increase their resolution to 803. However, when substituting
back {R̃h

k}, overlapping regions are discarded. So in its essence, this cropping
approach acts as a smart padding scheme. Note that all local patches are still
organized in grid-octrees.

Structure Refinement Module. Since the unpooling operation of OctNet
restrains the possibility of refining the octree structure on-the-fly, inspired by [42,
53], we propose to replace unpooling layers with a structure refinement module.
Instead of inferring new octree structures implicitly from reconstructions as in
[42], we use 33 convolutional filters to directly predict from feature maps whether
an octant should be further split. In contrast, OGN [53] predicts three-state
masks using 13 filters followed by three-way softmax. To determine if a 3D local
patch needs to be fed to M1, we take the average “split score” of all the octants
in this patch and compare it with a confidence threshold ρ (= 0.5). By employing
this adaptive partitioning and propagation scheme, we achieve high-resolution
volumetric reconstruction while keeping the computational and memory cost to
a minimum level.

3.3 Training

The 3D-CFCN is trained in a supervised fashion on a TSDF dataset {Fn =
{V l, V h, Gl, Gh}} in two phases, where V l and V h denote the incomplete input
TSDFs at low and high voxel resolution, while Gl and Gh are low- and high-
resolution ground-truth TSDFs, respectively.

In the first phase, M0 is trained alone with a hybrid of �1, binary cross
entropy, and structure loss:

L(θ; V l, Gl) = L�1 + λ1Lbce + λ2Ls. (5)

The �1 term is designed for TSDF denoising and reconstruction, and we employ
the auxiliary binary cross entropy loss Lbce to provide the network more guidance
for learning shape completion; while in our experiments, we find Lbce also leads
to faster convergence. Our structure refinement module is learned with Ls, where

Ls =
1

|O|
∑
o∈O

BCE (1 − f(o′, Tgt), p(o)) . (6)
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Here, O represents the set of octants in the current grid-octree, and BCE denotes
the binary cross entropy. p(o) is the prediction of whether the octant o should
to be split, while o′ is the corresponding octant of o in the ground-truth grid-
octree structure Tgt (in this case, the structure of Gl). We define f(o′, Tgt) as an
indicator function that identifies whether o′ exists in Tgt:

f(o′, Tgt) =
{

1, ∃ õ′, such that h(õ′) ≤ h(o′)
0, otherwise

, (7)

where h denotes the height of an octant in the octree.
Furthermore, we employ multi-scale supervision [15,20] to alleviate potential

gradient vanishing. Specifically, after each pooling operation, the feature map is
concatenated with a downsampled input TSDF volume at the corresponding res-
olution, and we evaluate the downscaled hybrid loss at each structure refinement
layer.

In the second phase, M1 is trained; at the same time, M0 is being fine-tuned.
To alleviate over-fitting and speed up the training process, among all the local
patches that are predicted to be fed to M1, we keep only K of them randomly
and discard the rest (we set K = 2 across our experiments). At this stage, the
inferred global structure F̃ l

k flows into M1 to guide the shape completion, while
the refined local features also provide feedbacks and improves M0. The same
strategy, i.e., hybrid loss (see Eq. 5) and multi-scale supervision, is adopted here
when training M1 together with M0.

3.4 Training Data Generation

Synthetic Dataset. Our first dataset is built upon the synthetic 3D shape
repository ModelNet40 [61]. We choose a subset of 10 categories, with 4051
shape instances in total (3245 for training, 806 for testing). Similar to existing
approaches, we set up virtual cameras around the objects2 and render depth
maps, then simulate the volumetric fusion process [17] to generate ground-
truth TSDFs. To produce noisy and partial training samples, previous methods
[18,26,42] add random noise and holes to the depth maps to mimic sensor noise.
However, synthetic noise reproduced by this approach usually does not conform
real noise distributions. Thus, we instead implement a synthetic stereo depth
camera [21]. Specifically, we virtually illuminate 3D shapes with a structured
light pattern, which is extracted from Asus XTion sensors using [12,37], and
apply the PatchMatch Stereo algorithm [3] to estimate disparities (and hence
depth maps) across stereo speckle images. In this way, the distribution of noise
and missing area in synthesized depth images behaves much closer to real ones,
thus makes the trained network generalize better on real-world data. In our
experiments, we pick 2 or 4 virtual viewpoints randomly when generating train-
ing samples.

In essence, apart from shape completion, learning volumetric depth fusion is
to seek a function g({D1, . . . ,Dn}) that maps raw depth scans to a noise free
2 We place virtual cameras at the vertices of a icosahedron.
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TSDF. Therefore, to retain information from all input depth scans, we adopt
the histogram-based TSDF representation (TSDF-Hist) proposed in [42] as the
encoding of our input training samples. A 10D smoothed-histogram, which uses
5 bins for negative and 5 bins for positive distances, with the first and the last
bin reserved for truncated distances, is allocated for each voxel. The contribution
of a depth observation is distributed linearly between the two closest bins. For
outputs, we simply choose plain 1-dimensional TSDFs as the representation.

Since we employ a cascaded architecture and use multi-scale supervision dur-
ing network training, we need to generate training and ground-truth sample
pairs at multiple resolutions. Specifically, TSDFs at 323, 643, 1283, 2563, and
5123 voxel resolutions are simultaneously generated in our experiments.

Real-World Dataset. We construct a high-quality dynamic 3D reconstruc-
tion (or, free-viewpoint video, FVV) system similar to [16] and collect 10 4D
sequences of human actions, each capturing a different subject. Then a total of
9746 frames are randomly sampled from the sequences and split into training
and test set by the ratio of 4:1. We name this dataset as Human10. For each
frame, we fuse 2 or 4 randomly picked raw depth scans and obtain the TSDF-Hist
encodings of the training sample; while the ground-truth TSDFs is produced by
virtually scanning (see the previous section) the corresponding output triangle
mesh of our FVV system. The sophisticated pipeline of our FVV system guar-
antees the quality and accuracy of the output mesh, however, the design and
details of the FFV system is beyond the scope of this paper.

4 Experiments

We have evaluated our 3D-CFCN architecture on both ModelNet40 and
Human10 and compared different aspects of our approach with other state-of-
the-art alternatives.3

4.1 High-Resolution Shape Reconstruction

In our experiments, we train the 3D-CFCN separately on each dataset for 20
epochs (12 for stage 1, 8 for two stages jointly), using the ADAM optimizer [33]
with 0.0001 learning rate, which takes ≈80 h to converge. Balancing weights in
Eq. 5 are set to: λ1 = 0.5 and λ2 = 0.1. During inference, it takes ≈3.5 s on
average to perform a forward pass through both stages on a NVIDIA GeForce
GTX 1080 Ti. The Marching Cubes algorithm [35] is used to extract surfaces
from output TSDFs. Figs. 1, 3, and 4 illustrate the high-quality reconstruction
results achieved with our 3D-CFCN architecture.

In Fig. 3 we show a variety of test cases from both Human10 and ModelNet40
dataset. All the input TSDF-Hists were fused using depth maps from 2 viewpoints,
and the same TSDF truncation threshold were applied. Despite the presence of
substantial noise and missing data, our approach was able to reduce the noise and

3 Please find more experiment results in the supplementary material.
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Fig. 3. Results gallery. (a): Input scans fused from 2 randomly picked viewpoints. (b):
Reconstruction results of the first stage of our 3D-CFCN. (c): Full-resolution recon-
struction results of the two-stage 3D-CFCN architecture. (d): Ground-truth references.

infer the missing structures, producing clean and detailed reconstructions. Com-
paring the second and the third column, for Human10 models, stage 2 of our 3D-
CFCN significantly improved the quality by bringing more geometric details to
output meshes; on the other hand, 1283 voxel resolution suffices to ModelNet40,
thus stage 2 does not show significant improves in these cases.
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Auxiliary Visual Hull Information. In practice, most depth sensors can also
capture synchronized color images, which opens up the possibility of getting aux-
iliary segmentation masks [11]. Given the segmentation masks from each view,
a corresponding visual hull [34], which is essentially an occupancy volume, can
be extracted. Visual hulls provide additional information about the distribu-
tion of occupied and empty spaces, which is important for shape completion.
We thus evaluated the performance of our 3D-CFCN when visual hull informa-
tion is available. Towards this goal, we added corresponding visual hull input
branches to both two stages, which are concatenated with intermediate features
after two 33 convolutional layers. Table 1 reports the average Hausdorff RMS
distance between predicted and ground-truth 3D meshes, showing that using
additional visual hull volumes as input brought a performance gain around 11%.
Both TSDF-Hists and visual hull volumes in this experiment were generated
using 2 viewpoints. Note that we also scaled the models in Human10 to fit into
a 33 bounding box.

Fig. 4. Comparison of our reconstruction results with other state-of-the-art alterna-
tives. (a): Input scans. (b): PSR [30]. (c): 3D-EPN [19]. (d): OctNetFusion [42]. (e):
Ours. (f): Ground-truth references. Note the bulging artifacts on PSR’s results.

Number of Viewpoints. Here we evaluated the impact of the completeness of
input TSDF-Hists, i.e., the number of viewpoints used for fusing raw depth scans,
on reconstruction quality. We trained and tested the 3D-CFCN architecture
using TSDF-Hists fused from 2 and 4 viewpoints, listing the results in Table 1.
As expected, using more depth scans led to increasing accuracy of output meshes,
since input TSDF-Hists were less incomplete.
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Table 1. Quantitative comparisons of shape reconstruction techniques. Relative Haus-
dorff RMS distance with respect to the diagonals of bounding boxes are measured
against the ground-truth triangle meshes. All baseline methods use input data fused
from 2 views.

PSR 3D-EPN OctNet-

Fusion

3D-CFCN

(2 views)

3D-CFCN

(2 views w/visual hull)

3D-CFCN

(4 views)

Human10 0.0092 0.0263 0.0040 0.0035 0.0031 0.0021

ModelNet40 0.0620 0.0178 0.0035 0.0032 0.0019 0.0010

(a) Reconstruction results of the pro-
posed 3D-CFCN under different levels of
calibration error. (i): No error. (ii): 2.5%.
(iii): 5%. (iv): 10%.

(b) Comparison with OGN. (i): Occu-
pancy maps reconstructed by 3D-CFCN.
(ii): Occupancy maps decoded by OGN,
using features learned by 3D-CFCN.

Fig. 5. Evaluation and comparisons.

Robustness to Calibration and Tracking Error. Apart from sensor noise,
calibration and tracking error is another major factor that can crack scanned
models. To evaluate the robustness of the proposed approach to calibration and
tracking error, we added random perturbations (from 2.5% to 10%) to ground-
truth camera poses, generated corresponding test samples, and predicted the
reconstruction results using 3D-CFCN. As shown in Fig. 5(a), although the net-
work has not been trained on samples with calibration error, it can still infers
geometric structures reasonably.
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4.2 Comparison with Existing Approaches

Figure 4 and Table 1 compare our 3D-CFCN architecture with three learning-
based state-of-the-art alternatives for 3D shape reconstruction, i.e., OctNetFu-
sion [42], 3D-EPN [19], and OGN [53], as well as the widely used geometric
method Poisson surface reconstruction (PSR) [30].

OctNetFusion. Similar to our approach, OctNetFusion adopts OctNet as the
building block and learns to denoise and complete input TSDFs in a multi-stage
manner. However, each stage in OctNetFusion is designed to take an up-sampled
TSDF and refine it globally (i.e., each stage needs to process all the octants in
the grid-octree at the current resolution), making it infeasible to reconstruct 3D
shape at higher resolutions, as learning at higher resolutions (e.g., 5123) not only
increases the memory cost at input and output layers, but also requires deeper
network structures, which further challenges the limited computational resource.
Figure 4 and Table 1 summarize the comparison of our reconstruction results at
5123 voxel resolution with OctNetFusion’s results at 2563.

3D-EPN. Without using octree-based data structures, 3D-EPN employs a
hybrid approach, which first completes the input model at a low resolution (323)
via a 3D CNN and then uses voxels from similar high-resolution models in the
database to produce output distance volumes at 1283 voxel resolution. However,
as shown in Fig. 4, while being able to infer the overall shape of input models,
this approach fails to recover fine geometric details due to the limited resolution.

OGN. As another relevant work to our 3D-CFCN architecture, OGN is a octree-
based convolutional decoder. Although scales well to high resolution outputs, it
remains challenging to recover accurate and detailed geometry information from
encoded shape features via only deconvolution operations. To compare our app-
roach with OGN, we trained the proposed 3D-CFCN on Human10 dataset to
predict occupancy volumes, extracted 323 intermediate feature from the stage-1
3D FCN of our architecture, and used these feature maps to train an OGN.
Figure 5(b) compares the occupancy maps decoded by OGN with the corre-
sponding occupancy volumes predicted by the proposed 3D-CFCN (both at 5123

resolution), showing that our method performs significantly better than OGN
with respect to fidelity and accuracy.

5 Conclusions

We have presented a cascaded 3D convolutional network architecture for effi-
cient and high-fidelity shape reconstruction at high resolutions. Our approach
refines the volumetric representations of partial and noisy input models in a pro-
gressive and adaptive manner, which substantially simplifies the learning task
and reduces computational cost. Experimental results demonstrate that the pro-
posed method can produce high-quality reconstructions with accurate geometric
details. We also believe that extending the proposed approach to reconstructing
sequences is a promising direction.
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