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Abstract. Modern deep learning systems successfully solve many per-
ception tasks such as object pose estimation when the input image is
of high quality. However, in challenging imaging conditions such as on
low resolution images or when the image is corrupted by imaging arti-
facts, current systems degrade considerably in accuracy. While a loss
in performance is unavoidable, we would like our models to quantify
their uncertainty to achieve robustness against images of varying qual-
ity. Probabilistic deep learning models combine the expressive power of
deep learning with uncertainty quantification. In this paper we propose
a novel probabilistic deep learning model for the task of angular regres-
sion. Our model uses von Mises distributions to predict a distribution
over object pose angle. Whereas a single von Mises distribution is making
strong assumptions about the shape of the distribution, we extend the
basic model to predict a mixture of von Mises distributions. We show how
to learn a mixture model using a finite and infinite number of mixture
components. Our model allows for likelihood-based training and efficient
inference at test time. We demonstrate on a number of challenging pose
estimation datasets that our model produces calibrated probability pre-
dictions and competitive or superior point estimates compared to the
current state-of-the-art.
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1 Introduction

Estimating object pose is an important building block in systems aiming to
understand complex scenes and has a long history in computer vision [1,2].
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Whereas early systems achieved low accuracy, recent advances in deep learning
and the collection of extensive data sets have led to high performing systems
that can be deployed in useful applications [3–5].

However, the reliability of object pose regression depends on the quality of the
image provided to the system. Key challenges are low-resolution due to distance
of an object to the camera, blur due to motion of the camera or the object, and
sensor noise in case of poorly lit scenes (see Fig. 1).

We would like to predict object pose in a way that captures uncertainty.
Probability is the right way to capture the uncertainty [6] and in this paper we
therefore propose a novel model for object pose regression whose predictions are
fully probabilistic. Figure 1 depicts an output of the proposed system. Moreover,
instead of assuming a fixed form for the predictive density we allow for flexible
multimodal distributions, specified by a deep neural network.

The value of quantified uncertainty in the form of probabilistic predictions
is two-fold: first, a high prediction uncertainty is a robust way to diagnose poor
inputs to the system; second, given accurate probabilities we can summarize
them to improved point estimates using Bayesian decision theory.

More generally, accurate representation of uncertainty is especially important
in case a computer vision system becomes part of a larger system, such as when
providing an input signal for an autonomous control system. If uncertainty is
not well-calibrated, or—even worse—is not taken into account at all, then the
consequences of decisions made by the system cannot be accurately assessed,
resulting in poor decisions at best, and dangerous actions at worst.

Fig. 1. Our model predicts complex multimodal distributions on the circle (truncated
by the outer circle for better viewing). For difficult and ambiguous images our model
report high uncertainty (bottom row). Pose estimation predictions (pan angle) on
images from IDIAP, TownCentre and PASCAL3D+ datasets.

In the following we present our method and make the following contributions:

• We demonstrate the importance of probabilistic regression on the application
of object pose estimation;
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• We propose a novel efficient probabilistic deep learning model for the task of
circular regression;

• We show on a number of challenging pose estimation datasets (including
PASCAL 3D+ benchmark [7]) that the proposed probabilistic method out-
performs purely discriminative approaches in terms of predictive likelihood
and show competitive performance in terms of angular deviation losses clas-
sically used for the tasks.

2 Related Work

Estimation of object orientation arises in different applications and in this paper
we focus on the two most prominent tasks: head pose estimation and object class
orientation estimation. Although those tasks are closely related, they have been
studied mostly in separation, with methods applied to exclusively one of them.
We will therefore discuss them separately, despite the fact that our model applies
to both tasks.

Head pose estimation has been a subject of extensive research in computer
vision for a long time [2,8] and the existing systems vary greatly in terms of
feature representation and proposed classifiers. The input to pose estimation
systems typically consists of 2D head images [9–11], and often one has to cope
with low resolution images [8,12–14]. Additional modalities such as depth [15]
and motion [14,16] information has been exploited and provides useful cues.
However, these are not always available. Also, information about the full body
image could be used for joint head and body pose prediction [17–19]. Notably
the work of [18] also promotes a probabilistic view and fuse body and head
orientation within a tracking framework. Finally, the output of facial landmarks
can be used as an intermediate step [20,21].

Existing head pose estimation models are diverse and include manifold learn-
ing approaches [22–25], energy-based models [19], linear regression based on
HOG features [26], regression trees [15,27] and convolutional neural networks
[5]. A number of probabilistic methods for head pose analysis exist in the litera-
ture [18,28,29], but none of them combine probabilistic framework with learnable
hierarchical feature representations from deep CNN architectures. At the same
time, deep probabilistic models have shown an advantage over purely discrimi-
native models in other computer vision tasks, e.g., depth estimation [30]. To the
best of our knowledge, our work is the first to utilize deep probabilistic approach
to angular orientation regression task.

An early dataset for estimating the object rotation for general object classes
was proposed in [31] along with an early benchmark set. Over the years the
complexity of data increased, from object rotation [31] and images of cars in
different orientations [32] to Pascal3D [33]. The work of [33] then assigned a sep-
arate Deformable Part Model (DPM) component to a discrete set of viewpoints.
The work of [34,35] then proposed different 3D DPM extensions which allowed
viewpoint estimation as integral part of the model. However, both [34] and [35]
and do not predict a continuous angular estimate but only a discrete number of
bins.
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More recent versions make use of CNN models but still do not take a prob-
abilistic approach [3,4]. The work of [36] investigates the use of a synthetic
rendering pipeline to overcome the scarcity of detailed training data. The addi-
tion of synthetic and real examples allows them to outperform previous results.
The model in [36] predicts angles, and constructs a loss function that penalizes
geodesic and �1 distance. Closest to our approach, [37] also utilizes the von Mises
distribution to build the regression objective. However, similarly to [5], the shape
of the predicted distribution remains fixed with only mean value of single von
Mises density being predicted. In contrary, in this work we advocate the use of
complete likelihood estimation as a principled probabilistic training objective.

The recent work of [38] draws a connection between viewpoints and object
keypoints. The viewpoint estimation is however again framed as a classification
problem in terms of Euler angles to obtain a rotation matrix from a canonical
viewpoint. Another substitution of angular regression problem was proposed in
a series of work [39–41], where CNN is trained to predict the 2D image loca-
tions of virtual 3D control points and the actual 3D pose is then computed by
solving a perspective-n-point (PnP) problem that recovers rotations from 2D–
3D correspondences. Additionally, many works phrase angular prediction as a
classification problem [3,36,38] which always limits the granularity of the pre-
diction and also requires the design of a loss function and a means to select the
number of discrete labels. A benefit of a classification model is that components
like softmax loss can be re-used and also interpreted as an uncertainty estimate.
In contrast, our model mitigate this problem: the likelihood principle suggests
a direct way to train parameters, moreover ours is the only model in this class
that conveys an uncertainty estimate.

3 Review of Biternion Networks

We build on the Biternion networks method for pose estimation from [5] and
briefly review the basic ideas here. Biternion networks regress angular data and
currently define the state-of-the-art model for a number of challenging head pose
estimation datasets.

A key problem is to regress angular orientations which is periodic and pre-
vents a straight-forward application of standard regression methods, including
CNN models with common loss functions. Consider a ground truth value of
0◦, then both predictions 1◦ and 359◦ should result in the same absolute loss.
Applying the mod operator is no simple fix to this problem, since it results in
a discontinuous loss function that complicates the optimization. A loss function
needs to be defined to cope with this discontinuity of the target value. Biternion
networks overcome this difficulty by using a different parameterization of angles
and the cosine loss function between angles.

3.1 Biternion Representation

Beyer et al. [5] propose an alternative representation of an angle φ using the
two-dimensional sine and cosine components y = (cos φ, sin φ).
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This biternion representation is inspired by quaternions, which are popular
in computer graphics systems. It is easy to predict a (cos, sin) pair with a fully-
connected layer followed by a normalization layer, that is,

fBT (x;W , b) =
Wx + b

||Wx + b|| = (cos φ, sin φ) = ypred, (1)

where x ∈ R
n is an input, W ∈ R

2×n, b ∈ R
2. A Biternion network is then a

convolutional neural network with a layer (1) as the final operation, outputting a
two-dimensional vector ypred. We use VGG-style network [42] and InceptionRes-
Net [43] networks in our experiments and provide a detailed description of the
network architecture in Sect. 6.1. Given recent developments in network archi-
tectures it is likely that different network topologies may perform better than
selected backbones. We leave this for future work, our contributions are orthog-
onal to the choice of the basis model.

3.2 Cosine Loss Function

The cosine distance is chosen in [5] as a natural candidate to measure the dif-
ference between the predicted and ground truth Biternion vectors. It reads

Lcos(ypred,ytrue) = 1 − ypred · ytrue

||ypred|| · ||ytrue||
= 1 − ypred · ytrue, (2)

where the last equality is due to ||y|| = cos2 φ + sin2 φ = 1.
The combination of a Biternion angle representation and a cosine loss solves

the problems of regressing angular values, allowing for a flexible deep network
with angular output. We take this state-of-the-art model and generalize it into
a family of probabilistic models of gradually more flexibility.

4 Probabilistic Models of Circular Data

We utilize the von Mises (vM) distribution as the basic building block of our
probabilistic framework, which is a canonical choice for a distribution on the
unit circle [44]. Compared to standard Gaussian, the benefit is that it have as a
support any interval of length 2π, which allow it to truthfully models the domain
of the data, that is angles on a circle.

We continue with a brief formal definition and in Sect. 4.1 describe a simple
way to convert the output of Biternion networks into a VM density, that does
not require any network architecture change or re-training as it requires only
selection of the model variance. We will then use this approach as a baseline
for more advanced probabilistic models. Section 4.2 slightly extends the original
Biternion network by introducing an additional network output unit that models
uncertainty of our angle estimation and allows optimization for the log-likelihood
of the VM distribution.
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Fig. 2. Left: examples of the von Mises probability density function for different con-
centration parameters κ. Center, right: predicted VM distributions for two images
from the CAVIAR dataset. We plot the predicted density on the viewing circle. For
comparison we also include the 2D plot (better visible in zoomed pdf version). The
distribution on the center image is very certain, the one on the right more uncertain
about the viewing angle.

The von Mises distribution VM(μ, κ) is a close approximation of a normal
distribution on the unit circle. Its probability density function is

p(φ;μ, κ) =
exp (κ cos (φ − μ))

2πI0(κ)
, (3)

where μ ∈ [0, 2π) is the mean value, κ ∈ R+ is a measure of concentration (a
reciprocal measure of dispersion, so 1/κ is analogous to σ2 in a normal distribu-
tion), and I0(κ) is the modified Bessel function of order 0. We show examples of
VM-distributions with μ = π and varying κ values in Fig. 2 (left).

4.1 Von Mises Biternion Networks

A conceptually simple way to turn the Biternion networks from Sect. 3 into a
probabilistic model is to take its predicted value as the center value of the VM
distribution,

pθ(φ|x;κ) =
exp (κ cos (φ − μθ(x)))

2πI0(κ)
, (4)

where x is an input image, θ are parameters of the network, and μθ(x) is the
network output. To arrive at a probability distribution, we may regard κ > 0 as a
hyper-parameter. For fixed network parameters θ we can select κ by maximizing
the log-likelihood of the observed data,

κ∗ = argmax
κ

N∑

i=1

log pθ(φ(i)|x(i);κ), (5)

where N is the number of training samples. The model (4) with κ∗ will serve as
the simplest probabilistic baseline in our comparisons, referred as fixed κ model
in the experiments.
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4.2 Maximizing the von Mises Log-Likelihood

Using a single scalar κ for every possible input in the model (4) is clearly a restric-
tive assumption: model certainty should depend on factors such as image quality,
light conditions, etc. For example, Fig. 2 (center, right) depicts two low resolution
images from a surveillance camera that are part of the CAVIAR dataset [13]. In
the left image facial features like eyes and ears are distinguishable which allows
a model to be more certain when compared to the more blurry image on the
right (Fig. 3).

We therefore extend the simple model by replacing the single constant κ with
a function κθ(x), predicted by the Biternion network,

pθ(φ|x) =
exp (κθ(x) cos (φ − μθ(x)))

2πI0(κθ(x))
. (6)

We train (6) by maximizing the log-likelihood of the data,

log L(θ|X, Φ) =
N∑

i=1

κθ(x(i)) cos (φ(i) − μθ(x(i))) −
N∑

i=1

log 2πI0(κθ(x(i))). (7)

Note that when κ is held constant in (7), the second sum in log L(θ|X, Φ) is con-
stant and therefore we recover the Biternion cosine objective (2) up to constants
C1, C2,

log L(θ|X, Φ, κ) = C1

N∑

i=1

cos
(
φ(i) − μθ(x(i))

)
+ C2.

The sum has the equivalent form,

N∑

i=1

cos
(
φ(i) − μθ(x(i))

)
=

N∑

i=1

[
cos φ(i) cos μθ(x(i)) + sinφ(i) sinμθ(x(i))

]
(8)

=
N∑

i=1

yφ(i) · yμθ(x(i)), (9)

where yφ = (cos φ, sin φ) is a Biternion representation of an angle. Note, that the
above derivation shows that the loss function in [5] corresponds to optimizing the
von Mises log-likelihood for the fixed value of κ = 1. This offers an interpretation
of Biternion networks as a probabilistic model.

The additional degree of freedom to learn κθ(x) as a function of x allows us
to capture the desired image-dependent uncertainty as can be seen in Fig. 2.

However, like the Gaussian distribution the von Mises distribution makes a
specific assumption regarding the shape of the density. We now show how to
overcome this limitation by using a mixture of von Mises distributions.
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Fig. 3. The single mode von Mises model (VGG backbone variation). A BiternionVGG
network regresses both mean and concentration parameter of a single vM distribution.

5 Mixture of von Mises Distributions

The model described in Sect. 4.2 is only unimodal and can not capture ambigu-
ities in the image. However, in case of blurry images like the ones in Fig. 2 we
could be interested in distributing the mass around a few potential high proba-
bility hypotheses, for example, the model could predict that a person is looking
sideways, but could not determine the direction, left or right, with certainty. In
this section we present two models that are able to capture multimodal beliefs
while retaining a calibrated uncertainty measure.

5.1 Finite Mixture of von Mises Distributions

One common way to generate complex distributions is to sum multiple distribu-
tions into a mixture distribution. We introduce K different component distribu-
tions and a K-dimensional probability vector representing the mixture weights.
Each component is a simple von Mises distribution. We can then represent our
density function as

pθ(φ|x) =
K∑

j=1

πj(x, θ) pj(φ|x, θ), (10)

where pj(φ|x, θ) = VM(φ|μj , κj) for j = 1, . . . ,K are the K component distri-
butions and the mixture weights are πj(x, θ) so that

∑
j πj(x, θ) = 1. We denote

all parameters with the vector θ, it contains component-specific parameters as
well as parameters shared across all components.

To predict the mixture in a neural network framework, we need K ×3 output
units for modeling all von Mises component parameters (two for modeling the
Biternion representation of the mean, μj(x, θ) and one for the κj(x, θ) value), as
well as K units for the probability vector πj(x, θ), defined by taking the softmax
operation to get a positive mixture weights.

The finite von Mises density model then takes form

pθ(φ|x) =
K∑

j=1

πj(x, θ)
exp

(
κj(x, θ) cos

(
φ − μj(x, θ)

))

2πI0
(
κj(x, θ)

) . (11)
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Fig. 4. The finite VM mixture model. A VGG network predicts K mean and concen-
tration values and the mixture coefficients π. This allows to capture multimodality in
the output.

Similarly to the single von Mises model, we can train by directly maximizing
the log-likelihood of the observed data,

∑N
i=1 log pθ(φ(i)|x(i)). No specific train-

ing schemes or architectural tweaks were done to avoid redundancy in mixture
components. However, empirically we observe that model learns to set mixture
weights πj of the redundant components close to zero, as well as to learn the
ordering of the components (e.g. it learns that some output component j should
correspond to the component with high mixture weight).

We show an overview of the model in Fig. 4.

5.2 Infinite Mixture (CVAE)

To extend the model from a finite to an infinite mixture model, we follow the
variational autoencoder (VAE) approach [45,46], and introduce a vector-valued
latent variable z. The resulting model is depicted in Fig. 5. The continuous latent
variable becomes the input to a decoder network p(φ|x,z) which predicts the
parameters—mean and concentration—of a single von Mises component. We
define our density function as the infinite sum (integral) over all latent variable
choices, weighted by a learned distribution p(z|x),

pθ(φ|x) =
∫

p(φ|x,z) p(z|x)dz, (12)

where pθ(φ|x,z) = VM(μ(x, θ), κ(x, θ)), and pθ(z|x) = N (μ1(x, θ), σ2
1(x, θ)).

The log-likelihood log pθ(φ|x) for this model is not longer tractable, prevent-
ing simple maximum likelihood training. Instead we use the variational autoen-
coder framework of [45,46] in the form of the conditional VAE (CVAE) [47].
The CVAE formulation uses an auxiliary variational density qθ(z|x, φ) =
N (μ2(x, φ, θ), σ2

2(x, φ, θ)) and instead of the log-likelihood optimizes a varia-
tional lower bound,

log pθ(φ|x) = log
∫

pθ(φ|x,z) pθ(z|x)dz (13)

≥ Ez∼qθ(z |x,φ)

[
log

pθ(φ|x,z) pθ(z|x)
qθ(z|x, φ)

]
=: LELBO(θ|x, φ). (14)

We refer to [45–48] for more details on VAEs.
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Fig. 5. The infinite mixture model (CVAE). An encoder network predicts a distribu-
tion q(z|x) over latent variables z, and a decoder network p(φ|x, z) defines individual
mixture components. Integrating over z yields an infinite mixture of von Mises distri-
butions. In practice we approximate this integration using a finite number of Monte
Carlo samples z(j) ∼ q(z|x).

The CVAE model is composed of multiple deep neural networks: an encoder
network qθ(z|x, φ), a conditional prior network pθ(z|x), and a decoder network
pθ(φ|x,z). Like before, we use θ to denote the entirety of trainable parameters
of all three model components. We show an overview of the model in Fig. 5. The
model is trained by maximizing the variational lower bound (14) over the training
set (X, Φ), where X = (x(1), . . . ,x(N)) are the images and Φ = (φ(1), . . . , φ(N))
are the ground truth angles. We maximize

L̂CVAE(θ|X, Φ) =
1
N

N∑

i=1

L̂ELBO(θ|x(i), φ(i)), (15)

where we use L̂ELBO to denote the Monte Carlo approximation to (14) using S
samples. We can optimize (15) efficiently using stochastic gradient descent.

To evaluate the log-likelihood during testing, we use the importance-weighted
sampling technique proposed in [49] to derive a stronger bound on the marginal
likelihood,

log pθ(φ|x) ≥ log
1
S

S∑

j=1

pθ(φ|x,z(j)) pθ(z(j)|x)
qθ(z(j)|x, φ)

, (16)

z(j) ∼ qθ(z(j)|x, φ) j = 1, . . . , S. (17)

Simplified CVAE. In our experiments we also investigate a variant of the
aforementioned model where pθ(z|x) = qθ(z|x, φ) = p(z) = N (0, I). Compared
to the full CVAE framework, this model, which we refer to as simplified CVAE
(sCVAE) in the experiments, sacrifices the adaptive input-dependent density of
the hidden variable z for faster training and test inference as well as optimization
stability. In that case the KL-divergence KL

(
qθ ‖ pθ

)
term in L̂ELBO becomes

zero, and we train for a Monte Carlo estimated log-likelihood of the data:
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L̂sCVAE(θ|X, Φ) =
1
N

N∑

i=1

log
( 1

S

S∑

j=1

pθ(φ(i)|x(i),z(j))
)
, (18)

z(j) ∼ p(z) = N (0, I), j = 1, . . . , S. (19)

In some applications it is necessary to make a single best guess about the
pose, that is, to summarize the posterior p(φ|x) to a single point prediction φ̂.
We now discuss an efficient way to do that.

5.3 Point Prediction

To obtain an optimal single point prediction we utilize Bayesian decision the-
ory [6,50,51] and minimize the expected loss,

φ̂Δ = argmin
φ∈[0,2π)

Eφ′∼p(φ|x) [Δ(φ, φ′)] , (20)

where Δ : [0, 2π) × [0, 2π) → R+ is a loss function. We will use the ΔAAD(φ, φ′)
loss which measures the absolute angular deviation (AAD). To approximate (20)
we use the empirical approximation of [50] and draw S samples {φj} from
pθ(φ|x). We then use the empirical approximation

φ̂Δ = argmin
j=1,...,S

1
S

S∑

k=1

Δ(φj , φk). (21)

We now evaluate our models both in terms of uncertainty as well as in terms
of point prediction quality.

6 Experiments

This section presents the experimental results on several challenging head and
object pose regression tasks. Section 6.1 introduces the experimental setup
including used datasets, network architecture and training setup. In Sect. 6.2
we present and discuss qualitative and quantitative results on the datasets of
interest.

6.1 Experimental Setup

Network Architecture and Training. We use two types of network archi-
tectures [42,43] during our experiments and Adam optimizer [52], performing
random search [53] for the best values of hyper-parameters. We refer to supple-
mentary and corresponding project repository for more details1.

Head Pose Datasets. We evaluate all methods together with the non-
probabilistic BiternionVGG baseline on three diverse (in terms of image quality
1 https://github.com/sergeyprokudin/deep direct stat.

https://github.com/sergeyprokudin/deep_direct_stat
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and precision of provided ground truth information) headpose datasets: IDIAP
head pose [9], TownCentre [54] and CAVIAR [13] coarse gaze estimation. The
IDIAP head pose dataset contains 66295 head images stemmed from a video
recording of a few people in a meeting room. Each image has a complete anno-
tation of a head pose orientation in form of pan, tilt and roll angles. We take
42304, 11995 and 11996 images for training, validation, and testing, respectively.
The TownCentre and CAVIAR datasets present a challenging task of a coarse
gaze estimation of pedestrians based on low resolution images from surveillance
camera videos. In case of the CAVIAR dataset, we focus on the part of the
dataset containing occluded head instances (hence referred to as CAVIAR-o in
the literature).

PASCAL3D+ Object Pose Dataset. The Pascal 3D+ dataset [33] consists of
images from the Pascal [55] and ImageNet [56] datasets that have been labeled
with both detection and continuous pose annotations for the 12 rigid object
categories that appear in Pascal VOC12 [55] train and validation set. With
nearly 3000 object instances per category, this dataset provide a rich testbed
to study general object pose estimation. In our experiments on this dataset we
follow the same protocol as in [36,38] for viewpoint estimation: we use ground
truth detections for both training and testing, and use Pascal validation set to
evaluate and compare the quality of our predictions.

Table 1. Quantitative results on the IDIAP head pose estimation dataset [9] for the
three head rotations pan, roll and tilt. In the situation of fixed camera pose, lightning
conditions and image quality, all methods show similar performance (methods are con-
sidered to perform on par when the difference in performance is less than standard
error of the mean).

Estimated pose component Pan Tilt Roll

MAAD Log-likelihoodMAAD Log-likelihoodMAAD Log-likelihood

Beyer et al. ([5]), fixed κ 5.8◦ ± 0.1∗ 0.37 ± 0.01 2.4◦ ± 0.1 1.31 ± 0.01 3.1◦ ± 0.1 1.13 ± 0.01

Ours (single von Mises) 6.3◦ ± 0.1 0.56 ± 0.01 2.3◦ ± 0.1 1.56 ± 0.01 3.4◦ ± 0.1 1.13 ± 0.01

Ours (mixture-CVAE) 6.4◦ ± 0.1 ≈0.52 ± 0.02 2.9◦ ± 0.1 ≈1.35 ± 0.01 3.5◦ ± 0.1 ≈1.05 ± 0.02

*standard error of the mean (SEM).

6.2 Results and Discussion

Quantitative Results. We evaluate our methods using both discriminative
and probabilistic metrics. We use discriminative metrics that are standard for
the dataset of interest to be able to compare our methods with previous work.
For headpose tasks we use the mean absolute angular deviation (MAAD), a
widely used metric for angular regression tasks. For PASCAL3D+ we use the
metrics advocated in [38]. Probabilistic predictions are measured in terms of
log-likelihood [57,58], a widely accepted scoring rule for assessing the quality of
probabilistic predictions. We summarize the results in Tables 1, 2 and 3. It can be
seen from results on IDIAP dataset presented in Table 1 that when camera pose,
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Table 2. Quantitative results on the CAVIAR-o [13] and TownCentre [54] coarse gaze
estimation datasets. We see clear improvement in terms of quality of probabilistic
predictions for both datasets when switching to mixture models that allow to output
multiple hypotheses for gaze direction.

CAVIAR-o TownCentre

MAAD Log-likelihood MAAD Log-likelihood

Beyer et al. [5], fixed κ 5.74◦ ± 0.13 0.262 ± 0.031 22.8◦ ± 1.0 −0.89 ± 0.06

Ours (single von Mises) 5.53◦ ± 0.13 0.700 ± 0.043 22.9◦ ± 1.1 −0.57 ± 0.05

Ours (mixture-finite) 4.21◦ ± 0.16 1.87 ± 0.04 23.5◦ ± 1.1 −0.50 ± 0.04

Table 3. Results on PASCAL3D+ viewpoint estimation with ground truth bounding
boxes. First two evaluation metrics are defined in [38], where Acc π

6
measures accuracy

(the higher the better) and MedErr measures error (the lower the better). Additionally,
we report the log-likelihood estimation log L of the predicted angles (the higher the
better). We can see clear improvement on all metrics when switching to probabilistic
setting compared to training for a purely discriminative loss (fixed κ case).

aero bike boat bottle bus car chair table mbike sofa train tv mean
Acc π

6
(Tulsiani et al.[38]) 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.81

Acc π
6
(Su et al.[36]) 0.80 0.82 0.62 0.95 0.93 0.83 0.75 0.86 0.86 0.85 0.82 0.89 0.83

Acc π
6
(Grabner et al.[41]) 0.83 0.82 0.64 0.95 0.97 0.94 0.80 0.71 0.88 0.87 0.80 0.86 0.84

Acc π
6
(Ours, fixed κ) 0.83 0.75 0.54 0.95 0.92 0.90 0.77 0.71 0.90 0.82 0.80 0.86 0.81

Acc π
6
(Ours, single v.Mises) 0.87 0.78 0.55 0.97 0.95 0.91 0.78 0.76 0.90 0.87 0.84 0.91 0.84

Acc π
6
(Ours, mixture-sCVAE) 0.89 0.83 0.46 0.96 0.93 0.90 0.80 0.76 0.90 0.90 0.82 0.91 0.84

MedErr (Tulsiani et al.[38]) 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6
MedErr (Su et al.[36]) 10.0 12.5 20.0 6.7 4.5 6.7 12.3 8.6 13.1 11.0 5.8 13.3 10.4
MedErr (Grabner et al.[41]) 10.0 15.6 19.1 8.6 3.3 5.1 13.7 11.8 12.2 13.5 6.7 11.0 10.9
MedErr (Ours, fixed κ) 11.4 18.1 28.1 6.9 4.0 6.6 14.6 12.1 12.9 16.4 7.0 12.9 12.6
MedErr (Ours, single v.Mises) 9.7 17.7 26.9 6.7 2.7 4.9 12.5 8.7 13.2 10.0 4.7 10.6 10.7
MedErr (Ours, mixture-sCVAE) 9.7 15.5 45.6 5.4 2.9 4.5 13.1 12.6 11.8 9.1 4.3 12.0 12.2

logL(Ours, fixed κ) -0.89 -0.73 -1.21 0.18 2.09 1.43 -0.08 0.69 -0.50 -0.75 0.06 -1.02 −0.07± 0.15
logL(Ours, single v.Mises) 0.19 -1.12 -0.30 2.40 4.87 2.85 0.42 0.79 -0.72 -0.54 2.52 0.52 1.17± 0.07
logL(Ours, mixture-sCVAE) 0.60 -0.73 -0.26 2.71 4.45 2.52 -0.58 0.08 -0.62 -0.64 2.05 1.14 1.15± 0.07

lightning conditions and image quality are fixed, all methods perform similarly.
In contrast, for the coarse gaze estimation task on CAVIAR we can see a clear
improvement in terms of quality of probabilistic predictions for both datasets
when switching to mixture models that allow to output multiple hypotheses for
gaze direction. Here low resolution, pure light conditions and presence of occlu-
sions create large diversity in the level of head pose expressions. Finally, on a
challenging PASCAL3D+ dataset we can see clear improvement on all metrics
and classes when switching to a probabilistic setting compared to training for
a purely discriminative loss (fixed κ case). Our methods also show competitive
or superior performance compared to state-of-the-art methods on disriminative
metrics advocated in [38]. Method of [36] uses large amounts of synthesized
images in addition to the standard training set that was used by our method.
Using this data augmentation technique can also lead to an improved perfor-
mance of our method and we consider this future work.
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Fig. 6. Qualitative results of our simpified CVAE model on the PASCAL3D+ dataset.
Our model correctly quantifies the uncertainty of pose predictions and is able to model
ambiguous cases by predicting complex multimodal densities. Lower right images are
failure cases (confusing head and tail of the object with high confidence).

Qualitative Results. Examples of probabilistic predictions for PASCAL3D+
dataset are shown in Fig. 6. Upper left images highlight the effect we set out
to achieve: to correctly quantify the level of uncertainty of the estimated pose.
For easier examples we observe sharp peaks and a highly confident detection,
and more spread-out densities otherwise. Other examples highlight the advan-
tage of mixture models, which allow to model complex densities with multiple
peaks corresponding to more than one potential pose angle. Failure scenarios are
highlighted in the lower right: high confidence predictions in case if the model
confuses head and tail.

7 Conclusion

We demonstrated a new probabilistic model for object pose estimation that is
robust to variations in input image quality and accurately quantifies its uncer-
tainty. More generally our results confirm that our approach is flexible enough
to accommodate different output domains such as angular data and enables
rich and efficient probabilistic deep learning models. We train all models by
maximum likelihood but still find it to be competitive with other works from
the literature that explicitly optimize for point estimates even under point esti-
mate loss functions. In the future, to improve our predictive performance and
robustness, we would also like to handle uncertainty of model parameters [30]
and to use the Fisher-von Mises distribution to jointly predict a distribution of
azimuth-elevation-tilt [44].

We hope that as intelligent systems increasingly rely on perception abilities,
future models in computer vision will be robust and probabilistic.

Acknowledgments. This work was supported by Microsoft Research through its PhD
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