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Abstract. Shallow Depth-of-Field (DoF) is a desirable effect in pho-
tography which renders artistic photos. Usually, it requires single-lens
reflex cameras and certain photography skills to generate such effects.
Recently, dual-lens on cellphones is used to estimate scene depth and
simulate DoF effects for portrait shots. However, this technique cannot
be applied to photos already taken and does not work well for whole-
body scenes where the subject is at a distance from the cameras. In this
work, we introduce an automatic system that achieves portrait DoF ren-
dering for monocular cameras. Specifically, we first exploit Convolutional
Neural Networks to estimate the relative depth and portrait segmenta-
tion maps from a single input image. Since these initial estimates from
a single input are usually coarse and lack fine details, we further learn
pixel affinities to refine the coarse estimation maps. With the refined
estimation, we conduct depth and segmentation-aware blur rendering to
the input image with a Conditional Random Field and image matting.
In addition, we train a spatially-variant Recursive Neural Network to
learn and accelerate this rendering process. We show that the proposed
algorithm can effectively generate portraitures with realistic DoF effects
using one single input. Experimental results also demonstrate that our
depth and segmentation estimation modules perform favorably against
the state-of-the-art methods both quantitatively and qualitatively.

1 Introduction

Shallow Depth of Field (DoF) shooting can enhance photos and render artistic
images in which the region containing the main object at a certain distance to
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(a) Input (b) Seg (c) Depth (d) Ours CRF (e) Ours RNN

Fig. 1. The proposed method generates realistic DoF effects for whole-body portrait
using a single RGB image (a) captured from a monocular camera. (b) and (c) are the
segmentation and depth estimates of (a). (d) and (e) are our DoF results generated by
the CRF based rendering system and the learned RNN filter, respectively.

the camera is well-focused, while other pixels are blurred [4]. Usually, a single-
lens reflex (SLR) camera with a large aperture and certain photography skills
are needed to render portraitures.

The portrait mode, which allows users to take DoF photos, is a major fea-
ture of the latest smart phones, e.g., iPhone7+ and Google Pixel 2. Unlike SLR
cameras, mobile phone cameras have a small, fixed-size aperture, which gener-
ates pictures with everything more or less in focus (Fig. 1(a)). Thus, generating
DoF effects requires depth information, which has been obtained via specialized
hardware in high-end phones. For example, iPhone 7+ relies on dual-lens to esti-
mate depth, and Google Pixel2 uses Phase-Detect Auto-Focus (PDAF), which
can also be regarded as two lenses on the left and right sides.

However, existing systems using specialized hardware have several limita-
tions. First, they do not perform well for whole-body portraits which are at a
relatively large distance to the lens. As the baseline between two lenses is small,
it is challenging to estimate large depth fields. Second, it is impractical to imple-
ment these hardware solutions other than high-end phones. More importantly,
there are billions of photos already taken that these systems cannot process.

In this paper, we introduce an automatic system that achieves DoF render-
ing for monocular cameras. Specifically, we use deep neural networks to estimate
depth and segment portrait from a single image. While deep learning based meth-
ods have made significant progress in single image depth prediction and portrait
segmentation, the results by state-of-the-art methods [7,9–11,20,23,25] are still
too coarse for DoF rendering. To obtain more precise depth and segmentation, we
improve the initial estimates using the Spatial Propagation Networks (SPN) [22].
With the refined depth and segmentation, our system applies depth and segmen-
tation aware blurring to the background with Conditional Random Field (CRF)
and image matting. Experimental results show that our system can achieve real-
istic DoF effects on a variety of half and full-body portrait images. To further
accelerate this rendering process, we train a spatially-variant Recursive Neural
Network (RNN) [21] filter with guidance from the depth and segmentation to
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learn to generate the DoF effects. Since it is extremely difficult to capture image
pairs with and without DoF effects for the same scene, we use the generated
results from the CRF-based system as our training samples. We show that the
proposed network could effectively and efficiently approximate the CRF-based
system and generate high-quality DoF results.

The main contributions of this work are summarized as follows. First, we
propose an automatic system that achieves realistic DoF rendering for single
portrait images. While some components of this system are known in the field,
it requires meticulous algorithmic design and efforts to achieve the state-of-the-
art results. Second, we train a depth and segmentation guided RNN model to
approximate and accelerate the rendering process, which outperforms previous
deep learning based filtering methods. In addition, we achieve the state-of-the-art
performance on portrait segmentation using a SPN. We also demonstrate that
sparse depth labels can be used for training a SPN, and that depth estimation
can be improved by using additional portrait segmentation data.

2 Related Work

Portrait Segmentation. Deep learning achieves promising results on many
applications [19,20,22,32,33]. For semantic segmentation, many recent works
are based on CNNs. Long et al. [23] introduce fully convolutional neural network
(FCNN), which convolutionalizes the classification networks, such as VGG [26],
to directly output segmentation maps. Numerous segmentation methods have
subsequently been developed. In particular, Shen et al. [25] adapt the FCNN
to selfie portrait segmentation by using additional position and shape channels.
Liu et al. [20] extend the FCNN by adding recurrent modules and use it on fore-
ground segmentation. However, FCNN based methods do not explicitly model
the pairwise relations (i.e.affinity) of pixels and their segmentation maps lack
details and subtle structures. To remedy this problem, Chen et al. [5] and Zheng
et al. [35] apply a dense CRF to model the affinity and refine the segmenta-
tion maps predicted by FCNNs. Liu et al. [22] propose the spatial propagation
network with 2D propagation modules to learn pixel affinities in an end-to-end
manner. As the fine structures and accurate segmentation boundaries are criti-
cal for rendering realistic DoF images, we apply SPNs to segment portraits and
achieve the state-of-the-art results on a portrait segmentation dataset.

Depth Estimation with Single Image. Deep learning based models have
been used to learn depth from a single image, both in supervised and unsuper-
vised ways. For supervised depth learning, Eigen et al. [10] propose a CNN archi-
tecture that integrates coarse-scale depth prediction with fine-scale prediction.
Furthermore, Eigen et al. [9] use a pre-trained classification network to improve
depth accuracy, such as the AlexNet [16] and VGG [26] models. Recently, Laina
et al. [17] use a ResNet-based encoder-decoder architecture to generate dense
depth maps. These supervised-learning methods need densely-labeled RGB-D
images which are limited to indoor scenes (e.g., NYU dataset [24]).
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Fig. 2. Overview of the proposed algorithm. We first use off-the-shelf models for single
image depth estimation and portrait segmentation. Then we further train SPNs to
learn image affinities for refining the depth and segmentation. Finally, we generate the
DoF result by exploiting both the refined depth and segmentation map, and learn a
spatially-variant RNN to accelerate the rendering process.

On the other hand, several methods [11,13,30] learn depth map prediction
in an unsupervised way using an image alignment loss that enforces left-right
consistency of the training stereo pairs. However, these methods are still limited
to specific scenarios (e.g., scenes in the KITTI [12] and Cityscape [8] datasets)
and cannot handle portraits taken by cellphones in everyday life.

Chen et al. [7] propose the Depth in the Wild (DIW) dataset which consists
of everyday images with relative depth labels between sparsely sampled point
pairs. We show that SPN can be trained by sparse labels from the DIW dataset
for accurate depth estimation. Moreover, the additional portrait segmentation
dataset helps improve depth estimation for portraits, as we can enforce that the
depth of different locations on the human body should be consistent.

DoF Rendering. The DoF effect is an important characteristic for realistic
image synthesis in computer graphics. A number of DoF rendering methods
have been proposed for image synthesis, such as rendering lightfield [27,34] and
tracing rays [18,28]. All these image synthesis methods assume that the 3D
information of the scene is known.

In contrast, generating DoF effects for RGB images captured from monoc-
ular cameras is more challenging. Some methods [14,36] rely on 3D cameras to
capture the depth map as well as the RGB image, and generate DoF effects with
the obtained depth. Barron et al. [2] recover depth with stereo pairs to render
defocus images. Bae et al. [1] achieve desired DoF effects without using depth
information by detecting and magnifying depth blur in a single image. However,
their method needs the input images to have mild depth blur at first, which is
not always accessible in real scenarios, such as small apertures of cellphones.
Shen et al. [25] also generate DoF effects for single images by portrait segmenta-
tion. But their method is designed for selfies and cannot be used for whole-body
images. In addition, the uniform blur kernel they use can bring boundary effects,
as shown in Fig. 3(c). Different from the aforementioned methods, our method



40 X. Xu et al.

does not need special input or shooting devices such as 3D cameras. Instead, we
use deep neural networks to obtain accurate depth and segmentation with fine
details. Then we adopt a CRF model to split image layers using the estimated
depth and generate the DoF effect for whole-body portraits by exploiting both
the depth and segmentation information. In addition, we propose segmentation
and depth guided RNN to accelerate and approximate the rendering process.

3 Proposed Algorithm

As it is extremely difficult to capture image pairs with and without DoF effect
for the same scene, we do not take the elegant end-to-end approach for DoF
rendering. Instead, we propose to integrate both learning-based and traditional
vision algorithms into a novel system that does not require such a training set.
Similar to Google Pixel2, our system simulates the real imaging process and
applies depth-dependent blurring to an input image. While Google Pixel2 relies
on hardware and lacks technical details, our software-based system works with
any type of cellphone and can also process existing photos.

An overview of our system is shown in Fig. 2. Specifically, we first use off-
the-shelf models for single image depth estimation [7] and portrait segmentation
[20] to bootstrap our system. Since the initial estimation maps are coarse, we
further train SPNs [22] to learn image affinity for refining the depth estimation
and segmentation. With the refined depth and segmentation map, we split the
background into layers of different depth using a CRF model and then perform
segmentation and depth aware blur rendering to generate the DoF result. In
the meanwhile, a spatially-variant RNN filter is learned with segmentation and
depth as guidance map and the aforementioned DoF result as ground truth to
accelerate the rendering process.

3.1 Portrait Segmentation

Spatial Propagation Network. The SPN [22] model consists of a deep CNN
that learns the affinity entities of an input image I, and a spatial linear propa-
gation module that refines a coarse mask M . The coarse mask is refined under
the guidance of affinities, i.e., learned pairwise relationships for any pixel pairs.
All modules are differentiable and can be jointly trained using backpropagation.

In this work, we adopt an encoder-decoder architecture with concatenation
skip connections as the guidance network, where we use the VGG-16 [26] pre-
trained network from the conv1 to pool5 as the downsampling part. The upsam-
pling part has the exactly symmetric architecture and is learned from scratch.
With the weights generated by the guidance network, the propagation module
takes a coarse mask as input, and propagates the coarse information in four
directions, i.e., left-to-right, top-to-bottom, and the other two with the reverse
directions.

Loss Function. For portrait segmentation, the coarse mask of SPN for image I
is generated by the foreground segmentation model [20]. We denote the output
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of SPN as v, and the final segmentation map is generated by a sigmoid function:
m = 1/(1 + exp(−v)). We use a pixel-wise cross-entropy loss for training, which
is defined as:

L1(m) = −
∑

i∈F
log mi −

∑

j∈B
log(1 − mj), (1)

where the sets F and B contain pixels in the foreground and background masks
of the ground truth, respectively.

3.2 Depth Estimation

The initial depth predicted by [7] is also refined by a SPN, which has the same
network architecture as the one for segmentation. We use the Depth in the
Wild dataset [7] that contains images from different scenes. As the images of
this dataset are only sparsely annotated with relative depth between pairs of
random point pairs, we use the ranking loss [7] for training. Consider a training
image I and its annotation {i, j, γ} where i and j are the two annotated points,
and γ ∈ {+1,−1} is the ground-truth depth relation between i and j: γ = 1 if i
is further than j, and γ = −1 vice versa. Let z be the predicted depth map and
zi, zj be the depths at point i and j. The ranking loss is defined as:

L2(z) =

{
log(1 + exp(−zi + zj)), γ = +1,
log(1 + exp(zi − zj)), γ = −1,

(2)

which encourages the predicted depth difference between zi and zj to be consis-
tent with the ground-truth ordinal relation.

In addition to the dataset with depth annotation, we also exploit the segmen-
tation labels in the portrait segmentation dataset for better depth estimation
of portrait images. As pixels at different locations of the portrait should have
similar depth values, we use a loss function:

L3(z) =
∑

i,j∈F
max{0, (zi − zj)2 − δ}, (3)

where i, j ∈ F are the pixels on the human body. As the depth values at different
parts of the human body are not exactly the same, we adopt a soft constraint
that allows small depth differences and only punishes the depth differences larger
than a margin δ.

3.3 DoF Rendering

Most smartphones have two shooting modes that use the front and rear cameras
respectively. For selfie images captured by a front camera, the background is
always further than the person. To generate the DoF effect, we can simply blur
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(a) Input (b) Mask (c) Uniform (d) Guided

Fig. 3. Effectiveness of segmentation-guided blur kernel. A uniform blur causes bound-
ary artifacts (c) while our method generates DoF effects with sharper boundaries (d).

(a) Input (b) w/o depth (c) Depth layers (d) with depth

Fig. 4. Comparison of the whole-body DoF results with and without using depth infor-
mation. We generate more realistic result (d) by splitting depth layers (c).

the background with a disk blur kernel and keep the foreground clear. The blur
process is formulated as:

Bi = miIi + (1 − mi)
∑

j

wijIj , (4)

where I,B are the clear image and blurred result respectively; and m represents
the portrait segmentation mask. The disk blur kernel w is defined as:

wij =

{
1/C, ‖pi − pj‖ < r,

0, otherwise,
(5)

where pi is the coordinate of pixel i, and r is the radius of the disk blur kernel.
The blur kernel is normalized by a constant C.

However, a uniform kernel may contaminate the background pixels with fore-
ground pixels in the blurring process, and lead to boundary effect as shown in
Fig. 3(c). To address this issue, we propose a new blur kernel ŵij which is guided
by the segmentation mask m. The guided blur kernel is defined as:

ŵij(m) = wij(1 − mj)/
∑

j

wij(1 − mj), (6)
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where only the background pixels are used during the blurring process. Our
method effectively removes the boundary effect as shown in Fig. 3(d).

Whole-Body Portraits. For whole-body portraits taken by a rear camera,
naively blurring the background without considering the depth information can-
not generate realistic results. As shown in Fig. 1(b), some parts of the background
have similar depth with the human body and should also be kept clear. Thus,
we exploit the depth estimation to generate better blurred portraitures.

As shown in Fig. 4(c), even with SPN refinement, the depth estimation from
a single image is still imperfect and noisy. Thus we split the image into different
depth layers using a CRF model which encourages depth smoothness in neigh-
boring regions. The energy function for our depth labeling problem is formulated
as:

E(l|z) =
∑

i

u(li|zi) + λ
∑

(i,j)∈N ,i<j

e(li, lj |zi, zj), (7)

where N is the 4-nearest-neighborhood system on pixels. In addition, λ is a
hyper-parameter that balances the unary term u(li|zi) and the pairwise term
e(li, lj |zi, zj). We derive the function u(li|zi) from the estimated depth zi to
measure the cost of assigning the layer label li ∈ {1, 2, ...,K} to the pixel i.
Specifically, we first find K clusters for the depth values using the K-means
algorithm. We assume that the depth value in each cluster follows a Gaussian
distribution, and u(li|zi) can be defined as the negative log-likelihood of the pixel
i belonging to each cluster li:

u(li|zi) = ‖zi − Cli‖/σ2
li , (8)

where Cli and σ2
li

are the cluster center and variance of the cluster li.
The pairwise term e(li, lj |zi, zj) measures the cost of assigning the labels li, lj

to the adjacent pixels i, j and imposes spatial smoothness:

e(li, lj |zi, zj) = 1(li �= lj) exp(−‖fS(z)i→j‖), (9)

where 1(·) is the indicator function, and fS is a Sobel operator which detects
depth variations between the pixels i and j. We use the Graph Cut algorithm [15]
to minimize the energy function E(l|z).

After splitting the image I into K depth layers, we blur each layer l with a
unique blur kernel ŵl with different disk radius rl. We assume that the human
body should be kept clear and do not consider foreground blur. Thus, we set
further layer with larger kernel size while closer layer with smaller one. The final
result can be rendered by:

Bi = miIi + (1 − mi)
K∑

l=1

∑

t

git1(lt = l)
∑

j

ŵl
ij(m)Ij , (10)

where git is a Gaussian kernel centered at pixel i which feathers and combines
layers of different depth.

∑
t git1(lt = l) measures to what degree pixel i belongs

to layer l. Figure 4(d) shows a rendered DoF result.
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Fig. 5. Illustration of our spatially-variant RNN model. The proposed network contains
two groups of RNNs for image filtering and a deep CNN to learn the guidance map
with our refined depth and segmentation estimation. To simplify the network training,
we add a skip connection from the input to output and learn the residual map instead
of the RGB image.

3.4 RNN Filter Learning

While effective at generating high-quality DoF images, the CRF-based method
is computationally expensive because of the CRF optimization, image matting
and guided blurring. To reduce the computational cost, we train a deep neural
network to approximate the rendering process. Since the DoF blur is spatially-
variant, we adopt the RNN filters [21] instead of using a CNN which has the
same convolutional kernel at different spatial locations. However, the original
method [21] cannot be directly applied for our task, because it learns the the
guidance map from RGB images and does not explicitly consider segmentation
and depth information. To address this issue, we propose to use the refined
segmentation and depth estimation to generate guidance for approximating DoF
effects. To simplify the network training, we add a skip connection from the clear
image input to the RNN output, because the generated DoF results resemble
the original inputs. We use an encoder-decoder CNN to generate the guidance
map for the following RNN which combines two groups of recursive filters in a
cascaded scheme. The pipeline of our RNN model is shown in Fig. 5.

4 Experimental Results

We show the main results in this section and present more analysis and evalua-
tions in the supplementary material.

4.1 Implementation Details

Network Training. To train the segmentation network for front camera, we use
the selfie image dataset from [25] which is composed of 1428 training and 283 test
images. For rear cameras, we use the Baidu human segmentation dataset which
has 5387 densely labeled images [29] of which 500 are used for testing and the
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(a) Input (b) FCNN [23] (c) PFCN+ [25] (d) Ours (e) GT

Fig. 6. Visual comparison of different segmentation methods on a selfie image.

(a) Input (b) FCNN [23] (c) DHSnet [20] (d) Ours (e) GT

Fig. 7. Visual comparison of different segmentation methods on a whole-body image.

rest for training. During training, we randomly change the aspect ratio and flip
the image for data augmentation. To train the depth network, we use the Depth
in the Wild [7] dataset which consists of 421K training and 74K test images. For
the RNN training, we conduct our CRF-based DoF rendering method on the
Baidu human dataset to generate 5K training image pairs and collect another
100 portrait images for evaluation. For all the networks, we use the standard
SGD for training with momentum as 0.9 and learning rate as 0.0001.

DoF Rendering. Instead of using the segmentation map from SPN directly,
we use the KNN matting method [6] to composite clear foreground and blurry
background images. Our estimated segmentation result provides a good trimap
initialization for image matting. We generate a trimap by setting the pixels
within a 10-pixel radius of the segmentation boundary as the “unknown”. This
matting scheme performs well as our segmentation provides accurate initial seg-
mentation boundaries. For the CRF model, we empirically split the image into
K = 6 layers and set the hyper-parameter in (7) as λ = 10.

4.2 Results of Portrait Segmentation

We quantitatively evaluate our segmentation results on the selfie image
dataset [25] and Baidu human segmentation dataset [29]. The segmentation per-
formance is measured by the Interaction-over-Union (IoU) metric. As shown in
Table 1, our algorithm achieves the state-of-the-art on selfies. For whole-body
images [29], the proposed method achieves an IoU of 93.22 which outperforms
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(a) Input (b) Chen [7] (c) Ours (d) Ours+seg

Fig. 8. Visual example of our depth estimation. (c) represents the SPN trained with
(2). (d) is further trained with (3) on additional segmentation data.

the 91.43 of the finetuned model of [20]. In addition, we show two examples in
Figs. 6 and 7 for qualitative evaluation. The segmentation maps of our method
have fine details and small structures, thereby providing accurate foreground
information for generating good DoF effects.

4.3 Results of Depth Estimation

Similar to [7], we use the Weighted Human Disagreement Rate (WHDR) between
the predicted ordinal relations and ground-truth ordinal relations to evaluate our
method on the DIW test set. Although our result 14.35 on the DIW dataset is
only slightly better than the 14.39 of [7], it shows that our SPN can estimate
depth properly, and training SPN with sparse labels is effective. As the WHDR
only measures ordinal relations of sparse point pairs (one pair each image), it
does not evaluate the depth estimation performance well. We present visual
examples for qualitative comparison in Fig. 8. Refinement with SPN removes
noise in the background and generates sharper boundaries (e.g., the background
on the left side in Fig. 8(c)). As shown in Fig. 8(d), using additional segmentation
data and our new depth loss (3) further improves the depth consistency on the
human body and leads to better depth estimation for portraits.

4.4 Results of CRF-Based DoF Rendering

User Study. Since there is no ground truth for DoF images to perform a quan-
titative evaluation, we conduct the following user study on the generated DoF

Table 1. Quantitative comparison of different segmentation methods on the selfie
image dataset [25]. GC represents graph cut. FCNN has been finetuned on the selfie
training set for fair comparisons.

Methods GC [3] FCNN [23] PFCN+ [25] Ours

Mean IoU (%) 80.02 94.97 95.52 96.40



Rendering Portraitures from Monocular Camera and Beyond 47

(a) Input (b) Mask of [25] (c) Our mask (d) DoF of [25] (e) Our DoF

Fig. 9. DoF results on a selfie image. Our method generates better segmentation mask
and DoF result without boundary effect (note the glowing boundary in (d)).

(a) Input (b) Our mask (c) Depth layers (d) Ours RNN (e) Ours DoF

Fig. 10. Visual example of our DoF results on whole-body images. Our method gen-
erates realistic DoF results.

results. This study uses 30 whole-body portrait images where: (a) 10 images
are captured by single-lens reflex (SLR) camera, (b) 10 are generated by our
algorithm, and (c) 10 images are generated by naively blurring the background
without considering depth. These images are presented in a random order to 22
subjects, who are asked to decide if a presented image is generated by a com-
puter or captured by a real SLR. 79.1% users regard (b) as real captured, while
the numbers are 81.8% for (a) and 13.2% for (c). The user study shows that
the proposed method can effectively generate realistic DoF results, while naively
blurring without considering depth cannot generate convincing results. We show
several visual examples for selfie and whole-body images in Figs. 9 and 10.
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(a) input (b) w/o depth (c) w/o SPN

(d) w/o CRF (e) w/o guided kernel (f) final result

Fig. 11. Ablation study of each component in our CRF-based method.

Ablation Study. As introduced in Sect. 3.3, our DoF rendering system is com-
posed of different components, i.e., SPN, guided blur kernel, depth aware filtering
and CRF model. Figure 11 shows an ablation study of each component of our
system in rendering DoF images. First, without depth information, uniform blur
is applied to the background in Fig. 11(b), and the closer region such as the
ground near the human foot is over-blurred. Second, without using the SPN, the
coarse segmentation map leads to incorrectly blurred foreground regions such as
the top part of the hat in Fig. 11(c). Third, using a naive thresholding scheme
to split depth layers instead of the CRF model generates unrealistic boundaries
between the clear and blurry regions as shown in the middle part of Fig. 11(d). In
addition, removing the guided blur kernel results in noticeable boundary artifacts
around the trousers in Fig. 11(e). By contrast, our system effectively integrates
different components and generates high-quality DoF results (Fig. 11(e)).

4.5 Results of RNN Filter

We evaluate the proposed RNN filter against the state-of-the-art deep filtering
approaches [31] and [21]. We also train a CNN network with refined depth and
segmentation maps as additional input to compare with our spatially-variant
RNN design. This CNN has the same encoder-decoder structure as the guidance
network in Sect. 3.4. For fair comparisons, we use the same settings and train-
ing data for all these methods as introduced in Sect. 4.1. As shown in Table 2,
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Table 2. Quantitative comparison of different deep networks for learning DoF effects
on the Baidu human test set [29].

Methods Xu et al. [31] Liu et al. [21] Ours CNN Ours RNN

PSNR (dB) 31.55 33.55 37.35 40.74

SSIM 0.9235 0.9432 0.9723 0.9868

the proposed filtering algorithm outperforms state-of-the-art methods for
approximating DoF effects in terms of PSNR and SSIM. For qualitative evalua-
tion, we show a visual example in Fig. 12. The CNN-based methods (Fig. 12(b)
and (d)) incorrectly blur the foreground, such as the textures of the clothes,
because CNN uses uniform kernel at different spatial locations and cannot well
handle the spatially-variant DoF case. The result by Liu et al. contains significant
artifacts on the background due to the lack of effective guidance. In contrast, the
proposed RNN model explicitly uses the depth and segmentation as guidance to
learn a spatially-variant image filter. Thus, we can effectively approximate the
CRF-based rendering system and generate realistic DoF results (Fig. 12(e)).

(a) Input (b) Xu [31] (c) Liu [21] (d) Ours CNN (e) Ours RNN (f) Ours CRF

Fig. 12. Visual example of our RNN filtering result. Our method generates realistic
DoF result while others wrongly blur the foreground or contain significant artifacts.

Running Time. We implement the proposed algorithm on a desktop with an
Intel i7 CPU, 8 GB RAM and an Nvidia GTX 1060 GPU. It takes about 8 s for
the CRF-based method to process a 500 × 300 image. By contrast, the learned
RNN filter takes only 1.12 s, which significantly accelerates the rendering process
and makes it more practical for real applications.

5 Conclusions

In this work, we propose a deep learning and CRF based system that can auto-
matically render realistic DoF results for single portrait images. A spatially-
variant RNN filter is trained to accelerate the rendering process with guidance
from depth and segmentation. In addition, we achieve the state-of-the-art per-
formance on portrait segmentation using SPN. Furthermore, we demonstrate
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that sparse depth labels can be used for SPN training. We also show that depth
estimation can be improved by enforcing depth consistency on human body with
additional portrait segmentation data.
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