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Abstract. In this paper, we introduce a selective zero-shot classifica-
tion problem: how can the classifier avoid making dubious predictions?
Existing attribute-based zero-shot classification methods are shown to
work poorly in the selective classification scenario. We argue the under-
complete human defined attribute vocabulary accounts for the poor per-
formance. We propose a selective zero-shot classifier based on both the
human defined and the automatically discovered residual attributes. The
proposed classifier is constructed by firstly learning the defined and the
residual attributes jointly. Then the predictions are conducted within the
subspace of the defined attributes. Finally, the prediction confidence is
measured by both the defined and the residual attributes. Experiments
conducted on several benchmarks demonstrate that our classifier pro-
duces a superior performance to other methods under the risk-coverage
trade-off metric.
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1 Introduction

Zero-Shot Classification (ZSC) addresses the problem of recognizing images from
novel categories, i.e., those categories which are not seen during the train-
ing phase. It has attracted much attention [1–6] in the last decade due to its
importance in real-world applications, where the data collection and annota-
tion are both laboriously difficult. Existing ZSC methods usually assume that
both the seen and the unseen categories share a common semantic space (e.g.,
attributes [1,2]) where both the images and the class names can be projected.
Under this assumption, the recognition of images from unseen categories can be
achieved by the nearest neighbor search in the shared semantic space.
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Although there is a large literature on ZSC, the prediction of existing zero-
shot classifiers remains quite unreliable compared to that of the fully supervised
classifiers. This limits their deployment in real-world applications, especially
where mistakes may cause severe risks. For example, in autonomous driving, a
wrong decision can result in traffic accidents. In clinical trials, a misdiagnosis
may make the patient suffer from great pain and loss.

To reduce the risk of misclassifications, selective classification improves clas-
sification accuracy by rejecting examples that fall below a confidence thresh-
old [7,8]. Motivated by this, in this paper we introduce a Selective Zero-Shot
Classification (Selective ZSC) problem: the zero-shot classifier can abstain from
predicting when it is uncertainty about its predictions. It requires that the clas-
sifier not only makes accurate predictions given images from unseen categories
but also be self-aware. In other words, the classifier should be able to know
when it is confident (or uncertain) about their predictions. The confidence is
typically quantified by a confidence score function. Equipped with this ability,
the classifier can leave the classification of images when it is uncertain about its
predictions to the external domain expert (e.g., drivers in autonomous driving,
or doctors in clinical trials).

Selective classification is an old topic in machine learning field. However, we
highlight its importance in the context of ZSC in threefold. Firstly, the predic-
tions of zero-shot classifiers are not so accurate compared with those of fully
supervised classifiers, which poses large difficulty in Selective ZSC. Secondly, it
is shown in our experiments (in Sect. 6.3) that most existing zero-shot classi-
fiers exhibit poor self-awareness. This results in their inferior performance in
the settings of Selective ZSC. Lastly, albeit its great importance in real-world
applications, selective classification remains under-studied in the field of ZSC.

Typically, existing ZSC methods rely on human defined attributes for novel
class recognition. Attributes are a type of mid-level semantic properties of visual
objects that can be shared across different object categories. Manually defined
attributes are often those nameable properties such as color, shape, and texture.
However, the discriminative properties for the classification task are often not
exhaustively defined and sometimes hard to be described in a few words or
some semantic concepts. Thus, the under-complete defined attribute vocabulary
results in inferior performance of attribute-based ZSC methods. We call the
residual discriminative but not defined properties residual attributes. To make
safer predictions for zero-shot classification, we argue both the defined and the
residual attributes should be exploited. These two types of attributes together
are named augmented attributes in this paper.

We propose a much safer selective classifier for zero-shot recognition based on
augmented attributes. The proposed classifier is constructed by firstly learning
the augmented attributes. Motivated by [9,10], we formulate the attribute learn-
ing task as a dictionary learning problem. After the learning of the augmented
attributes, the defined attributes can be directly utilized to accomplish tradi-
tional zero-shot recognitions. The confidence function thus can be defined within
the subspace of defined attributes. The residual attributes, however, can not be
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directly exploited for classification because there are no associations between
the residual attributes and the unseen categories. Instead of conducting direct
predictions, we leverage the residual attributes to improve the self-awareness of
the classifier constructed on defined attributes. Specifically, we define another
confidence function based on the consistency between the defined and the resid-
ual attributes. Combining the confidence obtained on the augmented attributes
and confidence produced within the defined attributes, the proposed selective
classifier significantly outperforms other methods in extensive experiments.

To sum up, we made the following contributions: (1) we introduce the selec-
tive zero-shot classification problem, which is important yet under-studied; (2)
we propose a selective zero-shot classifier, which leverages both the manually
defined and the automatically discovered residual attributes for safer predictions;
(3) we propose a solution to the learning of residual discriminative properties
in addition to the manually defined attributes; (4) experiments demonstrate our
method significantly outperforms existing state-of-the-art methods.

2 Related Work

2.1 Zero-Shot Learning

Typically, existing ZSC methods consist of two steps. The first step is an embed-
ding process, which maps both the image representations and the class names
to a shared embedding space. This step can also be viewed as a kind of multi-
modality matching problem [11,12]. The second step is a recognition process,
which is usually accomplished by some form of nearest neighbor searches in the
shared space learned from the first step. Existing ZSC approaches mainly differ
in the choices for the embedding model and the recognition model. For example,
DAP [1] adopts probabilistic attribute classifiers for embedding and Bayes classi-
fier for recognition. Devise [13], Attribute Label Embedding (ALE) [14], Simple
ZSC [3] and Structured Joint Embedding (SJE) [4] adopt linear projection and
inner product for embedding and recognition, respectively. However, they exploit
different objective functions for optimization. Embedding Model (LatEm) [15]
and Cross Model Transfer (CMT) [16] employ nonlinear projection for embed-
ding to overcome the limitations of linear models. Different from above methods,
Semantic Similarity Embedding (SSE) [17], Convex Combination of Semantic
Embeddings (CONSE) [18] and Synthesized Classifiers (SYNC) [19] build the
shared embedding space by expressing images and semantic class embeddings
as a mixture of seen class proportions. For a more comprehensive review about
ZSC, please refer to [5,20].

2.2 Defined Attributes and Latent Attributes

Attributes are usually defined as the explainable properties such as color, shape,
and parts. With manually defined attributes as a shared semantic vocabulary,
novel classes can be easily defined such that zero-shot recognition can be accom-
plished via the association between the defined attributes and the categories.
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However, manually finding a discriminative and meaningful set of attributes can
sometimes be difficult. The method for learning discriminative latent attributes
has been exploited [9,21–24]. Tamara et al. [21] propose to automatically iden-
tify attributes vocabulary from text descriptions of images sampled from the
Internet. Viktoriia et al. [22] propose to augment defined attributes with latent
attributes to facilitate few-shot learning. Mohammad et al. [23] propose to dis-
cover attributes by trading off between predictability and discrimination. Felix
et al. [24] propose to design attributes without concise semantic terms for visual
recognition by incorporating both the category-separability and the learnability
into the learning criteria. Peixi et al. [9] propose a dictionary learning model to
decompose the dictionary space into three parts corresponding to defined, latent
discriminative and latent background attributes. Different from these works, in
this paper we augment the manually defined attributes with residual attributes
to improve the self-awareness of zero-shot classifier.

2.3 Selective Classification

Safety issues have attracted much attention in the AI research community in the
last several years. For example, Szegedy et al. [25] find that deep neural networks
are easily fooled by adversarial examples. Following their work, many methods
are proposed to construct more robust classifiers.

To reduce the risk of misclassifications, selective classification [7,8] improve
classification accuracy by rejecting examples that fall below a confidence thresh-
old. For different classifiers, the confidence scores can be defined in various ways.
Most generative classification models are probabilistic, therefore they provide
such confidence scores in nature. However, most discriminative models do not
have direct access to the probability of their predictions [26]. Instead, related
non-probabilistic scores are used as proxies, such as the margin in the SVM
classifier and the softmax output or MC-Dropout [27] in deep neural networks.
In this paper, we propose to exploit the residual attributes to compensate the
limitations of defined attributes and make the classifier more self-aware.

3 Problem Formulation of Selective Zero-Shot
Classification

We summarize some key notations used in this paper in Table 1 for reference.
Let X be the feature space (e.g., raw image data or feature vectors) and Y

be a finite label set. Let PX ,Y be a distribution over X ×Y. In a standard multi-
class zero-shot classification problem, given training data Xs = [x1,x2, ...,xNs

]
and corresponding defined attribute annotations Ds = [d1,d2, ...,dNs

] and label
annotations ys = [y1, y2, ..., yNs

]T , yi ∈ Ys, the goal is to learn a classifier f: X →
Y. The classifier is usually used to recognize test data Xu = [xu

1 ,xu
2 , ...,xu

Nu
] from

Yu ⊂ Y which is unseen during training, i.e., Ys ∩ Yu = ∅.
In the proposed Selective ZSC problem, the learner should output a selective

classifier defined to be a pair (f, g), where f is a standard zero-shot classifier,
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Table 1. Some key notations used in this paper. Some of them are also explained in
the main text.

Notations Definition

Ys, Yu Seen label set and unseen label set

Ns, Nu Number of seen (unseen) images, Ns (Nu) ∈ N
+

Ko Number of dimensions of the feature space, Ko ∈ N
+

xi An instance in the feature space, xi ∈ R
Ko

Xs,Xu Seen/Unseen image representations, Xs ∈ R
Ko×Ns ,Xu ∈ R

Ko×Nu

ys Label annotations for the training data Xs, ys ∈ R
Ns

Kd, Kr Number of dimensions of the defined and the residual attribute space

Ds Defined attribute annotations Ds ∈ R
Kd×Ns for the training data Xs

Do Defined attribute annotations Do ∈ R
Kd×|Ys| for the seen classes

Ro Residual attribute representations Ro ∈ R
Kr×|Ys| for the seen classes

[di; ri] Augmented attribute representation of xi. di is the defined attributes,

and ri is the residual attributes

[dj ; rj ] Augmented attribute representation of class j

sd, sr Similarity vectors from the defined/residual attributes, sd, sr ∈ R
|Ys|

and g : X → {0, 1} is a selection function which is usually defined as g(x) =
1{conf(x) > τ}. conf is a confidence function, τ is a confidence threshold, and
1 is an indicator function. Given a test sample x,

(f, g)(x) �
{

f(x), g(x) = 1
reject, g(x) = 0 (1)

The selective zero-shot classifier abstains from prediction when g(x) = 0. Its
performance is usually evaluated by the risk-coverage curve [8,28]. More details
about the evaluation metric can be found in Sect. 6.1.

4 The Proposed Selective Zero-Shot Classifier

In this section, we assume the model for augmented attributes has been learned
and introduce our proposed selective classifier (f, g) based on the augmented
attributes. Then in the next section, we introduce how the augmented attributes
are learned.

Let D be the defined attribute space and R be the residual attribute space.
For each x ∈ X , we can obtain its augmented attribute prediction [d; r] ∈ DR by
the trained attribute model, where DR = D × R. In zero-shot learning, for each
seen category ys ∈ Ys, an attribute annotation dys of the defined attributes
is given. Do ∈ R

Kd×|Ys| is the class-level attribute annotation matrix, where
the i-th column vector denotes the defined attribute annotation for the i-th
seen category. Since no annotations of residual attributes are provided for the
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Fig. 1. The confidence defined with the aid of the residual attributes.

seen categories, we adopt the center of residual attribute predictions for each
seen category as its residual attribute representation, denoted by rys . Let Ro ∈
R

Kr×|Ys| be the class-level residual attribute representation matrix. During the
test phase, only the defined attributes are annotated for unseen categories (dyu

for yu ∈ Yu).

4.1 Zero-Shot Classifier f

The zero-shot classifier f is built on the defined attributes solely, as no annota-
tions for residual attributes are provided. Given the defined attribute prediction
d̂ of a test image, the classifier f is constructed by some form of nearest neighbor
search

ŷ = arg max
k∈Yu

sim(d̂,dk), (2)

where sim is the similarity function. In fact, many ZSC approaches follow the
above general formulation, even though they may differ in the concrete form of
sim. In this paper, it is simply defined as the cosine similarity.

4.2 Confidence Function

With sim(·) defined within the subspace of the manually defined attributes, the
prediction confidence can be defined as the similarity score:

confd = sim(d̂,dk). (3)

However, as aforementioned, the defined attribute vocabulary alone is limited in
its discriminative power. Thus the confidence score obtained within the defined
attribute subspace is shortsighted. To tackle this issue, we propose to explore and
exploit the residual attributes to overcome the shortcomings of the confidence
produced by the defined attributes. Figure 1 illustrates the confidence score pro-
duced resorting to the residual attributes. Specifically, given a test image from
an unseen class, we can obtain its augmented attribute presentation ([d̂; r̂]) by
feeding the test image to the attribute prediction model. With this attribute
presentation, two similarity vectors (sd, sr) can be computed: sd for the defined
attributes and sr for the residual attributes. In these similarity vectors, the
value of dimension k measures the similarity between the predicted attributes
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and attribute presentation of class k. We formulate the similarity vector learning
task as a sparse coding problem:

sd = arg min
s

{
γ

2
‖s‖2 +

1
2

∥∥∥d̂ − Dos
∥∥∥2

F

}
, (4)

sr = arg min
s

{
γ

2
‖s‖2 +

1
2

‖r̂ − Ros‖2F
}

. (5)

Then the confidence score can then be defined as the consistency of these two
vectors:

confr = sim(sd, sr). (6)

The above confidence function is built on the intuition that the more consistent
the defined and the residual attributes are, the less additional discriminative
information the residual attributes provide for the current test image. Therefore,
classification based on the defined attributes solely approximates classification
based on the whole augmented attributes. Imagine that the residual attributes
produce the same similarity vector as the defined attributes, then the residual
attributes completely agree with the defined attribute on the prediction they
made. However, if the residual attributes produce absolutely different similarity
vector, then they do not reach a consensus. The defined attributes are short-
sighted in this case and the produced prediction is more unreliable.

Combining the confidence function defined within the defined attribute sub-
space and that defined with the aid of residual attributes, the final confidence
is

conf = (1 − λ)confd + λconfr, (7)

where λ is a trade-off hyper-parameter which is set via cross-validation.

5 Augmented Attribute Learning

In this section, we introduce how the augmented attributes are learned. We for-
mulate the augmented attribute learning task as a dictionary learning problem.
The dictionary space is decomposed into two parts: (1) Qd corresponding to the
defined-attribute-correlated dictionary subspace part which is correlated to the
defined attribute annotations and the class annotations, (2) Qr corresponding
to the residual attribute dictionary subspace which is correlated to the class
annotations and thus also useful for the classification task. To learn the whole
dictionary space, three criteria are incorporated: (1) the defined attributes alone
should be able to accomplish the classification task as better as possible; (2)
the residual attributes should complement the discriminative power of defined
attributes for classification; (3) the residual attributes should not rediscover the
patterns that exist in the defined attributes. With all the three criteria, the
objective function is formulated as:
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arg min
{Qd,L,Ql,U,Qr,Rs,V}

‖Xs − QdL‖2F + α ‖L − QlDs‖2F + β ‖H − UL‖2F
+ ‖Xs − QdL − QrRs‖2F + δ ‖H − UL − VRs‖2F
− η ‖Rs − WL‖2F ,

s.t. W = arg min
W

‖Rs − WL‖22, ‖wi‖22 ≤ 1, ‖qdi‖22 ≤ 1,

‖qri‖22 ≤ 1, ‖qli‖22 ≤ 1, ‖ui‖22 ≤ 1, ‖vi‖22 ≤ 1, ∀i.

(8)

In the above formulation, the second, the third, and the fourth lines are cor-
responding to the first, the second, and the third criteria, respectively. As the
proposed classifier f makes predictions based on only the defined attributes, the
first criterion protects f from being distracted from its classification task. How-
ever, defined attributes are usually not equally valuable for classification and
some of them are highly correlated. Instead of adopting the defined attributes
directly, we employ discriminative latent attributes proposed in [10] for zero-shot
classification. L is latent attributes which are derived from the defined attributes
and H = [h1,h2, ...] where hi = [0, ..., 0, 1, 0, ..., 0]T is a one hot vector which
gives the label of sample i. Thus U can be regarded as the seen-class classifier
in the latent attribute space. For the second criterion, we assume the learned
residual attributes suffer little of the above problem and adopt them and the
discriminative latent attributes jointly for the classification task. For the third
criterion, as we expect the residual attributes discover non-redundant properties,
the defined attributes should not be predictive for the residual attributes. wi is
the i-th column of W.

Optimizing the three criteria simultaneously is challenging as there are sev-
eral hyper-parameters which are set via cross-validation. Furthermore, it may
degrade the performance of f , as f makes predictions based on the defined
attributes solely. We divide the optimization problem in Eq. 8 into two sub-
problems which are optimized separately. In the first subproblem, only the first
criterion is considered and we optimize Qd,L,Ql and U to strive for f with
higher performance. In the second subproblem, Qd,L,Ql and U are fixed and
we optimize Qr,Rs and V with taking the second and the third criteria into con-
sideration. With our proposed optimization procedure, the cross validation work
for hyper-parameters {α, β, δ, η} is significantly reduced as {α, β} and {δ, η} are
cross validated separately.

The First Subproblem. Taking only the first criterion into consideration,
Eq. 8 is simplified to be

arg min
{Qd,L,Ql,U}

‖Xs − QdL‖2F + α ‖L − QlDs‖2F + β ‖H − UL‖2F ,

s.t. ‖qdi‖22 ≤ 1, ‖qli‖22 ≤ 1, ‖ui‖22 ≤ 1, ∀i.
(9)

This is the problem proposed in [10]. Equation 9 is not convex for Qd,L,Ql and
U simultaneously, but it is convex for each of them separately. An alternating
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optimization method is adopted to solve it. Detailed optimization process can
be found in [10].

The Second Subproblem. After solving the first subproblem, Qd,L,Ql and
U are fixed and Eq. 8 is simplified to be

arg min
{Qr,Rs,V}

‖Xs − QdL − QrRs‖2F +δ ‖H − UL − VRs‖2F −η ‖Rs − WL‖2F ,

s.t. W = arg min
W

‖Rs − WL‖22, ‖wi‖22 ≤ 1, ‖qri‖22 ≤ 1, ‖vi‖22 ≤ 1, ∀i.

(10)
Similarly, Qr,Rs and V are optimized by the alternate optimization method.
The optimization process is briefly described as follows.

(1) Fix Qr,V and update Rs:

arg min
Rs

∥∥∥X̃ − Q̃Rs

∥∥∥2

F
, (11)

where

X̃ =

⎡
⎣Xs − QdL

δ(H − UL)
−η(WL)

⎤
⎦ , Q̃ =

⎡
⎣Qr

δV
−ηI

⎤
⎦ ,

and I is the identity matrix. Rs has the closed-form solution as

Rs = (Q̃
T
Q̃)−1Q̃

T
X̃. (12)

(2) Fix Rs,V and update Qr:

arg min
Qr

‖Xs − QdL − QrRs‖2F , s.t. ‖qri‖22 ≤ 1, ∀i. (13)

The above problem can be solved by the Lagrange dual and the analytical solu-
tion is

Qr = (Xs − QdL)Rs
T (RsRs

T + Λ)−1, (14)

where Λ is a diagonal matrix constructed by all the Lagrange dual variables.
(3) Fix Rs,Qr and update V:

arg min
V

‖H − UL − VRs‖2F , s.t. ‖vi‖22 ≤ 1, ∀i. (15)

The above problem can be solved in the same way as Eq. 13 and the solution is

V = (H − UL)Rs
T (RsRs

T + Λ)−1. (16)

(4) Computing W:

arg min
W

‖Rs − WL‖2F , s.t. ‖wi‖22 ≤ 1, ∀i. (17)

Similar to Eqs. 14 and 16, we can get the solution

W = RsLT (LLT + Λ)−1. (18)

The complete algorithm is summarized in Algorithm 1. The optimization
process usually converges quickly, after tens of iterations in our experiments.
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Algorithm 1. Augmented Attribute Learning for Selective ZSC
Input: Xs,Ds,H, α, β, δ, η, Kr

Output: Qd,L,Ql,U,Qr,Rs,V

1: Optimizing the first subproblem according to [10], obtaining Qd,L,Ql,U.
2: Fixing Qd,L,Ql,U obtained from 1, and initializing Qr,V,W randomly according

to Kr.
3: while not converge do
4: Optimizing Rs according to Eq. 12.
5: Optimizing Qr according to Eq. 14.
6: Optimizing V according to Eq. 16.
7: Optimizing W according to Eq. 18.

8: return Qd,L,Ql,U,Qr,Rs,V

6 Experiments

6.1 Datasets and Settings

Datasets. We conduct experiments on three benchmark image datasets
for ZSC, including aPascal&aYahoo (aP&Y) [29], Animals with Attributes
(AwA) [1] and Caltech-UCSD Birds-200-2011 (CUB-200) [30]. For all the
datasets, we split the categories into seen and unseen sets in the same way
as [10]: (1) There are two attribute datasets in aP&Y: aPascal and aYahoo.
These two datasets contains images from disjoint object classes. The categories
in aPascal dataset are used as seen classes and those in aYahoo as the unseen
ones. (2) AwA contains 50 categories, 40 of which are used as seen categories,
and the rest 10 are used as the unseen ones. (3) CUB-200 is a bird dataset for
fine-grained recognition. It contains 200 categories, of which 150 are used as seen
categories and the rest 50 as the unseen ones. For all the datasets, we adopt the
pre-trained VGG19 [31] to extract features.

Cross Validation. There are several hyper-parameters (including γ,
Kr, α, β, δ, η) which are set via cross-validation. As aforementioned, our proposed
optimization procedure relaxes the laborious cross-validation work by decompos-
ing the original problem into two subproblems. α, β are firstly optimized on the
validation data independent of the others. After that, to further relax the cross-
validation work, we optimize δ, η,Kr independent of γ. Finally, γ is optimized.
In this paper, we adopt five-fold cross-validation [17] for all these parameters.

Evaluation Metrics. The performance of the classifier is quantified using cov-
erage and risk. The coverage is defined to be the probability mass of the non-
rejected region in Xu (the feature space of unseen classes)

coverage(f, g) � Ep[g(x)], (19)
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Fig. 2. Comparisons among different variants of the proposed method (best viewed in
color). AURCC is given in brackets.

and the selective risk of (f, g) is

risk(f, g) � Ep[	(f(x), y)g(x)]
coverage(f, g)

, (20)

where 	 is defined to be 0/1 loss. The risk can be traded off for coverage. Thus the
overall performance of a selective classifier can be measured by its Risk-Coverage
Curve (RCC), where risk is defined to be a function of the coverage [8,28]. The
Area Under Risk-Coverage Curve (AURCC) is usually adopted to quantify the
performance.

6.2 Ablation Study

The Effectiveness of Three Criteria. We have incorporated three criteria
into the learning of augmented attributes. In this section, we validate the effec-
tiveness of them. We make comparisons among three variants of the proposed
method. For the first one, only the first criterion is considered. In other words, no
residual attributes are learned, and the classification model degrades to LAD [10]
(conf = confd). For the second one (dubbed SZSC−), the first and the second
criteria are considered. For the third one (dubbed SZSC), all the three crite-
ria are incorporated. For all the three variants, the dimensions of the residual
attributes are kept the same as that of the defined attributes (Kr = Kd). Other
hyper-parameters are set via cross-validation. The risk-coverage curves on all
the three benchmark datasets are depicted in Fig. 2. It can be seen that on all
the three datasets, the proposed method achieves the best performance when all
the three criteria are involved.

Trade-Off Between Two Confidence Scores. The proposed confidence
function is composed of two parts: the confidence defined within the defined
attributes (confd) and the confidence defined with the aid of the residual
attributes (confr). In this section, we test how the trade-off parameter λ affects
the performance of SZSC. If λ = 0, the confidence depends entirely on the
defined attributes. On the contrary, if λ = 1, the confidence is composed of
confr only. All other hyper-parameters are kept the same for fair comparisons.



Selective Zero-Shot Classification 485

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Coverage

R
is

k

aP&Y

λ=0(0.467431)
λ=0.2(0.443795)
λ=0.4(0.431487)
λ=0.6(0.420259)
λ=0.8(0.418430)
λ=1.0(0.407194)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Coverage

R
is

k

AwA

λ=0(0.135752)
λ=0.2(0.117381)
λ=0.4(0.098837)
λ=0.6(0.111689)
λ=0.8(0.131419)
λ=1.0(0.147566)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Coverage

R
is

k

CUB−200

λ=0(0.364940)
λ=0.2(0.334306)
λ=0.4(0.304749)
λ=0.6(0.320702)
λ=0.8(0.344379)
λ=1.0(0.366083)

Fig. 3. Risk-coverage curves of the proposed method with varying λ.
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Fig. 4. How AURCC (left) and the optimal λ (right) change with varying Kr.

Experimental results on all the three benchmark datasets are shown in Fig. 3.
It reveals that the appropriately combined confidence significantly improve the
classifier’s performance on all the three datasets. More surprisingly, on aP&Y
the optimally combined confidence relies heavily on confr (λ = 1.0). The under-
complete defined attribute vocabulary and the large difference between the seen
and the unseen categories may account for that.

Dimensions of the Residual Attribute Space. In this section, we inves-
tigate how the performance changes with the varying Kr. Similarly, all other
hyper-parameters are kept the same. For a more comprehensive view of the
proposed method, both SZSC− and SZSC are evaluated. Experimental results
are shown in Fig. 4 (left). It can be observed that the number of dimensions of
the residual attribute space also makes unneglected impacts on the final perfor-
mance. Too small Kr (<50) will leave the residual discriminative properties not
fully explored. Conversely, too large Kr (> 300) renders the optimization more
challenging and time-consuming. Both these two cases degrade the performance.
Furthermore, we test that how the cross-validated λ changes with Kr. Results
are depicted in Fig. 4 (right). It can be seen that with small Kr, the confidence
obtained via the residual attributes is unreliable and the optimally combined
confidence relies heavily (small λ) on the confd. However, as Kr becomes larger,
λ also becomes larger which indicates that confr plays a more important role.

6.3 Benchmark Comparison

Competitors. Several existing ZSC models are selected for benchmark com-
parison, including SSE [17], SYNC [19], SCoRe [32], SAE [33] and LAD [10].



486 J. Song et al.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Coverage

R
is

k

aP&Y

SSE(0.418025)
SCoRe(0.529554)
LAD(0.457431)
SZSC(0.402875)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Coverage

R
is

k

AwA

SSE(0.194685)
SAE(0.112349)
SYNC(0.123706)
LAD(0.125752)
SZSC(0.097792)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Coverage

R
is

k

CUB−200

SSE(0.583886)
SAE(0.543614)
SYNC(0.450385)
SCoRe(0.239119)
LAD(0.355203)
SZSC(0.322791)

Fig. 5. Risk-coverage curves of existing methods and SZSC.

The selection criteria are (1) representativeness: they cover a wide range of mod-
els; (2) competitiveness: they clearly represent the state-of-the-art; (3) recent
work: all of them are published in the past three years; (4) reproducibility: all of
them are code available, so the provided results in this paper are reproducible.
We briefly review them and introduce their typical confidence functions as fol-
lows. SSE adopts SVM as the classification model. The margin in SVM classifier
is employed as the confidence. SCoRe utilizes deep neural networks integrated
with a softmax classifier for ZSC. The softmax output is usually employed for
misclassification or out-of-distribution example dection [34]. We also use it as
the proxy of the confidence for SCoRe. For the other competitors, the classifi-
cation task is usually accomplished via nearest neighbor searches in the shared
embedding space. We take the cosine similarity as the confidence.

For fair comparisons, both the proposed method and the competitors are
tested with features extracted by VGG19. Experimental results are provided in
Fig. 5. From the figure, we can conclude that: (1) Many existing ZSC methods
exhibit poor performance in Selective ZSC settings. With lower coverage, these
classifiers are expected to yield higher accuracy (i.e., lower risk). However, many
methods violate that regularity in many cases, especially on aP&Y and CUB.
These experimental results give us a more comprehensive view of existing ZSC
methods. (2) The proposed method outperforms most existing methods signifi-
cantly on all the three benchmark datasets. One exception is that SCoRe which
utilizes deep neural networks behaves better on CUB-200. However, it produces
a much worse performance on aP&Y, as there is a large imbalance among the
number of images in different categories (51–5071). (3) Although bringing some
improvement, the proposed method remains far behind the ideal. It indicates
that there still exists large space for further study.

Augmenting the Self-awareness of Existing Methods. The proposed
method focuses on augmenting the defined attributes with residual properties to
improve zero-shot performance in selective classification settings. It is orthogonal
to how to exploit the defined attributes for ZSC. Thus the proposed method can
be combined with most existing attribute-based methods to improve their perfor-
mance in Selective ZSC settings. Here we propose a simple combining strategy:
the confidence functions of existing ZSC methods are directly combined with
the proposed confidence function defined with the aid of residual attributes.
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Fig. 6. Combining SZSC with SAE and SSE.

In other words, confr is agnostic about the classification model which is used
for recognition, and confd in Eq. 7 is replaced with the confidence of existing
ZSC methods. Experiments are conducted with SAE on AwA and CUB-200 and
SSE on CUB-200. Results are shown in Fig. 6. We can see that with the simple
proposed combining strategy, the performance of SAE and SSE can be further
improved to some degree. These compelling results suggest that the confidence
defined by the consistency between the defined and the residual attributes has
some generalization ability across ZSC models. We believe learning the residual
attributes adaptively with the specified ZSC model (e.g., SCoRe) will further
improve the performance, which is left for future research.

7 Conclusions and Future Work

In this paper, we introduce an important yet under-studied problem: zero-shot
classifiers can abstain from prediction when in doubt. We empirically demon-
strate that existing zero-shot classifiers behave poorly in this new settings, and
propose a novel selective classifier to make safer predictions. The proposed clas-
sifier explores and exploits the residual properties beyond the defined attributes
for defining confidence functions. Experiments show that the proposed classifier
achieves significantly superior performance in selective classification settings.
Furthermore, it is also shown that the proposed confidence can also augment
existing ZSC methods for safer classification.

There are several research lines which are worthy of further study follow-
ing our work. For example, we propose to learn residual attributes to improve
the performance of attribute-based classifiers. Similar ideas may also work for
zero-shot classifiers built on word vectors or text descriptions. Another exam-
ple is that in this paper we propose a straightforward combing strategy to
improve the performance of existing methods. We believe learning the residual
attributes adaptively with the ZSC model can further improve the final perfor-
mance. Finally, considering the importance of the proposed selective zero-shot
classification problem, we encourage researchers to pay more attention to this
new challenge.
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