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Abstract. This paper proposes an original problem of stereo computa-
tion from a single mixture image – a challenging problem that had not
been researched before. The goal is to separate (i.e., unmix) a single
mixture image into two constitute image layers, such that the two layers
form a left-right stereo image pair, from which a valid disparity map
can be recovered. This is a severely illposed problem, from one input
image one effectively aims to recover three (i.e., left image, right image
and a disparity map). In this work we give a novel deep-learning based
solution, by jointly solving the two subtasks of image layer separation as
well as stereo matching. Training our deep net is a simple task, as it does
not need to have disparity maps. Extensive experiments demonstrate the
efficacy of our method.
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1 Introduction

Stereo computation (stereo matching) is a well-known and fundamental vision
problem, in which a dense depth map D is estimated from two images of the
scene from slightly different viewpoints. Typically, one of the cameras is in the
left (denoted by IL) and the other in the right (denoted by IR), just like we have
left and right two eyes. Given a single image, it is generally impossible to infer
a disparity map, unless using strong semantic-dependent image priors such as
those single-image depth-map regression works powered by deep-learning [1–3].
Even though these learning based monocular depth estimation methods could
predict a reasonable disparity map from a single image, they all assume the input
image to be an original color image.
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In this paper, we propose a novel and original problem, assuming instead one
is provided with one single mixture image (denoted by I) which is a composition
of an original stereo image pair IL and IR, i.e. I = f(IL, IR), and the task is to
simultaneously recover both the stereo image pair IL and IR, and an accurate
dense depth-map D. Under our problem definition, f denotes different image
composition operators that generate the mixture image, which is to be defined
in details later. This is a very challenging problem, due to the obvious ill-pose
(under-constrained) nature of the task, namely, from one input mixture image
I one effectively wants to recover three images (IL, IR, and D).

In theory it appears to be a blind signal separation (BSS) task, i.e., separating
an image into two different component images. However, conventional methods
such as BSS using independent component analysis (ICA) [4] are unsuitable for
this problem as they make strong assumptions on the statistical independence
between the two components. Under our problem definition, IL, IR are highly
correlated. In computer vision, image layer separation such as reflection and
highlight removal [5,6] are also based on the difference in image statistics, again,
unsuitable. Another related topic is image matting [7], which refers to the pro-
cess of accurate foreground estimation from an image. However it either needs
human interaction or depends on the difference between foreground object and
background, which cannot be applied to our task.

In this paper, we advocate a novel deep-learning based solution to the above
task, by using a simple network architecture. We could successfully solve for a
stereo pair L,R and a dense depth map D from a single mixture image I. Our
network consists of an image separation module and a stereo matching module,
where the two modules are optimized jointly. Under our framework, the solution
of one module benefits the solution of the other module. It is worth-noting that
the training of our network does not require ground truth depth maps.

At a first glance, this problem while intrigue, has pure intellectual interest
only, not perhaps no practical use. In contrast, we show this is not the case: in
this paper, we show how to use it to solve for three very different vision problems:
double vision, de-analygphy and even monocular depth estimation.

The requirement for de-anaglyph is still significant. If search on Youtube,
there are hundreds if not thousands of thousands of anaglyph videos, where the
original stereo images are not necessarily available. Our methods and the previ-
ous work [8,9] enable the recovery of the stereo images and the corresponding
disparity map, which will significantly improve the users’ real 3D experience.
As evidenced in the experiments, our proposed method clearly outperforms the
existing work with a wide gap. Last but not least, our model could also handle
the task of monocular depth estimation and it comes as a surprise to us: Even
with one single mixture image, trained on the KITTI benchmark, our method
produces the state of the art depth estimation, with results more better than
those traditional two images based methods.
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2 Setup the Stage

In this paper we study two special cases of our novel problem of joint image sep-
aration and stereo computation, namely anaglyph (red-cyan stereo) and diplopia
(double vision) (see Fig. 1), which have not been well-studied in the past.

Fig. 1. Examples of image separation for single image based stereo computation. Left
column: A double-vision image is displayed here. Right column: A red-cyan stereo
image contains channels from the left and right images. (Color figure online)

(1) Double vision (aka. diplopia): Double vision is the simultaneous per-
ception of two images (a stereo pair) of a single object in the form of a
single mixture image. Specifically, under the double vision (diplopia) model
(c.f. Fig. 1 (left column)), the perceived image I = f(IL, IR) = (IL + IR)/2,
i.e., the image composition is f a direct average of the left and the right
images. Note that the above equation shares similarity with the linear addi-
tive model in layer separation [5,10,11] for reflection removal and raindrop
removal, we will discuss the differences in details later.

(2) Red-Cyan stereo (aka. anaglyph): An anaglyph (c.f. Fig. 1 (right col-
umn)) is a single image created by selecting chromatically opposite colors
(typically red and cyan) from a stereo pair. Thus given a stereo pair IL, IR,
the image composition operator f is defined as I = f(IL, IR), where the red
channel of I is extracted from the red channel of IL while its green and blue
channels are extracted from IR. De-anaglyph [8,9] aims at estimating both
the stereo pair IL, IR (color restoration) and computing its disparity maps.

At a first glance, the problem seems impossible as one has to generate two
images plus a dense disparity map from one single input. However, since the
two constitute images are not arbitrary but related by a valid disparity map.
Therefore, they must be able to aligned well along the scanlines horizontally.
For anaglyph stereo, existing methods [8,9] exploit both image separation con-
straint and disparity map computation to achieve color restoration and stereo
computation. Joulin and Kang [9] reconstructed the original stereo pairs given
the input anaglyph by using a modified SIFT-flow method [12]. Williem et.al. [8]
presented a method to solve the problem within iterations of color restoration
and stereo computation. These works suggest that by properly exploiting the
image separation and stereo constraints, it is possible to restore the stereo pair
images and compute the disparity map from a single mixture image.

There is little work in computer vision dealing with double vision (diplopia),
which is nonetheless an important topic in ophthalmology and visual cogni-
tion. The most related works seem to be layer separation [5,10], where the
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task is to decompose an input image into two layers corresponding to the back-
ground image and the foreground image. However, there are significant differ-
ences between our problem and general layer separation. For layer separation,
the two layers of the composited image are generally independent and statisti-
cally different. In contrast, the two component images are highly correlated for
double vision.

Even though there have been remarkable progresses in monocular depth esti-
mation, current state-of-the-art network architectures [1,2] and [13] cannot be
directly applied to our problem. This is because that they depend on a single
left/right image input, which is unable to handle image mixture case investigated
in this work. Under our problem definition, the two tasks of image separation
and stereo computation are tightly coupled: stereo computation is not possi-
ble without correct image separation; on the other hand, image separation will
benefit from disparity computation.

In this paper, we present a unified framework to handle the problem of stereo
computation for a single mixture image, which naturally unifies various geomet-
ric vision problems such as anaglyph, diplopia and even monocular depth estima-
tion. Our network can be trained with the supervision of stereo pair images only
without the need for ground truth disparity maps, which significantly reduces
the requirements for training data. Extensive experiments demonstrate that our
method achieves superior performances.

3 Our Method

In this paper, we propose an end-to-end deep neural network to simultaneously
learn image separation and stereo computation from a single mixture image. It
can handle a variety forms of problems such as anaglyph, de-diplopia and even
monocular depth estimation. Note that existing work designed for either layer-
separation or stereo-computation cannot be applied to our problem directly.
This is because these two problems are deeply coupled, i.e., the solution of one
problem affects the solution of the other problem. By contrast, our formulation
to be presented as below, jointly solves both problems.

3.1 Mathematical Formulation

Under our mixture model, quality of depth map estimation and image separation
are evaluated jointly and therefore, the solution of each task can benefit from
each other. Our network model (c.f., Fig. 2) consists of two modules, i.e. an image
separation module and a stereo computation module. During network training,
only the ground-truth stereo pairs are needed to provide supervisions for both
image separation and stereo computation.

By considering both the image separation constraint and the stereo compu-
tation constraint in network learning, we define the overall loss function as:

L(θL, θR, θD) = LC(θL, θR) + LD(θD), (1)
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Fig. 2. Overview of our proposed stereo computation for a single mixture image frame-
work. Our network consists of an image separation module and a stereo computation
module. Take a single mixture image as input, our network simultaneously separates
the image into a stereo image pair and computes a dense disparity map.

where θL, θR, θD denote the network parameters corresponding to the image
separation module (left image prediction and right image prediction) and
the stereo computation module. A joint optimization of (θL, θR, θD) =
arg min L(θL, θR, θD) gives both the desired stereo image pair and the disparity
map.

3.2 Image Separation

The input single mixture image I ∈ R
H×W×3 encodes the stereo pair image as

I = f(IL, IR), where f is the image composition operator known a prior. To learn
the stereo image pair from the input single mixture image, we present a unified
end-to-end network pipeline. Specifically, denote F as the learned mapping from
the mixture image to the predicted left or right image parameterized by θL or
θR. The objective function of our image separation module is defined as,

αcLc(F(I; θL), IL) + αpLp(F(I; θL)), (2)

where I is the input single mixture image, IL, IR are the ground truth stereo
image pair. The loss function L measures the discrepancy between the predicted
stereo images and the ground truth stereo images. The object function for the
right image is defined similarly.

In evaluating the discrepancy between images, various loss functions such as
�2 loss [14], classification loss [15] and adversarial loss [16] can be applied. Here,
we leverage the pixel-wise �1 regression loss as the content loss of our image
separation network,

Lc(F(I; θL), IL) = |F(I; θL) − IL| . (3)

This loss allows us to perform end-to-end learning as compatible with the stereo
matching loss and do not need to consider class imbalance problem or add an
extra network structure as a discriminator.

Researches on natural image statistics show that a typical real image obeys
sparse spatial gradient distributions [17]. According to Yang et.al. [5], such a
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prior can be represented as the Total Variation (TV) term in energy minimiza-
tion. Therefore, we have our image prior loss:

Lp(F(I; θL)) = |F(I; θL)|TV = |∇F(I; θL)| , (4)

where ∇ is the gradient operator.
We design a U-Net architecture [18] for image separation, which has been used

in various conditional generation tasks. Our image separation module consists of
22 convolutional layers. Each convolutional layer contains one convolution-relu
pair except for the last layer and we use element-wise add for each skip connection
to accelerate the convergence. For the output layer, we utilize a “tanh” activation
function to map the intensity value between −1 and 1. A detailed description of
our network structure is provided in the supplemental material.

The output of our image separation module is a 6 channels image, where
the first 3 channels represent the estimated left image F(I; θL) and the rest 3
channels for the estimated right image F(I; θR). When the network converges,
we could directly use these images as the image separation results. However,
for the de-anaglyph task, as there is extra constraint (the mixture happens at
channel level), we could leverage the color prior of an anaglyph that the desired
image separation (colorization) can be further improved by warping correspond-
ing channels based on the estimated disparity maps.

For the monocular depth estimation task, only the right image will be needed
as the left image has been provided as input.

3.3 Stereo Computation

The input to the stereo computation module is the separated stereo image pair
from the image separation module. The supervision of this module is the ground
truth stereo pairs rather than the inputs. The benefit of using ground truth
stereo pairs for supervision is that it makes the network not only learn how to
find the matching points, but also makes the network to extract features that
are robust to the noise from the generated stereo images.

Figure 2 shows an overview of our stereo computation architecture, we adopt
a similar stereo matching architecture from Zhong et.al. [19] without its consis-
tency check module. The benefit for choosing such a structure is that their model
can converge within 2000 iterations which makes it possible to train the entire
network in an end-to-end fashion. Additionally, removing the need of ground
truth disparity maps enables us to access much more accessible stereo images.

Our loss function for stereo computation is defined as:

LD = ωw(Ll
w + Lr

w) + ωs(Ll
s + Lr

s), (5)

where Ll
w,Lr

w denote the image warping appearance loss, Ll
s,Lr

s express the
smoothness constraint on the disparity map.

Similar to Lc, we form a loss in evaluating the image similarity by computing
the pixel-wise �1 distance between images. We also add a structural similarity
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term SSIM [20] to improve the robustness against illumination changes across
images. The appearance loss Ll

w is derived as:

Ll
w(IL, I

′′
L) =

1
N

∑
λ1

1 − S(IL, I
′′
L)

2
+ λ2

∣∣∣IL − I
′′
L

∣∣∣ , (6)

where N is the total number of pixels and I
′′
L is the reconstructed left image.

λ1, λ2 balance between structural similarity and image appearance difference.
According to [2], I

′′
L can be fully differentially reconstructed from the right image

IR and the right disparity map dR through bilinear sampling [21].
For the smoothness term, similar to [2], we leverage the Total Variation (TV)

and weight it with image’s gradients. Our smoothness loss for disparity field is:

Ll
s =

1
N

∑
|∇udL| e−|∇uIL| + |∇vdL| e−|∇vIL|. (7)

3.4 Implementation Details

We implement our network in TensorFlow [22] with 17.1M trainable parameters.
Our network can be trained from scratch in an end-to-end fashion with a super-
vision of stereo pairs and optimized using RMSProp [23] with an initial learning
rate of 1×10−4. Input images are normalized with pixel intensities level ranging
from -1 to 1. For the KITTI dataset, the input images are randomly cropped to
256 × 512, while for the Middlebury dataset, we use 384 × 384. We set disparity
level to 96 for the stereo computation module. For weighting loss components, we
use αc = 1, αp = 0.2, ωw = 1, ωs = 0.05. We set λ1 = 0.85, λ2 = 0.15 throughout
our experiments. Due to the hardware limitation (Nvidia Titan Xp), we only use
batch size 1 during network training.

4 Experiments and Results

In this section, we validate our proposed method and present experimental eval-
uation for both de-anaglyph and de-diplopia (double vision). For experiments
on anaglyph images, given a pair of stereo images, the corresponding anaglyph
image can be generated by combining the red channel of the left image and the
green/blue channels of the right image. Any stereo pairs can be used to quanti-
tatively evaluate the performance of de-anaglyph. However, since we also need
to quantitatively evaluate the performance of anaglyph stereo matching, we use
two stereo matching benchmarking datasets for evaluation: Middlebury dataset
[24] and KITTI stereo 2015 [25]. Our network is initially trained on the KITTI
Raw dataset with 29000 stereo pairs that listed by [2] and further fine-tuned
on Middlebury dataset. To highlight the generalization ability of our network,
we also perform qualitative experiments on random images from Internet. For
de-diplopia (double vision), we synthesize our inputs by averaging stereo pairs.
Qualitative and quantitative results are reported on KITTI stereo 2015 bench-
mark [25] as well. Similar to the de-anaglyph experiment, we train our initial
model on the KITTI raw dataset.
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4.1 Advantages of Joint Optimization

Our framework consists of image separation and stereo computation, where the
solution of one subtask benefits the solution of the other subtask. Direct stereo
computation is impossible for a single mixture image. To analyze the advantage
of joint optimization, we perform ablation study in image separation without
stereo computation and the results are reported in Table 1. Through joint opti-
mization, the average PSNR increases from 19.5009 to 20.0914, which demon-
strates the benefit of introducing the stereo matching loss in image separation.

Table 1. Ablation study of image separation on KITTI.

Metric Image separation only Joint optimization

PSNR 19.5009 20.0914

4.2 Evaluation of Anaglyph Stereo

We compare the performance of our method with two state-of-the-art de-
anaglyph methods: Joulin et.al. [9] and Williem et.al. [8]. Evaluations are per-
formed on two subtasks: stereo computation and image separation (color restora-
tion).
Stereo Computation. We present qualitative comparison of estimated dispar-
ity maps in Fig. 3 for Middlebury [24] and in Fig. 4 for KITTI 2015 [25]. Stereo
pairs in Middlebury are indoor scenes with multiple handcrafted layouts and the
ground truth disparities are captured by highly accurate structural light sensors.
On the other hand, the KITTI stereo 2015 consists of 200 outdoor frames in their
training set, which is more challenging than the Middlebury dataset. The ground
truth disparity maps are generated by sparse LIDAR points and CAD models.

Fig. 3. Qualitative stereo computation results on the Middlebury dataset by our
method. From left to right: input anaglyph image, ground truth disparity map, dispar-
ity map generated by Williem et.al. [8] and our method.

On both datasets, our method can generate more accurate disparity maps
than previous ones from visual inspection. It can be further evidenced by the
quantitative results of bad pixel percentage that shown in Table. 2 and Fig. 5.
For the Middlebury dataset, our method achieves 32.55% performance leap than



Stereo Computation for a Single Mixture Image 449

Fig. 4. Qualitative disparity map recovery results on KITTI-2015 of our method. Top
row: input anaglyph image and ground truth disparity map. Bottom row: result of
Williem et.al. [8] and our result.

Williem et.al. [8] and 352.28% performance leap than Joulin et.al. [9]. This is
reasonable as Joulin et.al. [9] did not add disparity into its optimization. For
the KITTI dataset, we achieve an average bad pixel ratio (denoted as D1 all) of
5.96% with 3 pixel thresholding across 200 images in the training set as opposed
to 13.66% by Joulin et.al. [9] and 14.40% by Williem et.al. [8].

Table 2. Performance comparison in disparity map estimation for de-anaglyph on the
Middlebury dataset. We report the bad pixel ratio with a threshold of 1 pixel. Dispar-
ities are scaled according to the provided scaling factor on the Middlebury dataset.

Method Tsukuba Venus Cones Teddy Mean

Joulin [9] 14.02 25.90 23.49 43.85 26.82

Williem [8] 12.53 2.24 8.00 8.68 7.86

Ours 10.44 1.25 4.51 7.51 5.93

Fig. 5. Disparity map estimation results comparison on the KITTI stereo 2015 dataset.

Image Separation. As an anaglyph image is generated by concatenating the
red channel from the left image and the green and blue channels from the right
image, the original color can be found by warping the corresponding channels
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based on the estimated disparity maps. We leverage such a prior for de-anaglyph
and adopt the post-processing step from Joulin et.al. [9] to handle occluded
regions. Qualitative and quantitative comparison of image separation perfor-
mance are conducted on the Middlebury and KITTI datasets. We employ the
Peak Signal-to-Noise Ratio (PSNR) to measure the image restoration quality.

Qualitative results for both datasets are provided in Figs. 6 and 7. Our
method is able to recover colors in the regions where ambiguous colorization
options exist as those areas rely more on the correspondence estimation, while
other methods tend to fail in this case.

Fig. 6. Qualitative image separation results on the KITTI-2015 dataset. Top to bottom:
Input, ground truth, result from Williem et.al. [8], our result. Our method successfully
recovers the correct color of the large textureless region on the right of the image while
the other method fails.

Tables 3 and 4 report the performance comparison between our method and
state-of-the-art de-anaglyph colorization methods: Joulin et.al. [9] and Williem
et.al. [8] on the Middlebury dataset and on the KITTI dataset correspondingly.
For the KITTI dataset, we calculated the mean PSNR throughout the total
200 images of the training set. Our method outperforms others with a notable
margin. Joulin et.al. [9] is able to recover relatively good restoration results
when the disparity level is small, such as Tsukuba, Venus, and KITTI. When
the disparity level doubled, its performance drops quickly as for Cone and Teddy
images. Different with Williem et.al. [8], which can only generate disparity maps
at pixel level, our method is able to further optimize the disparity map to sub-
pixel level, therefore achieves superior performance in both stereo computation
and image restoration (separation).

Anaglyph in the Wild. One of the advantages of conventional methods is their
generalization capability. They can be easily adapt to different scenarios with or
without parameter changes. Deep learning based methods, on the other hand,
are more likely to have a bias on specific dataset. In this section, we provide
qualitative evaluation of our method on anaglyph images downloaded from the
Internet to illustrate the generalization capability of our method. Our method,
even though trained on the KITTI dataset which is quite different from all these
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Table 3. Performance comparisons (PSNR) in image separation (restoration) for the
task of de-anaglyph on the Middlebury dataset.

Method Tsukuba Venus Cones Teddy

Left Right Left Right Left Right Left Right

Joulin [9] 30.83 32.88 29.66 31.97 21.52 24.54 21.16 24.59

Williem [8] 30.32 31.12 31.41 34.93 23.68 26.17 23.14 31.05

Ours 32.99 35.31 35.05 37.74 26.31 30.17 28.44 35.53

Fig. 7. Qualitative comparison in image separation (restoration) on the Middlebury
dataset. The first column shows the input anaglyph image and the ground truth image.
The results of Williem et.al. [8] (top) and our method (bottom) with their correspond-
ing error maps are shown in the second and the third column.

Table 4. Performance comparisons (PSNR) in image separation (restoration) for the
task of de-anaglyph on the KITTI dataset.

Dataset View Joulin [9] Williem [8] Ours

KITTI Left 25.13 24.57 26.30

Right 27.19 26.94 28.76

images, achieves reliable image separation results as demonstrated in Fig. 8. This
further confirms the generalization ability of our network model.

4.3 Evaluation for Double-Vision Unmixing

Here, we evaluate our proposed method for unmixing of double-vision image,
where the input image is the average of a stereo pair. Similar to anaglyph, we
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Fig. 8. Qualitative stereo computation and image separation results for real world
anaglyph images downloaded from the Internet. Left to right: input anaglyph images,
disparity maps of our method, image separation results of our method.

evaluate our performance based on the estimated disparities and reconstructed
stereo pair on the KITTI stereo 2015 dataset. For disparity evaluation, we use the
oracle disparity maps (that are computed with clean stereo pairs) as a reference
in Fig. 9. The mean bad pixel ratio of our method is 6.67%, which is comparable
with the oracle’s performance as 5.28%. For image separation, we take a layer
separation method [26] as a reference. A quantitative comparison is shown in
Table 5. Conventional layer separation methods tend to fail in this scenario as
the statistic difference between the two mixed images is minor which violates
the assumption of these methods. Qualitative results of our method are shown
in Fig. 10.

Table 5. Performance comparison in term of PSNR for the task of image restoration
from double-vision images on the KITTI dataset.

Dataset View Li et.al.[26] Ours

KITTI Left 17.03 24.38

Right 7.67 24.55

5 Beyond Anaglyph and Double-Vision

Our problem definition also covers the problem of monocular depth estimation,
which aims at estimating a depth map from a single image [2,3,27,28]. Under
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Fig. 9. Stereo computation results on the KITTI 2015 dataset. The oracle disparity
map is computed with clean stereo images.

Fig. 10. Qualitative diplopia unmixing results by our proposed method. Top to bottom,
left to right: input diplopia image, ground truth left image, restored left image by our
method, and our estimated disparity map.

this setup, the image composition operator f is defined as I = f(IL, IR) = IL or
I = f(IL, IR) = IR, i.e., the mixture image is the left image or the right image.
Thus, monocular depth estimation is a special case of our problem definition.

We evaluated our framework for monocular depth estimation on the KITTI
2015 dataset. Quantitative results and qualitative results are provided in Table 6
and Fig. 11, where we compare our method with state-of-the-art methods [1], [29]
and [2]. Our method, even designed for a much more general problem, outper-
forms both [1] and [29] and achieves quite comparable results with [2].

Table 6. Monocular depth estimation results on the KITTI 2015 dataset using the
split of Eigen et.al. [27]. Our model is trained on 22,600 stereo pairs from the KITTI
raw dataset listed by [2] by 10 epochs. Depth metrics are from Eigen et.al. [27]. Our
performance is better than the state-of-the-art method [2].

Methods Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhou et.al. [29] 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Garg et.al. [1] 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Godard et.al. [2] 0.140 0.976 4.471 0.232 0.818 0.931 0.969

Ours 0.126 0.835 3.971 0.207 0.845 0.942 0.975
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Fig. 11. Qualitative monocular estimation evaluations on the KITTI-2015 dataset:
Top to bottom: left image, ground truth, results from Zhou et.al.[29], results from
Garg et.al.[1], results from Godard et.al.[2] and our results. Since the ground truth
depth points are very sparse, we interpolated it with a color guided depth painting
method [30] for better visualization.

6 Conclusion

This paper has defined a novel problem of stereo computation from a single
mixture image, where the goal is to separate a single mixture image into a pair
of stereo images–from which a legitimate disparity map can be estimated. This
problem definition naturally unifies a family of challenging and practical prob-
lems such as anaglyph, diplopia and monocular depth estimation. The problem
goes beyond the scope of conventional image separation and stereo computa-
tion. We have presented a deep convolutional neural network based framework
that jointly optimizes the image separation module and the stereo computation
module. It is worth noting that we do not need ground truth disparity maps in
network learning. In the future, we will explore additional problem setups such
as “alpha-matting”. Other issues such as occlusion handling and extension to
handle video should also be considered.
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