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Abstract. Recent CNN based object detectors, either one-stage meth-
ods like YOLO, SSD, and RetinaNet, or two-stage detectors like Faster
R-CNN, R-FCN and FPN, are usually trying to directly finetune from
ImageNet pre-trained models designed for the task of image classifica-
tion. However, there has been little work discussing the backbone fea-
ture extractor specifically designed for the task of object detection. More
importantly, there are several differences between the tasks of image clas-
sification and object detection. (i) Recent object detectors like FPN and
RetinaNet usually involve extra stages against the task of image classi-
fication to handle the objects with various scales. (ii) Object detection
not only needs to recognize the category of the object instances but
also spatially locate them. Large downsampling factors bring large valid
receptive field, which is good for image classification, but compromises
the object location ability. Due to the gap between the image classi-
fication and object detection, we propose DetNet in this paper, which
is a novel backbone network specifically designed for object detection.
Moreover, DetNet includes the extra stages against traditional backbone
network for image classification, while maintains high spatial resolution
in deeper layers. Without any bells and whistles, state-of-the-art results
have been obtained for both object detection and instance segmentation
on the MSCOCO benchmark based on our DetNet (4.8G FLOPs) back-
bone. Codes will be released (https://github.com/zengarden/DetNet).
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1 Introduction

Object detection is one of the most fundamental tasks in computer vision.
Due to the rapid progress of deep convolutional neural networks (CNN) [10–
12,15–17,35,36,38,40], the performance of object detection has been significantly
improved.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11213, pp. 339–354, 2018.
https://doi.org/10.1007/978-3-030-01240-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01240-3_21&domain=pdf
http://orcid.org/0000-0002-1599-2853
http://orcid.org/0000-0003-4069-4775
http://orcid.org/0000-0001-5570-2710
http://orcid.org/0000-0003-2138-4608
http://orcid.org/0000-0002-8257-693X
http://orcid.org/0000-0002-6178-4166
https://github.com/zengarden/DetNet


340 Z. Li et al.

Recent CNN based object detectors can be categorized into one-stage detec-
tors, like YOLO [29,30], SSD [24], and RetinaNet [22], and two-stage detec-
tors, e.g. Faster R-CNN [31], R-FCN [18], FPN [21]. Both of them depend on
the backbone network pretrained for the ImageNet classification task. However,
there is a gap between the image classification and the object detection problem,
which not only needs to recognize the category of the object instances but also
spatially localize the bounding-boxes. More specifically, there are two problems
using the classification backbone for object detection tasks. (i) Recent detectors,
e.g., FPN, involve extra stages compared with the backbone network for Ima-
geNet classification in order to detect objects with various sizes. (ii) Traditional
backbones produce higher receptive field based on large downsampling factors,
which is beneficial to the visual classification. However, the spatial resolution is
compromised which will fail to accurately localize the large objects and recognize
the small objects.

A well designed detection backbone should tackle all of the problems above.
In this paper, we propose DetNet, which is a novel backbone designed for object
detection. More specifically, to address the large scale variations of the object
instances, DetNet involves additional stages which are utilized in the recent
object detectors like FPN. Different from traditional pre-trained models for
ImageNet classification, we maintain the spatial resolution of the features even
though extra stages are included. However, high resolution feature maps bring
more challenges to build a deep neural network due to the computational and
memory cost. To keep the efficiency of our DetNet, we employ a low complexity
dilated bottleneck structure. By integrating these improvements, our DetNet not
only maintains high resolution feature maps but also keeps the large receptive
field, both of which are important for the object detection task.

To summarize, we have the following contributions:

– We are the first to analyze the inherent drawbacks of traditional ImageNet
pre-trained model for fine-tuning recent object detectors.

– We propose a novel backbone, called DetNet, which is specifically designed for
the object detection task by maintaining the spatial resolution and enlarging
the receptive field.

– We achieve new state-of-the-art results on MSCOCO object detection and
instance segmentation track based on a low complexity DetNet59 backbone.

2 Related Works

Object detection is a heavily researched topic in computer vision. It aims at
finding “where” and “what” each object instance is when given an image. Old
detectors extract image features by using hand-engineered object component
descriptors, such as HOG [5], SIFT [26], Selective Search [37], Edge Box [41].
For a long time, DPM [8] and its variants were the dominant methods among
traditional object detectors. With the rapid progress of deep convolutional neu-
ral networks, CNN based object detectors have yielded remarkable results and
become a new trend in the detection literature. In the network structure, recent
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CNN based detectors are usually split into two parts. The one is the backbone
network, and the other is the detection branch. We briefly introduce these two
parts as follows.

2.1 Backbone Network

The backbone networks for object detection are usually borrowed from the Ima-
geNet [32] classification. In the last few years, ImageNet has been regarded as
the most authoritative datasets to evaluate the capability of deep convolution
neural networks. Many novel networks are designed to get higher performance
for ImageNet. AlexNet [17] is among the first to try to increase the depth of
CNN. In order to reduce the network computation and increase the valid recep-
tive field, AlexNet down-samples the feature map with 32 strides which is a
standard setting for the following works. VGGNet [35] stacks 3× 3 convolution
operation to build a deeper network, while still involves 32 strides in feature
maps. Most of the following researches adopt VGG like structure, and design
a better component in each stage (split by stride). GoogleNet [36] proposes a
novel inception block to involve more diverse features. ResNet [10] adopts “bot-
tleneck” design with residual sum operation in each stage, which has been proved
a simple and efficient way to build a deeper neural network. ResNext [38] and
Xception [2] use group convolution layer to replace the traditional convolution. It
reduces the parameters and increases the accuracy simultaneously. DenseNet [13]
densely concat several layers, it further reduces parameters while keeping com-
petitive accuracy. Another different research is Dilated Residual Network [39]
which extracts features with less strides. DRN achieves notable results on seg-
mentation, while has little discussion on object detection. There are still lots
of research for efficient backbone, such as [11,15,40]. However they are usually
designed for classification.

2.2 Object Detection Branch

Detection branch is usually attached to the base-model which is designed and
trained for ImageNet classification dataset. There are two different design logic
for object detection. The one is one-stage detector, which directly uses back-
bone for object instance prediction. For example, YOLO [29,30] uses a sim-
ple efficient backbone DarkNet [29], and then simplifies detection as a regres-
sion problem. SSD [24] adopts reduced VGGNet [35] and extracts features in
multi-layers, which enables network more powerful to handle variant object
scales. RetinaNet [22] uses ResNet as a basic feature extractor, then involves
“Focal” loss [22] to address class imbalance issue caused by extreme foreground-
background ratio. The other popular pipeline is the two-stage detector. Specif-
ically, recent two-stage detector will predict lots of proposals first based on the
backbone, then an additional classifier is involved for proposal classification and
regression. Faster R-CNN [31] directly generates proposals from the backbone
by using Region Proposal Network (RPN). R-FCN [18] proposes to generate a
position sensitive feature map from the output of the backbone, then a novel
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pooling methods called position sensitive pooling is utilized for each proposal.
Deformable convolution Networks [4] tries to enable convolution operation with
geometric transformations by learning additional offsets without supervision.
It is among the first to ameliorate backbone for object detection. Feature Pyra-
mid Network [21] constructs feature pyramids by exploiting inherent multi-scale,
pyramidal hierarchy of deep convolutional networks, specifically FPN combines
multi-layer output by utilizing U-shape structure, and still borrows the tradi-
tional ResNet without further study. DSOD [33] first proposes to train detection
from scratch, whose results are lower than pretrained methods.

In conclusion, traditional backbones are usually designed for ImageNet classi-
fication. What is the suitable backbone for object detection is still an unexplored
field. Most of the recent object detectors, no matter one-stage or two-stage, follow
the pipeline of ImageNet pre-trained models, which is not optimal for detection
performance. In this paper, we propose DetNet. The key idea of DetNet is to
design a better backbone for object detection.

3 DetNet: A Backbone Network for Object Detection

3.1 Motivation

Recent object detectors usually rely on a backbone network which is pretrained
on the ImageNet classification dataset. As the task of ImageNet classification is
different from the object detection which not only needs to recognize the cat-
egory of the objects but also spatially localize the bounding-boxes. The design
principles for the image classification is not good for the localization task as the
spatial resolution of the feature maps is gradually decreased for the standard
networks like VGG16 and Resnet. A few techniques like Feature Pyramid Net-
work (FPN) as in Fig. 1A. [21] and dilation are applied to these networks to
maintain the spatial resolution. However, there still exists the following three
problems when trained with these backbone networks.

The Number of Network Stages Is Different. As shown in Fig. 1B, typical classi-
fication network involves 5 stages, with each stage down-sampling feature maps
by pooling 2x or stride 2 convolution. Thus the spatial size of the output fea-
ture map is “32x” sub-sampled. Different from traditional classification network,
feature pyramid detectors usually adopt more stages. For example, in Feature
Pyramid Networks (FPN) [21], an additional stage P6 is added to handle larger
objects. The stages of P6 and P7 are added in RetinaNet [22] in a similar way.
Obviously, extra stages like P6 are not pre-trained in the ImageNet dataset.

Weak Visibility (Localization) of Large Objects. The feature map with strong
semantic information has strides of 32 respect to the input image, which brings
large valid receptive field and leads the success of ImageNet classification task.
However, large stride factor is harmful for the object localization. In Feature
Pyramid Networks, the large object is generated and predicted within the deeper
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Fig. 1. Comparisons of different backbones used in FPN. Feature pyramid networks
(FPN) with the traditional backbone is illustrated in (A). The traditional backbone for
image classification is illustrated in (B). Our proposed backbone is illustrated in (C),
which has higher spatial resolution and the same stages as FPN. We do not illustrate
stage 1 (with stride 2) feature map due to the limitation of figure size.

layers, the boundary of these object may be too blurry to get an accurate regres-
sion. This case is even worse when more stages are involved into the classification
network, since more down-sampling brings more strides to object.

Invisibility (Recall) of Small Objects. Another drawback of large stride is the
missing of small objects. The information from the small objects will be easily
weaken as the spatial resolution of the feature maps is decreased and the large
context information is integrated. Therefore, Feature Pyramid Network predicts
small object in shallower layers. However, shallow layers usually only have low
semantic information which may be not sufficient to recognize the category of
the object instances. Therefore the detectors usually enhance their classification
capability by involving the context cues of high-level representations from the
deeper layers. As Fig. 1A shows, Feature Pyramid Networks relieve it by adopting
bottom-up pathway. However, if the small objects are missing in deeper layers,
these context cues will be decreased simultaneously.

To address these problems, we propose DetNet which has following charac-
teristics. (i) The number of stages is directly designed for Object Detection. (ii)
Even though we involve more stages (such as 6 stages or 7 stages) than tradi-
tional classification network, we maintain high spatial resolution of the feature
maps, while keeping large receptive field.

DetNet has several advantages over traditional backbone networks like
ResNet for object detection. First, DetNet has exactly the same number of
stages as the detector used, therefore extra stages like P6 can be pre-trained
in the ImageNet dataset. Second, benefited by high resolution feature maps in
the last stage, DetNet is more powerful in locating the boundary of astronomical
objects and finding the small objects. More detailed discussion can be referred
to Sect. 4.
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3.2 DetNet Design

In this subsection, we will present the detailed structure of DetNet. We adopt
ResNet-50 as our baseline, which is widely used as the backbone network in a lot
of object detectors. To fairly compare with the ResNet-50, we keep stage 1,2,3,4
the same as original ResNet-50 for our DetNet.

There are two challenges to make an efficient and effective backbone for
object detection. On the one hand, keeping the spatial resolution for deep neural
network costs extremely large amount of time and memory. On the other hand,
reducing the down-sampling factor will lead to the small valid receptive field,
which will be harmful to many vision tasks, such as image classification and
semantic segmentation.

DetNet is carefully designed to address the two challenges. Specifically, Det-
Net follows the same setting for ResNet from the first stage to the fourth stage.
The difference starts from the fifth stage and an overview of our DetNet for image
classification can be found in Fig. 2D. Let us discuss the implementation details
of DetNet59 derived from the ResNet50. Similarly, our DetNet can be easily
extended with deep layers like ResNet101. The detailed design of our DetNet59
is illustrated as follows:

– We introduce the extra stage, e.g., P6, in the backbone which will be utilized
for object detection as in FPN. Meanwhile, we fix the spatial resolution as
16x downsampling after stage 4.

– Since the spatial size is fixed after stage 4, in order to introduce a new
stage, we employ a dilated [1,25,27] bottleneck with 1× 1 convolution pro-
jection (Fig. 2B) in the beginning of the each stage. We find the model in
Fig. 2B is important for multi-stage detectors like FPN.

– We apply bottleneck with dilation as a basic network block to efficiently
enlarge the receptive field. Since dilated convolution is still time consuming,
our stage 5 and stage 6 keep the same channels as stage 4 (256 input chan-
nels for bottleneck block). This is different from traditional backbone design,
which will double channels in a later stage.

It is easy to integrate DetNet with any detectors with/without feature pyra-
mid. Without losing representativeness, we adopt prominent detector FPN as
our baselines to validate the effectiveness of DetNet. Since DetNet only changes
the backbone of FPN, we fix the other structures in FPN except for backbone.
Because we do not reduce spatial size after stage 4 of Resnet-50, we simply sum
the output of these stages in top-down path way.

4 Experiments

In this section, we will evaluate our approach on the popular MS COCO bench-
mark, which has 80 objects categories. There are 80k images in the training
set, and 40k images in the validation dataset. Following a common practice, we
further split the 40k validation set into 35k large-val datasets and 5k mini-val
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Fig. 2. Detail structure of DetNet (D) and DetNet based Feature Pyramid NetWork
(E). Different bottleneck block used in DetNet is illustrated in (A, B). The original
bottleneck is illustrated in (C). DetNet follows the same design as ResNet before stage
4, while keeps spatial size after stage 4 (e.g. stage 5 and 6).

datasets. All of our validation experiments involve training set and the large-
val for training (about 115k images), then test on 5k mini-val datasets. We
also report the final results of our approach on COCO test-dev, which has no
disclosed labels.

We use standard coco metrics to evaluate our approach, including AP (aver-
aged precision over intersection-over-union thresholds), AP50, AP75 (AP at use
different IoU thresholds), and APS , APM , APL (AP at different scales: small,
middle, large).

4.1 Detector Training and Inference

Following training strategies provided by Detectron1 repository [7], our detectors
are end-to-end trained on 8 Pascal TITAN XP GPUs, optimized by synchronized
SGD with a weight decay of 0.0001 and momentum of 0.9. Each mini-batch has
2 images, so the effective batch-size is 16. We resize the shorter edge of the image
to 800 pixels, the longer edge is limited to 1333 pixels to avoid large memory
cost. We pad the images within mini-batch to the same size by filling zeros into
the right-bottom of the image. We use typical “2x” training settings used in
Detectron [7]. Learning rate is set to 0.02 at the begin of the training, and then
1 https://github.com/facebookresearch/Detectron.

https://github.com/facebookresearch/Detectron
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decreased by a factor of 0.1 after 120k and 160k iterations and finally terminates
at 180k iterations. We also warm-up our training by using smaller learning rate
0.02 × 0.3 for first 500 iterations.

All experiments are initialized with ImageNet pre-trained weights. We fix
the parameters of stage 1 in the backbone network. Batch normalization is also
fixed during detector fine-tuning. We only adopt a simple horizontal flip data
augmentation. As for proposal generation, unless explicitly stated, we first pick
up 12000 proposals with highest scores, then followed by non maximum suppres-
sion (NMS) operation to get at most 2000 RoIs for training. During testing, we
use 6000/1000 (6000 highest scores for NMS, 1000 RoIs after NMS) setting. We
also involve popular RoI-Align technique used in Mask R-CNN [9].

4.2 Backbone Training and Inference

Following most hyper-parameters and training settings provided by ResNext [38],
we train backbone on ImageNet classification datasets by 8 Pascal TITAN XP
GPUs with 256 total batch size. Following the standard evaluation strategy for
testing, we report the error on the single 224× 224 center crop from the image
with 256 shorter sides.

4.3 Main Results

We adopt FPN with the ResNet-50 backbone as our baseline because FPN is a
prominent detector for many other vision tasks, such as instance segmentation
and skeleton [9]. To validate the effectiveness of DetNet for FPN, we propose
DetNet-59 which involves an additional stage compared with ResNet-50. More
design details can be found in Sect. 3. Then we replace ResNet-50 backbone with
DetNet-59 and keep the other structures the same as the original FPN.

We first train DetNet-59 on ImageNet classification, results are shown in
Table 1. DetNet-59 has 23.5% top-1 error at the cost of 4.8G FLOPs. Then we
train FPN with DetNet-59, and compare it with ResNet-50 based FPN. From
Table 1 we can see DetNet-59 has superior performance than ResNet-50 (over 2
points gains in mAP).

Since DetNet-59 has more parameters than ResNet-50 (because we involving
additional stage for FPN P6 ), a natural hypothesis is that the improvement is
mainly due to more parameters. To validate the effectiveness of DetNet-59, we
also train FPN with ResNet-101 which has 7.6G FLOPs complexity, the results is
39.8 mAP. ResNet-101 has much more FLOPs than DetNet-59, and still yields
lower mAP than DetNet-59. We further add the FPN experiments based on
DetNet-101. Specifically, DetNet-101 has 20 (6 in DetNet-59) repeated bottle-
neck blocks in ResNet stage 4. As expected, DetNet-101 has superior results
than ResNet-101, which validates that DetNet is more suitable than ResNet as
a backbone network for object detection.

As DetNet is directly designed for object detection, to further validate the
advantage of DetNet, we train FPN based on DetNet-59 and ResNet-50 from
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Table 1. Results of different backbones used in FPN. We first report the standard
Top-1 error on ImageNet classification (the lower error is, the better accuracy in clas-
sification). FLOPs means the computation complexity. We also illustrate FPN COCO
results to investigate effectiveness of these backbone for object detection.

Backbone Classification FPN results

Top1 err FLOPs mAP AP50 AP75 APs APm APl

ResNet-50 24.1 3.8G 37.9 60.0 41.2 22.9 40.6 49.2

DetNet-59 23.5 4.8G 40.2 61.7 43.7 23.9 43.2 52.0

ResNet-101 23.0 7.6G 39.8 62.0 43.5 24.1 43.4 51.7

DetNet-101 23.0 7.9G 41.8 62.8 45.7 25.4 45.2 55.1

scratch. The results are shown in Table 2. Noticing that we use multi-gpu syn-
chronized batch normalization during training as in [28] in order to train from
scratch. Concluding from the results, DetNet-59 still outperforms ResNet-50
by 1.8 points, which further validate that DetNet is more suitable for object
detection.

Table 2. FPN results on different backbones, which is trained from scratch. Since we
don’t involve ImageNet pre-trained weights, we want to directly compare backbone
capability for object detection.

Backbone mAP AP50 AP75 APs APm APl

ResNet-50 from scratch 34.5 55.2 37.7 20.4 36.7 44.5

DetNet-59 from scratch 36.3 56.5 39.3 22.0 38.4 46.9

4.4 Results Analysis

In this subsection, we will analyze how DetNet improves the object detection.
There are two key-points in object detection evaluation: average precision (AP)
and average recall (AR). AR means how much objects we can find out, AP means
how much objects are correctly localized (right label for classification). AP and
AR are usually evaluated on different IoU threshold to validate the regression
capability for object location. The larger IoU is, the more accurate regression
needs. AP and AR are also evaluated on different range of bounding box areas
(small, middle, and large) to find the detail results on the various scales of the
objects.

At first, we investigate the impact of DetNet on detection accuracy. We
evaluate the performance on different IoU thresholds and object scales as shown
in Table 3.

DetNet-59 has an impressive improvement in the performance of large object
location, which brings 5.5 (40.0 vs 34.5) points gains in AP85@large. The reason
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Table 3. Comparison of Average Precision (AP) of FPN on different IoU thresholds
and different bounding box scales. AP50 is a effective metric to evaluate classification
capability. AP85 requires accurate location of the bounding box prediction. Therefore it
validates the regression capability of our approaches. We also illustrate AP at different
scales to capture the influence of high resolution feature maps in backbone.

Table 4. Comparison of Average Recall (AR) of FPN on different IoU thresholds and
different bounding box scales. AR50 is a effective metric to show how many reasonable
bounding boxes we find out (class agnostic). AR85 means how accurate of box location.

is that original ResNet based FPN has a big stride in deeper feature map, large
objects may be challenging to get an accurate regression.

We also investigate the influence of DetNet for finding the small objects. As
shown in Table 4, we make the detail statistics on averaged recall at different
IoU threshold and scales. We conclude the table as follows:

– Compared with ResNet-50, DetNet-59 is more powerful for finding missing
small objects, which yields 6.4 points gain (66.4 vs 60.0) in AR50 for the small
object. DetNet keeps the higher resolution in deeper stages than ResNet, thus
we can find smaller objects in deeper stages. Since we use up-sampling path-
way in Fig. 1A. Shallow layer can also involve context cues for finding small
objects. However, AR85@small is comparable (18.7 vs 19.6) between ResNet-
50 and DetNet-59. This is reasonable. DetNet has no use for small object
location, because ResNet based FPN has already used the large feature map
for the small object.

– DetNet is good for large object localization, which has 56.3 (vs 50.2) in AR85

for large objects. However, AR50 in the large object does not change too



DetNet: Design Backbone for Object Detection 349

much (95.4 vs 95.0). In general, DetNet finds more accurate large objects
rather than missing large objects.

Fig. 3. The detail structure of DetNet-59-NoProj, which adopts module in Fig. 1A
to split stage 6 (while original DetNet-59 adopts Fig. 1B to split stage 6). We design
DetNet-59-NoProj to validate the importance of involving a new semantic stage as
FPN for object detection. (Color figure online)

4.5 Discussion

As mentioned in Sect. 3, the key idea of DetNet is a novel designed backbone
specifically for object detection. Based on a prominent object detector like Fea-
ture Pyramid Network, DetNet-59 follows exactly the same number of stages as
FPN while maintaining high spatial resolution. To discuss the importance of the
backbone for object detection, we first investigate the influence of stages.

Since the stage-6 of DetNet-59 has the same spatial size as stage-5, a natural
hypothesis is that DetNet-59 simply involves a deeper stage-5 rather than pro-
ducing a new stage-6. To prove DetNet-59 indeed involves an additional stage, we
carefully analyze the details of DetNet-59 design. As shown in Fig. 2B. DetNet-
59 adopts a dilated bottleneck with simple 1× 1 convolution as the projection
layer to split stage 6. It is much different from traditional ResNet, when spatial
size of the feature map does not change, the projection will be simple identity in
bottleneck structure(Fig. 2A) rather than 1× 1 convolution(Fig. 2B). We break
this convention. We claim the bottleneck with 1× 1 convolution projection is
effective to create a new stage even spatial size is unchanged.

To prove our idea, we involve DetNet-59-NoProj which is modified DetNet-
59 by removing 1× 1 projection convolution. Detail structure is shown in Fig. 3.
There are only minor differences (red cell) between DetNet-59 (Fig. 2D) and
DetNet-59-NoProj (Fig. 3).

First we train DetNet-59-NoProj in ImageNet classification, results are shown
in Table 5. DetNet-59-NoProj has 0.5 higher Top1 error than DetNet-59. Then
We train FPN based on DetNet-59-NoProj in Table 5. DetNet-59 outperforms
DetNet-59-NoProj over 1 point for object detection.

The experimental results validate the importance of involving a new stage
as FPN used for object detection. When we use module in Fig. 2A in our net-
work, the output feature map is not much different from the input feature map,
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because output feature map is just sum of original input feature map and its
transformation. Therefore, it is not easy to create a novel semantic stage for the
network. While if we adopt module in Fig. 2B, it will be more divergent between
input and output feature map, which enables us to create a new semantic stage.

Table 5. Comparison of DetNet-59 and DetNet-59-NoProj. We report both results
on ImageNet classification and FPN COCO detection. DetNet-59 consistently outper-
forms DetNet-59-NoProj, which validates the importance of the backbone design (same
semantic stage) as FPN.

Backbone Classification FPN results

Top1 err FLOPs mAP AP50 AP75 APs APm APl

DetNet-59 23.5 4.8G 40.2 61.7 43.7 23.9 43.2 52.0

DetNet-59-NoProj 24.0 4.6G 39.1 61.3 42.1 23.6 42.0 50.1

Table 6. Comparison of FPN results on DetNet-59 and ResNet-50-dilated to validate
the importance of pre-train backbone for detection. ResNet-50-dilated means that we
fine-tune detection based on ResNet-50 weights, while involving dilated convolution in
stage-5 of the ResNet-50. We don’t illustrate Top-1 error of ResNet-50-dilated because
it can not be directly used for image classification.

Backbone Classification FPN results

Top1 err FLOPs, mAP AP50 AP75 APs APm APl

DetNet-59 23.5 4.8G 40.2 61.7 43.7 23.9 43.2 52.0

ResNet-50-dilated – 6.1G 39.0 61.4 42.4 23.3 42.1 50.0

Another natural question is that “what is the result if we train FPN ini-
tialized with ResNet-50 parameters, and dilate stage 5 of the ResNet-50 during
detector fine-tuning (for simplify, we denote it as ResNet-50-dilated)”. To show
the importance of pre-train backbone for detection, we compare DetNet-59 based
FPN with ResNet-50-dilate based FPN in Table 6. ResNet-50-dilated has more
FLOPs than DetNet-59, while gets lower performance than DetNet-59. There-
fore, we have shown the importance of directly training base-model for object
detection.

4.6 Comparison to State of the Art

We evaluate DetNet-59 based FPN on MSCOCO [20,23] detection test-dev
dataset, and compare it with recent state-of-the-art methods listed in Table 7.
Noticing that test-dev dataset is different from the mini-validation dataset used
in ablation experiments. It has no disclosed labels and is evaluated on the server.
Without any bells and whistles, our simple but efficient backbone achieves new
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Fig. 4. Illustrative results of DetNet-59 based FPN.

Fig. 5. Illustrative results of DetNet-59 based Mask R-CNN.

state-of-the-art on COCO object detection, even outperforms strong competi-
tors with ResNet-101 backbone. It is worth noting that DetNet-59 has only 4.8G
FLOPs complexity while ResNet-101 has 7.6G FLOPs. We refer the original FPN
results provided in Mask R-CNN [9]. It should be higher by using Detectron [7]
repository, which will generate 39.8 mAP for FPN-ResNet-101.

To validate the generalization capability of our approach, we also evaluate
DetNet-59 for MSCOCO instance segmentation based Mask R-CNN. Results are
shown in Table 8 for test-dev. Thanks for the impressive ability of our DetNet59,
we obtain a new state-of-the-art result on instance segmentation as well.

Some of the results are visualized in Figs. 4 and 5. Detection results of FPN
with DetNet-59 backbone are shown in Fig. 4. Instance segmentation results of
Mask R-CNN with DetNet-59 backbone are shown in Fig. 5. We only illustrate
bounding boxes and instance segmentation no less than 0.5 classification scores.
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Table 7. Comparison of object detection results between our approach and state-of-
the-art on MSCOCO test-dev datasets. Based on our simple and effective backbone
DetNet-59, our model outperforms all previous state-of-the-art. It is worth noting that
DetNet-59 yields better results with much lower FLOPs.

Models Backbone mAP AP50 AP75 APs APm APl

SSD513 [24] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 [6,24] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1

Faster R-CNN+++ [10] ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN G-RMIa [14] Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0

RetinaNet [22] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2

FPN [9] ResNet-101 37.3 59.6 40.3 19.8 40.2 48.8

FPN DetNet-59 40.3 62.1 43.8 23.6 42.6 50.0
ahttp://image-net.org/challenges/talks/2016/GRMI-COCO-slidedeck.pdf.

Table 8. Comparison of instance segmentation results between our approach and other
state-of-the-art on MSCOCO test-dev datasets. Benefit from DetNet-59, we achieve a
new state-of-the-art on instance segmentation task.

Models Backbone mAP AP50 AP75 APs APm APl

MNC [3] ResNet-101 24.6 44.3 24.8 4.7 25.9 43.6

FCIS [19] + OHEM [34] ResNet-101-C5-dilated 29.2 49.5 - 7.1 31.3 50.0

FCIS+++ [19] + OHEM ResNet-101-C5-dilated 33.6 54.5 - - - -

Mask R-CNN [9] ResNet-101 35.7 58.0 37.8 15.5 38.1 52.4

Mask R-CNN DetNet-59 37.1 60.0 39.6 18.6 39.0 51.3

5 Conclusion

In this paper, we design a novel backbone network specifically for the object
detection task. Traditionally, the backbone network is designed for the image
classification task and there is a gap when transferred to the object detection
task. To address this issue, we present a novel backbone structure called Det-
Net, which is not only optimized for the classification task but also localiza-
tion friendly. Impressive results have been reported on the object detection and
instance segmentation based on the COCO benchmark.
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