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Abstract. Benefit from the quick development of deep learning tech-
niques, salient object detection has achieved remarkable progresses
recently. However, there still exists following two major challenges that
hinder its application in embedded devices, low resolution output and
heavy model weight. To this end, this paper presents an accurate yet com-
pact deep network for efficient salient object detection. More specifically,
given a coarse saliency prediction in the deepest layer, we first employ
residual learning to learn side-output residual features for saliency refine-
ment, which can be achieved with very limited convolutional parameters
while keep accuracy. Secondly, we further propose reverse attention to
guide such side-output residual learning in a top-down manner. By eras-
ing the current predicted salient regions from side-output features, the
network can eventually explore the missing object parts and details which
results in high resolution and accuracy. Experiments on six benchmark
datasets demonstrate that the proposed approach compares favorably
against state-of-the-art methods, and with advantages in terms of sim-
plicity, efficiency (45 FPS) and model size (81MB).
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1 Introduction

Salient object detection, also known as saliency detection, aims to localize and
segment the most conspicuous and eye-attracting objects or regions in an image.
It is usually served as a pre-processing step to facilitate various subsequent high-
level vision tasks, such as image segmentation [1], image captioning [2], and so
on. Recently, with the quick development of deep convolutional neural networks
(CNNs), salient object detection has achieved significant improvements over con-
ventional hand-crafted feature based approaches. The emergence of fully convo-
lutional neural networks (FCNs) [3] further pushed it to a new state-of-the-art
due to its efficiency and end-to-end training. Such architecture also benefits other
applications, e.g., semantic segmentation [4], edge detection [5].

Albeit profound progresses have been made, there still exists two major chal-
lenges that hinder its applications in real-world, e.g., embedded devices. One is
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the low resolution of the saliency maps produced by FCNs based saliency mod-
els. Due to the repeated stride and pooling operations in CNN architectures,
it is inevitable to lose resolution and difficult to refine, making it infeasible to
locate salient objects accurately, especially for the object boundaries and small
objects. The other is the heavy weight and large redundancy of the existing deep
saliency models. As can be seen in Fig. 1, all the listed deep models are larger
than 100 MB, which is too heavy for a pre-processing step to apply in subsequent
high-level tasks, and also not memory efficient for embedded devices.
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Fig. 1. Maximum F-Measure of recent deep CNN-based saliency detection models on
ECSSD, including DS [6], ELD [7], DCL+ [8], DHS [8], RFCN [9], NLDF [10], DSS+

[11], MSRNet [12], Amulet [13], UCF [14], and ours (red circle). As can be seen that
the proposed model is the only one less than 100 MB while achieves comparable per-
formance with state-of-the-art methods. (Color figure online)

Diverse solutions have been explored to improve the resolution of the FCNs
based prediction. Early works [8,15,16] usually combined it with an extra region
or superpixel based stream to fuse their respective advantages at the expense of
high time cost. Then, some simple yet effective structures are constructed to com-
bine the complementary cues of shallow and deep CNN features, which capture
low-level spatial details and high-level semantic information respectively, such
as skip connections [12], short connections [11], dense connections [17], adaptive
aggregation [13]. Such multi-level feature fusion schemes also play an impor-
tant role in semantic segmentation [18,19], edge detection [20], skeleton detec-
tion [21,22]. Nevertheless, the existing archaic fusions are still incompetent for
saliency detection under complex real-world scenarios, especially when dealing
with multiple salient objects with diverse scales. In addition, some time consum-
ing post-processing skills are also applied for refinement, e.g., superpixel-based
filter [23], fully connected conditional random field (CRF) [8,11,24]. However,
to the best of our knowledge, there are no saliency detection networks explored
considering both lightweight model and high accuracy.

To this end, we present an accurate yet compact deep salient object detection
network which achieved comparable performance with state-of-the-art methods,
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Fig. 2. Visual comparison of saliency maps produced by DSS [11] (top row), our
method without (middle row) and with reverse attention (bottom row) in differ-
ent side-outputs, respectively. As can be seen clearly that the resolutions of the
saliency maps are improved gradually from deep to shallow side-outputs, and our
reverse attention based side-output residual learning performs much better than short
connections [11].

thus enables for real-time applications. In generally, more convolutional channels
with large kernel size leads to better performance in salient object detection
due to the large receptive field and model capacity to capture more semantic
information, e.g., there are 512 channels with kernel size 7 × 7 in the last side-
output of DSS [11]. In a different way, we introduce residual learning [25] into the
architecture of HED [5], and regard salient object detection as a super-resolution
reconstruction problem [26]. Given the low resolution prediction of FCNs, side-
output residual features are learned to refine it step by step. Note that it can be
achieved only using convolution with 64 channels and kernel size 3 × 3 in each
side-output, whose parameters are significant fewer than DSS.

Similar residual learning was also utilized in skeleton detection [21] and image
super-resolution [27]. However, the performance is not satisfactory enough if we
directly apply it for salient object detection due to its challenging. Since most
of the existing deep saliency models are fine-tuned from image classification net-
work, the fine-tuned network will unconsciously focus on the regions with high
response values during residual learning as can be seen in Fig. 5, thus struggling
to capture the residual details, e.g., object boundaries and other undetected
object parts. To solve it, we propose reverse attention to guide side-output
residual learning in a top-down manner. Specifically, prediction of deep layer
is upsampled then reversed to weight its neighbor shallow side-output feature,
which quickly guides the network to focus on the undetected regions for residual
capture, thus leads to better performance as seen in Fig. 2.

In summary, the contributions of this paper can be concluded as: (1) We intro-
duce residual learning into the architecture of HED for salient object detection.
With the help of the learned side-output residual features, the resolution of the
saliency map can be improved gradually with much fewer parameters compared
to the existing deep saliency networks. (2) We further propose reverse attention
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to guide side-output residual learning. By erasing the current prediction, the
network can disscover the missing object parts and residual details effectively
and quickly, which leads to significant performance improvement. (3) Benefit
from the above two components, our approach consistently achieves compara-
ble performance with state-of-the-art methods, and with advantages in terms of
simplicity, efficiency (45 FPS) and model size (81 MB).

2 Related Work

There are plenty of saliency detection methods proposed in the past two deceads.
Here, we only focus on the recent state-of-the-art methods. Almost all of them
are FCNs based and try to solve the common problem: how to produce saliency
map with high resolution by using FCNs? Kuen et al. [28] applied recurrent
unit into FCNs to iteratively refine each salient region. Hu et al. [23] entended a
superpixel-based guided filter to be a layer in the network for boundary refine-
ment. Hou et al. [11] designed short connections for multi-scale feature fusion,
while in Amulet [13], multi-level convolutional features were aggregated adap-
tively. Luo et al. [10] proposed a multi-resolution grid structure to capture both
local and global cues. In addition, a new loss function was introduced to penalize
errors on the boundaries. Zhang et al. [14] further proposed a novel upsampling
method to reduce the artifacts produced in deconvolution. Recently, dilated con-
volution [23] and dense connections [17] are further incorporated to obtain high
resolution saliency map. There are also some progressive works to address the
above issue in semantic segmentation. In [19], skip connections was proposed to
refine object instances, while in [29], it was used to build a Laplacian pyramid
reconstruction network for object boundary refinement.

Instead of fusing multi-level convolutional features as the above works, we
try to learn residual feature for low resolution refinement. The idea of residual
learning was first proposed by He et al. [25] for image classification. After that,
it was widely applied in various applications. Ke et al. [21] leraned side-output
residual feature for accurate object symmetry detection. Kim et al. [27] built a
very deep convolutional network based on residual learning for accurate image
super-resolution.

Although it is natural to apply it for salient object detection, the performance
is not satisfactory enough. To solve it, we introduce attention mechanism which is
inspired from human perception process. By using top information to efficiently
guide bottom-up feedforward process, it has achieved great success in many
tasks. Attention model was designed to weight multi-scale features in [12,30].
Residual attention module was stacted to generate deep attention-aware features
for image classification in [31]. In ILSVRC 2017 Image Classification Challenge,
Hu et al. [32] won the 1st place by constructing Squeeze-and-Excitation block
for channel attention. Huang et al. [33] designed an attention mask to highlight
the prediction of the reverse object class, which then be subtracted from the
original prediction to correct the mistakes in the confusion area for semantic
segmentation. Inspired but differed from it, we employ reverse attention in a
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top-down manner to guide side-output residual learning. Benefit from it, we can
learn more accurate residual details which leads to significant improvement.

Fig. 3. The overall architecture of the proposed network. Here, only three side-outputs
are listed for illustration.“R” denotes the proposed reverse attention block that is
illustrated in Fig. 4. As can be seen, the residual error decreases along the stacking
orientation with the supervision both on the input and output of the residual unit
(yellow circle). (Color figure online)

3 Proposed Method

In this section, we first describe the overall architecture of the proposed deep
salient object detection network, and then present the details of the main com-
ponents one by one, which are corresponding to side-output residual learning
and top-down reverse attention respectively.

3.1 Architecture

The proposed network is built upon the HED [5] architecture and choses VGG-16
[34] as backbone. We use the layers up to “pool5” and select {conv1 2, conv2 2,
conv3 3, conv4 3, conv5 3} as side-outputs, which have strides of {1, 2, 4, 8, 16}
pixels with respect to the input image repectively. We first reduce the dimension
of “pool5” into 256 by convolution with kernel size 1 × 1, and then add three
convolutional layers with 5 × 5 kernels to capture global saliency. Since the
resolution of the global saliency map is only 1/32 of the input image, we further
learn residual feature in each side-output to improve its resolution gradually.
In specifically, D convolutional layers with 3 × 3 kernels and 64 channels are
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stacked for residual learning. The reverse attention block is embedded before
side-output residual learning. The prediction of the shallowest side-output is fed
into a sigmoid layer for final output. The overall architecture is shown in Fig. 3
and complete configurations are outlined in Table 1.

Table 1. The configurations of the proposed network. (n, k× k)×D denotes stacking
D convolutional layers with channel number (n) and kernel size (k), and ReLU layer
is added for nonlinear transformation.

Side output 1–5 Global saliency

(64, 1 × 1) (256, 1 × 1)

{(64, 3 × 3),ReLU} ×D {(256, 5 × 5),ReLU} × 3

(1, 3 × 3) (1, 1 × 1)

3.2 Side-Output Residual Learning

As we know, deep layers of network capture high-level semantic information but
messy details, while it is opposite for shallow ones. Based on this observation,
multi-level features fusion is a common choice to capture their complementary
cues, however, it will degrade the confident prediction of deep layers when com-
bining with shallow ones. In this paper, we implement it in a different yet more
efficient way by employing residual learning to remedy the errors between the
predicted saliency maps and the ground truth. Specifically, the residual feature
is learned by applying deep supervision both on the input and output of the
designed residual unit, which is illustrated in Fig. 3. Formally, given the upsam-
pled input saliency map Sup

i+1 by a factor 2 in side-output stage i + 1, and the
residual feature Ri learned in side-output stage i, then the deep supervision can
be formulated as: {

{Si+1}up×2i+1 ≈ G

{Sup
i+1 + Ri}up×2i = {Si}up×2i ≈ G

, (1)

where Si is the output of the residual unit and G is ground truth, up×2i denotes
the upsample operation by a factor 2i, which is implemented by the same bilinear
interpolation with HED [5].

Such a learning objective inherits the following good property. The residual
units establish shortcut connections between the predictions from different scales
and the ground truth, which makes it easier to remedy their errors with higher
scale adaptability. Generally, the error between the input and output of the
residual unit is fairly small based on the same supervision, thus can be learned
more easily with fewer parameters and iterations. To the extreme, the error is
approximately equal to zero if the prediction is close enough to the ground truth.
As a result, the constructed network can be very efficient and lightweight.
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3.3 Top-Down Reverse Attention

Although it is natural and straightforward to learn residual details for saliency
refinement, it is not easy for the network to capture them accurately without
extra supervision, which will result in unsatisfactory detection. Since most of the
existing saliency detection networks are fine-tuned from image classification net-
works which are only responsive to small and sparse discriminative object parts,
it obviously deviates from the requirement of the saliency detection task that
needs to explore dense and integral regions for pixel-wise prediction. To mitigate
this gap, we propose a reverse attention based side-output residual learning app-
roach for expanding object regions progressively. Starting with a coarse saliency
map generated in the deepest layer with high semantic confidence but low reso-
lution, our proposed approach guides the whole network to sequentially discover
complement object regions and details by erasing the current predicted salient
regions from side-output features, where the current prediction is upsampled
from its deeper layer. Such a top-down erasing manner can eventually refine the
coarse and low resolution prediction into a complete and high resolution saliency
map with these explored regions and details, see Fig. 4 for illustration.

Fig. 4. Illustration of the proposed reverse attention block, whose input and output
are highlighted in blue and green respectively. (Color figure online)

Given the side-output feature T and reverse attention weight A, then the
output attentive feature can be produced by their element-wise multiplication,
which can be formulated as:

Fz,c = Az · Tz,c, (2)

where z and c denote the spatial position of the feature map and the index
of the feature channel, respectively. And the reverse attention weight in side-
output stage i is simply generated by subtracting the upsampled prediction of
side-output i + 1 from one, which is computed as below:

Ai = 1 − Sigmoid(Sup
i+1). (3)
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Figure 5 shows some visual examples of the learned residual feature to illus-
trate the effectiveness of the proposed revrse attention. As can be seen, the
proposed network well captured the residual details near object boundaries with
the help of reverse attention. While without reverse attention, it learned some
redundant features inside object which is helpless for saliency refinement.

Fig. 5. Visualization of residual features in different side-outputs of the proposed net-
work without (the first row) and with reverse attention (the second row). From left to
right are saliency map, the last convolutional feature from side output 1 to 4, respec-
tively. After appling our reverse attention, the proposed network well captured spatial
details near object boundaries which is beneficial for saliency refinement, especially in
shallow layers. Best viewed in color. (Color figure online)

3.4 Supervision

As shown in Fig. 3, deep supervision is applied to each side-output stage as did
in [5,11]. Each side-output produces a loss term Lside which is defined as below:

Lside(I,G,W,w) =
M∑

m=1

�
(m)
side(I,G,W,w(m)), (4)

where M regards to the total side-output numbers including global saliency, W
denotes the collection of all standard network layer parameters, I and G refer
to the input image and the corresponding ground truth respectively. Each side-
output layer is regarded as a pixel-wise classifier with the corresponding weights
w which is represented by

w = (w(1),w(2), ...,w(M)). (5)

Here, �
(m)
side represents the image-level class-balanced cross-entropy loss function

[5] of the mth side output, which is computed by the following formulation:

�
(m)
side(I,G,W,w(m)) = −

|I|∑
z=1

G(z)logPr(G(z) = 1|I(z);W,w(m))

+ (1 − G(z))logPr(G(z) = 0|I(z);W,w(m)), (6)
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where Pr(G(z) = 1|I(z);W,w(m)) represents the probability of the activation
value at location z in the mth side output, z is the saptial coordinate. Different
with HED [5] and DSS [11], there is no fusion layer included in our approach.
The output of the first side-output is used as our final prediction after a sigmoid
layer in the testing stage.

3.5 Difference to Other Networks

Though shares the same name, the proposed network significantly differs from
reverse attention network [33], which applied reverse attention to weight the
prediction that is not associated with a target class, in this way to amplify the
reverse-class response in the confused region, thus can help the original branch
make correct prediction. While in our approach, the usage of reverse attention
is totally different. It is used to erase the confident prediction from deep layer,
which can guide the network to explore the missing object regions and details
effectively.

There are also some significant differences with other residual learning based
architectures, e.g., side-output residual network (SRN) [21], and Laplacian recon-
struction network (LRN) [29]. In SRN, the residual feature is learned from each
side-output of VGG-16 directly, while in this paper, it is learned after reverse
attention that is applied to guide residual learning. The main difference with
LRN lies in the usage of the wight mask, which is used to weight the learned
side-output features for boundary refinement in LRN, in contrast, we apply it
before side-output feature learning for guidance. In addition, the weight mask in
LRN is generated from the edge of deep prediction which will miss some object
regions due to its low resolution, while in this paper, we apply it to focus on
all the undetected regions for saliency refinement, which not only refines object
boundaries well but also highlights object regions more completely.

4 Experiments

4.1 Experimental Setup

The proposed network is built on the top of the implementations of HED [5]
and DSS [11], and trained though the publicly available Caffe [35] library. The
whole network is trained end-to-end using full-resolution images and optimized
by stochastic gradient descent method. The hyper-parameters are set as below:
batch size (1), iter size (10), the momentum (0.9), the weight decay (5e-4), learn-
ing rate is initialized as 1e−8 and decreased by 10% when the training loss
reaches a flat, the training iteration number (10K). All these parameters were
fixed during the following experiments. The source code will be released1.

We comprehensively evaluated our method on six representative datasets,
including MSRA-B [36], HKU-IS [37], ECSSD [38], PASCAL-S [39], SOD [40],
and DUT-OMRON [41], which contain 5000, 4447, 1000, 850, 300, 5168 well
1 http://shuhanchen.net.

http://shuhanchen.net
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annotated images, respectively. Among them, PASCAL-S and DUT-OMRON
are more challenging than the others. To guarantee a fair comparison with the
existing approaches, we utilize the same training sets as in [8,10,11,42] and test
all of the datasets with the same model. Data augmentation is also implemented
the same with [10,11] to reduce the over-fitting risk, which increased by 2 times
through horizontal flipping.

Three standard and widely agreed metrics are used to evaluate the perfor-
mance, including Precision-Recall (PR) curve, F-measure, and the Mean Abso-
lute Error (MAE). Pairs of precision and recall values are calculated by compar-
ing the binary saliency maps with the ground truth to plot the PR curve, where
the thresholds are in the range of [0, 255]. The F-measure is adopted to mea-
sure the overall performance, which is defined as the weighted harmonic mean
of precision and recall:

Fβ = (1 + β2)
Precision × Recall

β2Precision + Recall
, (7)

where β2 is set to 2 to emphasize the precision over recall as suggested in [43].
Only the maximum F-Measure is reported here to to show the best performance
a detector can achieve. Given the normalized saliency map S and ground truth
G, the MAE score is calculated by their average per-pixel difference:

MAE =
1

H × W

H∑
x=1

W∑
y=1

|S(x, y) − G(x, y)| , (8)

where W and H are the width and height of the saliency map, respectively.

4.2 Ablation Studies

Before comparing with the state-of-the-art methods, we first evaluate the influ-
ence of different design options (the depth D), the effectiveness of the proposed
side-output residual learning and reverse attention in this section.

Depth D. We make a experiment to see how the depth D affects the perfor-
mance by varying it from 1 to 3. The results on PASCAL-S and DUT-OMRON
are shown in Table 2. As can be seen that the best performance is obtained when
D = 2. Therefore, we set it as 2 in the following experiments.

Side-Output Residual Learning. To investigate the effectiveness of the side-
output residual learning, we separately evaluate the performance of each side-
output prediction and show in Table 3. We can find that the performance is
gradually improved by combing more side-output residual features.
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Table 2. Performance comparison with different numbers of D.

PASCAL-S DUT-OMRON

Fβ MAE Fβ MAE

D = 1 0.830 0.100 0.776 0.067

D = 2 0.834 0.104 0.786 0.062

D = 3 0.824 0.106 0.778 0.064

Table 3. Performance comparison with different side-output predictions.

PASCAL-S DUT-OMRON

Fβ MAE Fβ MAE

Side-output 5 0.817 0.111 0.755 0.071

Side-output 4 0.827 0.106 0.776 0.065

Side-output 3 0.831 0.104 0.785 0.062

Side-output 2 0.832 0.104 0.786 0.062

Side-output 1 0.834 0.104 0.786 0.062

Reverse Attention. As illustrated in Fig. 5, the network well located at the
object boundaries with the help of reverse attention. Here, we perform a detailed
comparison using F-measure and MAE scores which are reported in Table 4.
From the results, we can get the following observations: (1) Without reverse
attention, our performance is similiar to the state-of-the-art method DSS (with-
out CRF-based post-processing), which indicates its large redundancy. (2) After
applying reverse attention, the performance is improved by a large margin,
specifically, we obtained an average of 1.4% gain in terms of F-measure and
0.5% decrease for MAE score, which clearly demonstrates its effectiveness.

4.3 Performance Comparison with State-of-the-art

We compare the proposed method with 10 state-of-the-art ones, including 9
recent CNN-based approaches, DCL+ [8], DHS [44], SSD [45], RFCN [9], DLS
[23], NLDF [10], DSS and DSS+ [11], Amulet [13], UCF [14], and one conven-
tional top approach, DRFI [42], where symbol “+” indicates that the network
includes CRF-based post-processing. Note that all the saliency maps of the above
methods are produced by running source codes or pre-computed by the authors,
and ResNet based methods are not included for fair comparison.

Quantitative Evaluation. The results of quantitative comparison with state-
of-the-art methods are reported in Table 4 and Fig. 7. We can clearly observe
that our approach significantly outperforms the competing methods both in
terms of F-measure and MAE scores, expecially on the challenging datasets
(e.g., DUT-OMRON). For PR curves, we also achieved comparable performance
with state-of-the-arts except at high level of recall (recall > 0.9). In compari-
son to the top method, DSS+, which uses a CRF-based post-processing step to
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Img GT Ours DSS+[11] NLDF[10] Amulet[13] UCF[14] DHS[44] DCL+[8]

Fig. 6. Visual comparisons with the existing methods in some challenging cases: com-
plex scenes, low contrast, and multiple (small) salient objects. (Color figure online)
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Fig. 7. Comparison of precision-recall curves on different datasets.
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Table 4. Quantitative comparison with state-of-the-art methods on six benchmark
datasets. Each cell (from up to down) contains max F-measure (higher better), and
MAE (lower better). The top two results are highlighted in red and green respectively.
“RA” denotes the proposed reverse attention, and “MK” is MSRA-10K [46], the other
abbreviations are the initials of each dataset metioned in the paper. Note that the
number of images listed here are including the augmented ones.

Training MSRA-B HKU-IS ECSSD PASCAL-S SOD DUT-OMRON

Dataset #Images

DRFI [42] MB 2.5k 0.851 0.775 0.784 0.690 0.699 0.664

0.123 0.146 0.172 0.210 0.223 0.150

DCL+ [8] MB 2.5k 0.918 0.907 0.898 0.810 0.831 0.757

0.047 0.048 0.071 0.115 0.131 0.080

DHS [44] MK+D 9.5k × 12 - 0.892 0.905 0.824 0.823 -

- 0.052 0.061 0.094 0.127 -

SSD [45] MB 2.5k 0.902 - 0.865 0.774 0.793 0.754

0.160 - 0.193 0.220 0.222 0.193

RFCN [9] MK 10k - 0.894 0.889 0.829 0.799 0.744

- 0.088 0.109 0.133 0.169 0.111

DLS [23] MK 10k - 0.835 0.852 0.753 - 0.687

- 0.070 0.088 0.132 - 0.090

NLDF [10] MB 2.5k × 2 0.911 0.902 0.903 0.826 0.837 0.753

0.048 0.048 0.065 0.099 0.123 0.080

Amulet [13] MK 10k × 8 - 0.899 0.914 0.832 0.795 0.743

- 0.050 0.061 0.100 0.144 0.098

UCF [14] MK 10k × 8 - 0.888 0.902 0.818 0.805 0.730

- 0.061 0.071 0.116 0.148 0.120

DSS [11] MB 2.5k × 2 0.920 0.900 0.908 0.826 0.834 0.764

0.043 0.050 0.063 0.102 0.126 0.072

DSS+ [11] MB 2.5k × 2 0.929 0.916 0.919 0.835 0.843 0.781

0.034 0.040 0.055 0.095 0.122 0.063

Ours MB 2.5k × 2 0.919 0.898 0.905 0.818 0.839 0.762

w/o RA 0.042 0.049 0.063 0.106 0.126 0.071

Ours MB 2.5k × 2 0.931 0.913 0.918 0.834 0.844 0.786

0.036 0.045 0.059 0.104 0.124 0.062

refine the resolution, nevertheless, our approach still attains nearly identical (or
better) performance across the board. It also needs to point out that the exist-
ing methods used different training datasets and data augmentaion strategies,
which caused an unfair comparison. Nevertheless, we still perform much better
that clearly shows the superiority of the proposed approach. And we also believe
that further performance gain can be obtained by using larger training dataset
with more augmented training images, which is beyond the scope of this paper.

Qualitative Evaluation. We also show some visual results of some repre-
sentative images to exhibit the superiority of the proposed approach in Fig. 6,
including complex scenes, low contrast between salient object and background,
multiple (small) salient objects with diverse characteristics (e.g., size, color).
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Table 5. Average execution time comparison with other methods on ECSSD.

DHS DSS NLDF UCF Amulet Ours

Times(s) 0.026 0.048 0.048 0.168 0.080 0.022

Taking all the cases into account, it can be observed clearly that our approach
not only highlights the salient regions correctly with less false detection but also
produces sharp boundaries and coherent details (e.g., the mouth of the bird in
the 4th row of Fig. 6). It is also interesting to note that the proposed method
even corrected some false labeling in the ground truth, e.g., the left horn in
the 7th row of Fig. 6. Nevertheless, we still obtain unsatisfactory results in some
challenging cases, taking the last row of Fig. 6 for example, to segment all the
salient objects completely is still very difficult for the existing methods.

Execution Time. Finally, we investigate the efficiency of our method, and
conduct all the experiments on a single NVIDIA TITAN Xp GPU for fair com-
parison. It only takes less than 2 h to train our model, for comparison, DSS needs
about 6 h. We also compared the average execution time with other five lead-
ing CNN-based methods on ECSSD. As can be seen from Table 5, our approach
is much faster than all the competing methods. Therefore, considering both in
visual quality and efficiency, our approach is the best choice for real-time appli-
cations up to now.

5 Conclusions

As a low-level pre-processing step, salient object detection has great applicabil-
ity in various high-level tasks yet remains not being well solved, which mainly
lies on the following two aspects: low resolution output and heavy model weight.
In this paper, we presented an accurate yet compact deep network for efficient
salient object detection. Instead of directly learning multi-scale saliency features
in different side-output stages, we employ residual learning to learn side-output
residual features for saliency refinement. Based on it, the resolution of the global
saliency map generated by the deepest convolutional layer was improved grad-
ually with very limited parameters. We further propose reverse attention to
guide such side-output residual learning in a top-down manner. Benefit from
it, our network learned more accurate residual features, which leads to signifi-
cant performance improvement. Extensive experimental resutls demonstrate that
the proposed approach performs favorably against state-of-the-art ones both in
quantitative and qualitative comparisons, which enables it a better choice for
further real-world applications, and also makes it a great potential to apply in
other end-to-end pixel-level prediction tasks. Nevertheless, the global saliency
branch and backbone (VGG-16) network still contain large redundancy, which
will be further explored by introducing handcrafted saliency prior and learning
from scratch in our future work.
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