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Abstract. Recent studies on unsupervised image-to-image translation
have made remarkable progress by training a pair of generative adver-
sarial networks with a cycle-consistent loss. However, such unsuper-
vised methods may generate inferior results when the image resolution
is high or the two image domains are of significant appearance differ-
ences, such as the translations between semantic layouts and natural
images in the Cityscapes dataset. In this paper, we propose novel Stacked
Cycle-Consistent Adversarial Networks (SCANs) by decomposing a sin-
gle translation into multi-stage transformations, which not only boost
the image translation quality but also enable higher resolution image-
to-image translation in a coarse-to-fine fashion. Moreover, to properly
exploit the information from the previous stage, an adaptive fusion block
is devised to learn a dynamic integration of the current stage’s output and
the previous stage’s output. Experiments on multiple datasets demon-
strate that our proposed approach can improve the translation quality
compared with previous single-stage unsupervised methods.

Keywords: Image-to-image translation · Unsupervised learning
Genearative adverserial network (GAN)

1 Introduction

Image-to-image translation attempts to convert the image appearance from one
domain to another while preserving the intrinsic image content. Many com-
puter vision problems can be formalized as the image-to-image translation prob-
lem, such as super-resolution [14,20], image colorization [6,30,31], image seg-
mentation [4,17], and image synthesis [1,13,21,26,33]. However, conventional
image-to-image translation methods are all task specific. A common framework
for universal image-to-image translation remains as an emerging research sub-
ject in the literature, which has gained considerable attention in recent studies
[7,10,16,27,34].
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Fig. 1. Given unpaired images from two domains, our proposed SCAN learns the
image-to-image translation by a stacked structure in a coarse-to-fine manner. For the
Cityscapes Labels → Photo task in 512 × 512 resolution, the result of SCAN (left)
appears more realistic and includes finer details compared with the result of Cycle-
GAN [34] (right).

Isola et al. [7] leveraged the power of generative adversarial networks (GANs)
[5,18,28,32], which encourage the translation results to be indistinguishable
from the real images in the target domain, to learn supervised image-to-image
translation from image pairs. However, obtaining pairwise training data is time-
consuming and heavily relies on human labor. Recent works [10,16,27,34] explore
tackling the image-to-image translation problem without using pairwise data. In
the unsupervised setting, besides the traditional adversarial loss used in super-
vised image-to-image translation, a cycle-consistent loss is introduced to restrain
the two cross-domain transformations G and F to be the inverses of each other
(i.e., G(F (x)) ≈ x and G(F (y)) ≈ y). By constraining both the adversarial loss
and the cycle-consistent loss, the networks learn how to accomplish cross-domain
transformations without using pairwise training data.

Despite the progress mentioned above, existing unsupervised image-to-image
translation methods may generate inferior results when two image domains are
of significant appearance differences or the image resolution is high. As shown
in Fig. 1, the result of CycleGAN [34] in translating Cityscapes semantic layout
to realistic picture lacks details and remains visually unsatisfactory. The reason
for this phenomenon lies in the significant visual gap between the two distinct
image domains, which makes the cross-domain transformation too complicated
to be learned by using a single-stage unsupervised approach.

Jumping out of the scope of unsupervised image-to-image translation, many
methods leveraged the power of multi-stage refinements to tackle image gener-
ation from latent vectors [3,9], caption-to-image [29] and supervised image-to-
image translation [1,4,23]. By generating an image in a coarse to fine manner,
a complicated transformation is broken down into easy-to-solve pieces. Wang et
al. [23] successfully tackle the high-resolution image-to-image translation prob-
lem in such a coarse-to-fine manner with multi-scale discriminators. However,
their method relies on pairwise training images, therefore cannot be directly
applied to our unsupervised image-to-image translation task. To the best of our
knowledge, there exists no attempt to exploit stacked networks to overcome the
difficulties of learning unsupervised image-to-image translation.
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In this paper, we propose the stacked cycle-consistent adversarial networks
(SCANs) for the unsupervised learning of image-to-image translation. We decom-
pose a complex image translation into multi-stage transformations, including a
coarse translation followed by multiple refinement processes. The coarse trans-
lation learns to sketch a primary result in low-resolution. The refinement pro-
cesses improve the translation by adding details into the previous results to
produce higher resolution outputs. We use a conjunction of an adversarial loss
and a cycle-consistent loss in all stages to learn translations from unpaired image
data. To benefit more from multi-stage learning, we also introduce an adaptive
fusion block in the refinement process to learn the dynamic integration of the
current stage’s output and the previous stage’s output. Extensive experiments
demonstrate that our proposed model can not only generate results with realis-
tic details, but also enable learning unsupervised image-to-image translation in
higher resolution.

In summary, our contributions are mainly two-fold. Firstly, we propose
SCANs to model the unsupervised image-to-image translation problem in a
coarse to fine manner for generating results with finer details in higher resolution.
Secondly, we introduce a novel adaptive fusion block to dynamically integrate
the current stage’s output and the previous stage’s output, which outperforms
directly stacking multiple stages.

2 Related Work

Image-to-Image Translation. GANs [5] have shown impressive results in
a wide range of image-to-image translation tasks including super-resolution
[14,20], image colorization [7], and image style transfer [34]. The essential part
of GANs is the idea of using an adversarial loss that encourages the trans-
lated results to be indistinguishable from real target images. Among the existing
image-to-image translation works using GANs, perhaps the most well-known
one would be Pix2Pix [7], in which Isola et al. applied GANs with a regression
loss to learn pairwise image-to-image translation. Due to the fact that pairwise
image data is difficult to obtain, image-to-image translation using unpaired data
has drawn rising attention in recent studies. Recent works by Zhu et al. [34],
Yi et al. [27], and Kim et al. [10] have tackled the image translation problem
using a combination of adversarial and cycle-consistent losses. Taigman et al. [22]
applied cycle-consistency in the feature level with the adversarial loss to learn
a one side translation from unpaired images. Liu et al. [16] used a GAN com-
bined with Variational Auto Encoder (VAE) to learn a shared latent space of
two given image domains. Liang et al. [15] combined the ideas of adversarial and
contrastive losses, using a contrastive GAN with cycle-consistency to learn the
semantic transform of two given image domains with labels. Instead of trying to
translate one image to another domain directly, our proposed approach focuses
on using refining processes of multiple steps to generate a more realistic output
with finer details by using unpaired image data.
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Multi-stage Learning. Extensive works have proposed to use multiple stages
to tackle complex generation or transformation problems. Eigen et al. [4] pro-
posed a multi-scale network to predict depth, surface, and segmentation, which
learns to refine the prediction result from coarse to fine. S2GAN introduced by
Wang et al. [24] utilizes two networks arranged sequentially to first generate a
structure image and then transform it into a natural scene. Zhang et al. [29] pro-
posed StackGAN to generate high-resolution images from texts, which consists
of two stages: Stage-I network generates coarse, low-resolution result, while the
Stage-II network refines the result into high-resolution, realistic image. Chen et
al. [1] applied a stacked refinement network to generate scenes from segmentation
layouts. To accomplish generating high-resolution images from latent vectors,
Kerras et al. [9] started from generating a 4 × 4 resolution output, then progres-
sively stacked up both generator and discriminator to generate a 1024 × 1024
realistic image. Wang et al. [23] applied a coarse-to-fine generator with a multi-
scale discriminator to tackle the supervised image-to-image translation problem.
Different form the existing works, this work exploits stacked image-to-image
translation networks combined with a novel adaptive fusion block to tackle the
unsupervised image-to-image translation problem.

3 Proposed Approach

3.1 Formulation

Given two image domains X and Y , the mutual translations between them can
be denoted as two mappings G : X → Y and F : Y → X, each of which
takes an image from one domain and translates it to the corresponding rep-
resentation in the other domain. Existing unsupervised image-to-image trans-
lation approaches [10,16,22,27,34] finish the learning of G and F in a single
stage, which generate results lacking details and are unable to handle complex
translations.

In this paper, we decompose translations G and F into multi-stage mappings.
For simplicity, now we describe our method in a two-stage setting. Specifically,
we decompose G = G2 ◦ G1 and F = F2 ◦ F1. G1 and F1 (Stage-1) perform the
cross-domain translation in a coarse scale, while G2 and F2 (Stage-2) serve as
refinements on the top of the outputs from the previous stage. We first finish the
training of Stage-1 in low-resolution and then train Stage-2 to learn refinement
in higher resolution based on a fixed Stage-1.

Training two stages in the same resolution would make Stage-2 difficult to
bring further improvement, as Stage-1 has already been optimized with the same
objective function (see Sect. 4.5). On the other hand, we find that learning in a
lower resolution allows the model to generate visually more natural results, since
the manifold underlying the low-resolution images is easier to model. Therefore,
first, we constrain Stage-1 to train on 2x down-sampled image samples, denoted
by X↓ and Y↓, to learn a base transformation. Second, based on the outputs of
Stage-1, we train Stage-2 with image samples X and Y in the original resolution.
Such a formulation exploits the preliminary low-resolution results of Stage-1 and
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guides Stage-2 to focus on up-sampling and adding finer details, which helps
improve the overall translation quality.

In summary, to learn cross-domain translations G : X → Y and F : Y → X
on given domains X and Y , we first learn preliminary translations G1 : X↓ → Y↓
and F1 : Y↓ → X↓ at the 2x down-sampled scale. Then we use G2 : X↓ → X and
F2 : Y↓ → Y to obtain the final output with finer details in the original resolution.
Notice that we can iteratively decompose G2 and F2 into more stages.

Domain

Lcycle

F1

G1

Ladv

Domain

DY1

X↓ Y↓

x1

x

ŷ1

Fig. 2. Illustration of an overview of Stage-1 for learning coarse translations in low-
resolution under an unsupervised setting. Solid arrow denotes input-outputs, the
dashed arrow denotes the loss.

3.2 Stage-1: Basic Translation

In general, our Stage-1 module adopts a similar architecture of CycleGAN [34],
which consists of two image translation networks G1 and F1 and two discrimi-
nators DX1 ,DY1 . Note that Stage-1 is trained in low-resolution image domains
X↓ and Y↓. Figure 2 shows an overview of the Stage-1 architecture.

Given a sample x1 ∈ X↓, G1 translates it to a sample ŷ1 = G1(x1) in the
other domain Y↓. On the one hand, the discriminator DY1 learns to classify the
generated sample ŷ1 to class 0 and the real image y to class 1. On the other
hand, G1 learns to deceive DY1 by generating more and more realistic samples.
This can be formulated as an adversarial loss:

Ladv(G1,DY1 ,X↓, Y↓) = Ey∼Y ↓[log(DY1(y))]
+ Ex∼X↓[log(1 − DY1(G1(x)))].

(1)

While DY1 tries to maximize Ladv, G1 tries to minimize it. Afterward, we use
F1 to translate ŷ1 back to domain X↓, and constrain F1(G1(x)) to be close to
the input x. This can be formulated as a cycle-consistent loss:

Lcycle(G1, F1,X↓) = Ex∼X↓
∥
∥x − F1(G1(x))

∥
∥
1
. (2)

Similarly, for a sample y1 ∈ Y↓, we use F1 to perform translation, use DX1 to
calculate the adversarial loss, and then use G1 to translate backward to calculate
the cycle-consistent loss. Our full objective function for Stage-1 is a combination
of the adversarial loss and the cycle-consistent loss:

LStage1 = Ladv(G1,DY1 ,X↓, Y ↓) + Ladv(F1,DX1 , Y↓,X↓)
+λ[Lcycle(G1, F1,X↓) + Lcycle(F1, G1, Y↓)], (3)
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where λ denotes the weight of the cycle-consistent loss. We obtain the transla-
tions G1 and F1 by optimizing the following objective function:

G1, F1 = arg min
G1,F1

max
DX1 ,DY1

LStage1, (4)

which encourages these translations to transform the results to another domain
while preserving the intrinsic image content. As a result, the optimized transla-
tions G1 and F1 can perform a basic cross-domain translation in low resolution.

Ladv

Lcycle

DomainX YDomain

F1

F2

G2

G1

DY2

x
x1 ŷ1

ŷ2

y2

y1x̂1
x̂2

x2

Fusion
Block

GT
2

FT
2

Fusion
Block

FF
2

GF
2

Fig. 3. Illustration of an overview of our Stage-2 for learning refining processes on the
top of Stage-1 outputs. G1 and F1 are the translation networks learned in Stage-1.
In the training process, we keep the weights of G1 and F1 fixed. Solid arrow denotes
input-output, and the dashed arrow denotes the loss.

3.3 Stage-2: Refinement

Since it is difficult to learn a complicated translation with the limited ability of a
single stage, the translated output of Stage-1 may seem plausible but still leaves
us much room for improvement. To refine the output of Stage-1, we employ Stage-
2 with a stacked structure built on the top of the trained Stage-1 to complete
the full translation to generate higher resolution results with finer details.

Stage-2 consists of two translation networks G2, F2 and two discriminator
network DX2 , DY2 , as shown in Fig. 3. We only describe the architecture of G2,
since F2 shares the same design (see Fig. 3).

G2 consists of two parts: a newly initialized image translation network GT
2

and an adaptive fusion block GF
2 . Given the output of Stage-1 (ŷ1 = G1(x1)),

we use nearest up-sampling to resize it to match the original resolution. Different
from the image translation network in Stage-1, which only takes x ∈ X as input,
in Stage-2 we use both the current stage’s input x and the previous stage’s
output ŷ1. Specifically, we concatenate ŷ1 and x along the channel dimension,
and utilize GT

2 to obtain the refined result ŷ2 = GT
2 (ŷ1,x).

Besides simply using ŷ2 as the final output, we introduce an adaptive fusion
block GF

2 to learn a dynamic combination of ŷ2 and ŷ1 to fully utilize the entire
two-stage structure. Specifically, the adaptive fusion block learns a pixel-wise
linear combination of the previous results:

GF
2 (ŷ1, ŷ2) = ŷ1 � (1 − αx) + ŷ2 � αx, (5)
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1 − α

⊗ α

1

2

y2⊗ŷ

ŷ

Fig. 4. Illustration of the linear combination in an adaptive fusion block. The fusion
block applies the fusion weight map α to find defects in the previous result ŷ1 and
correct it precisely using ŷ2 to produce a refined output y2.

where � denotes element-wise product and α ∈ (0, 1)H×W represents the fusion
weight map, which is predicted by a convolutional network hx:

αx = hx(x, ŷ1, ŷ2). (6)

Figure 4 shows an example of adaptively combining the outputs from two stages.
Similar to Stage-1, we use a combination of adversarial and cycle-consistent

losses to formulate our objective function of Stage-2:

LStage2 = Ladv(G2 ◦ G1,DY2 ,X, Y ) + Ladv(F2 ◦ F1,DX2 , Y,X)
+λ[Lcycle(G2 ◦ G1, F2 ◦ F1,X) + Lcycle(F2 ◦ F1, G2 ◦ G1, Y )].(7)

Optimizing this objective is similar to solving Eq. 4. The translation networks
G2 and F2 are learned to refine the previous results by correcting defects and
adding details on them.

Finally, we complete our desired translations G and F by combining the
transformations in Stage-1 and Stage-2, which are capable of tackling a complex
image-to-image translation problem under the unsupervised setting.

4 Experiments

The proposed approach is named SCAN or SCAN Stage-N if it has N stages in
the following experiments. We explore several variants of our model to evaluate
the effectiveness of our design in Sect. 4.7. In all experiments, we decompose
the target translation into two stages, except for exploring the ability of the
three-stage architecture in high-resolution tasks in Sect. 4.5.

We used the official released model of CycleGAN [34] and Pix2Pix [7] for
256 × 256 image translation comparisions. For 512 × 512 tasks, we train the
CycleGAN with the official code since there is no available pre-trained model.

4.1 Network Architecture

For the image translation network, we follow the settings of [15,34], adopting
the encoder-decoder architecture from Johnson et al. [8]. The network consists of
two down-sample layers implemented by stride-2 convolution, six residual blocks
and two up-sample layers implemented by sub-pixel convolution [20]. Note that
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different from [34], which used the fractionally strided convolution as the up-
sample block, we use the sub-pixel convolution [20], for avoiding checkerboard
artifacts [19]. The adaptive fusion block is a simple 3-layer convolutional network,
which calculates the fusion weight map α using two Convolution-InstanceNorm-
ReLU blocks followed by a Convolution-Sigmoid block. For the discriminator,
we use the PatchGAN structure introduced in [7].

4.2 Datasets

To demonstrate the capability of our proposed method for tackling the com-
plex image-to-image translation problem under unsupervised settings, we first
conduct experiments on the Cityscapes dataset [2]. We compare with the state-
of-the-art approaches in the Labels ↔ Photo task in 256 × 256 resolution. To
further show the effectiveness of our method to learn complex translations, we
also extended the input size to a challenging 512 × 512 resolution, namely the
high-resolution Cityscapes Labels → Photo task.

Besides the Labels ↔ Photo task, we also select eight image-to-image trans-
lation tasks from [34], including Map ↔ Aerial, Facades ↔ Labels and Horse
↔ Zebra. We compare our method with the CycleGAN [34] in these tasks in
256 × 256 resolution.

4.3 Training Details

Networks in Stage-1 are trained from scratch, while networks in Stage-N are
trained with the {Stage-1, · · · , Stage-(N − 1)} networks fixed. For the GAN
loss, Different from the previous works [7,34], we adopt a gradient penalty term
λgp(||∇D(x)||2 − 1)2 in the discriminator loss to achieve a more stable training
process [12]. For all datasets, the Stage-1 networks are trained in 128 × 128
resolution, the Stage-2 networks are trained in 256 × 256 resolution. For the
three-stage architecture in Sect. 4.5, the Stage-3 networks are trained in 512 ×
512 resolution. We set batch size to 1, λ = 10 and λgp = 10 in all experiments.
All stages are trained with 100 epochs for all datasets. We use Adam [11] to
optimize our networks with an initial learning rate as 0.0002, and decrease it
linearly to zero in the last 50 epochs.

4.4 Evaluation Metrics

FCN Score and Segmentation Score. For the Cityscapes dataset, we adopt
the FCN Score and the Segmentation Score as evaluation metrics from [7] for
the Labels → Photo task and the Photo → Labels task, respectively. The FCN
Score employs an off-the-shelf FCN segmentation network [17] to estimate the
realism of the translated images. The Segmentation Score includes three standard
segmentation metrics, which are the per-pixel accuracy, the per-class accuracy,
and the mean class accuracy, as defined in [17].
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PSNR and SSIM. Besides using the FCN Score and the Segmentation Score,
we also calculate the PSNR and the SSIM [25] for a quantitative evaluation. We
apply the above metrics on the Map ↔ Aerial task and the Facades ↔ Labels
task to measure both the color similarity and the structural similarity between
the translated outputs and the ground truth images.
User Preference. We run user preference tests in the high-resolution
Cityscapes Labels → Photos task and the Horse → Zebra tasks for evaluat-
ing the realism of our generated photos. In the user preference test, each time
a user is presented with a pair of results from our proposed SCAN and the
CycleGAN [34], and asked which one is more realistic. Each pair of the results is
translated from the same image. Images are all shown in randomized order. In
total, 30 images from the Cityscapes test set and 10 images from the Horse2Zebra
test set are used in the user preference tests. As a result, 20 participates make a
total of 600 and 200 preference choices, respectively.

Fig. 5. Comparisons on the Cityscapes dataset of 256 × 256 resolution. The left sub-
figure are Labels → Photo results and the right are Photo → Labels results. In the
Labels → Photo task, our proposed SCAN generates more natural photographs than
CycleGAN; in the Photo → Labels task, SCAN produces an accurate segmentation
map while CycleGAN’s results are blurry and suffer from deformation. SCAN also gen-
erates results that are visually closer to the supervised approach Pix2Pix than results
of CycleGAN. Zoom in for better view.

4.5 Comparisons

Cityscapes Labels ↔ Photo. Table 1 shows the comparison of our proposed
method SCAN and its variants with state-of-the-art methods in the Cityscapes
Labels ↔ Photo tasks. The same unsupervised settings are adopted by all meth-
ods except Pix2Pix, which is trained under a supervised setting.

On the FCN Scores, our proposed SCAN Stage-2 128-256 outperforms the
state-of-the-art approaches considering the pixel accuracy, while being compet-
itive considering the class accuracy and the class IoU. On the Segmentation
Scores, SCAN Stage-2 128-256 outperforms state-of-the-art approaches in all
metrics. Comparing SCAN Stage-1 256 with CycleGAN, our modified network
yields improved results, which, however, still perform inferiorly to SCAN Stage-2
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Table 1. FCN Scores in Labels → Photo task and Segmentation Scores in Photo
→ Labels task on the Cityscapes dataset. The proposed methods are named after
SCAN (Stage-1 resolution)-(Stage-2 resolution). FT means we also fine-tune the Stage-
1 model instead of fixing its weight. FS means directly train Stage-2 from-scratch
without training Stage-1 model.

Method Labels → Photo Photo → Labels

Pixel acc. Class acc. Class IoU Pixel acc. Class acc. Class IoU

CycleGAN [34] 0.52 0.17 0.11 0.58 0.22 0.16

Contrast-GAN [15] 0.58 0.21 0.16 0.61 0.23 0.18

SCAN Stage-1 128 0.46 0.19 0.12 0.71 0.24 0.20

SCAN Stage-1 256 0.57 0.15 0.11 0.63 0.18 0.14

SCAN Stage-2 256-256 0.52 0.15 0.11 0.64 0.18 0.14

SCAN Stage-2 128-256 FS 0.59 0.15 0.10 0.36 0.10 0.05

SCAN Stage-2 128-256 FT 0.61 0.18 0.13 0.62 0.19 0.13

SCAN Stage-2 128-256 0.64 0.20 0.16 0.72 0.25 0.20

Pix2Pix [7] 0.71 0.25 0.18 0.85 0.40 0.32

128-256. Also, we can find that SCAN Stage-2 128-256 achieves a much closer
performance to the supervised approach Pix2Pix [7] than others.

We also compare our SCAN Stage-2 128-256 with different variants of SCAN.
Comparing SCAN Stage-2 128-256 with SCAN Stage-1 approaches, we can find
a substantial improvement on the FCN Scores, which indicates that adding the
Stage-2 refinement helps to improve the realism of the output images. On the
Segmentation Score, comparison of the SCAN Stage-1 128 and SCAN Stage-1
256 shows that learning from low-resolution yields better performance. Com-
parison between the SCAN Stage-2 128-256 and SCAN Stage-1 128 shows that
adding Stage-2 can further improve from the Stage-1 results. To experimentally
prove that the performance gain does not come from merely adding model capac-
ity, we conducted a SCAN Stage-2 256-256 experiments, which perform inferiorly
to the SCAN Stage-2 128-256.

To further analyze various experimental settings, we also conducted our
SCAN Stage-2 128-256 in two additional settings, including leaning two stages
from-scratch and fine-tuning Stage-1. We add supervision signals to both stages
for these two settings. Learning two stages from scratch shows poor perfor-
mance in both tasks, which indicates joint training two stages together does not
guarantee performance gain. The reason for this may lie in directly training a
high-capacity generator is difficult. Also, fine-tuning Stage-1 does not resolve this
problem and has smaller improvement compared with fixing weights of Stage-1.

To examine the effectiveness of the proposed fusion block, we compare it with
several variants: (1) Learned Pixel Weight (LPW), which is our proposed fusion
block; (2) Uniform Weight (UW), in which the two stages are fused with the
same weight at different pixel locations ŷ1(1 − w) + ŷ2w, and during training w
gradually increases from 0 to 1; (3) Learned Uniform Weight (LUW), which is
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similar to UW, but w is a learnable parameter instead; (4) Residual Fusion (RF),
which uses a simple residual fusion ŷ1+ŷ2. The results are illustrated in Table 2.
It can be observed that our proposed LPW fusion yields the best performance
among all alternatives, which indicates that the LPW approach can learn better
fusion of the outputs from two stages than approaches with uniform weights.

Table 2. FCN Scores and Segmentation Scores of several variants of the fusion block
on the Cityscapes dataset.

Method Labels → Photo Photo → Labels

Pixel acc.Class acc.Class IoUPixel acc.Class acc.Class IoU

CycleGAN 0.52 0.17 0.11 0.58 0.22 0.16

SCAN 128-256 LPW0.64 0.20 0.16 0.72 0.25 0.20

SCAN 128-256 UW 0.59 0.19 0.14 0.66 0.22 0.17

SCAN 128-256 LUW0.59 0.18 0.12 0.70 0.24 0.19

SCAN 128-256 RF 0.60 0.19 0.13 0.68 0.23 0.18

In Fig. 5, we visually compare our results with those of the CycleGAN and
the Pix2Pix. In the Labels →Photo task, SCAN generates more realistic and
vivid photos compared to the CycleGAN. Also, the details in our results appear
closer to those of the supervised approach Pix2Pix. In the Photo → Labels task,
while SCAN can generate more accurate semantic layouts that are closer to the
ground truth, the results of the CycleGAN suffer from distortion and blur.

Input CycleGAN SCAN Ground Truth

Fig. 6. Translation results in the Labels → Photo task on the Cityscapes datasets of
512 × 512 resolution. Our proposed SCAN produces realistic images that even look at
a glance like the ground truths. Zoom in for best view.

High-Resolution Cityscapes Labels → Photo. The CycleGAN only con-
siders images in 256 × 256 resolution, and results of training CycleGAN directly
in 512 × 512 resolution are not satisfactory, as shown in Figs. 1 and 6.
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Input CycleGAN SCAN Ground Truth

Labels

Facades

Map

Aerial

Fig. 7. Translation results in the Labels → Facades task and the Aerial → Map task.
Results of our proposed SCAN shows finer details in both tasks comparing with Cycle-
GAN’s results.

By iteratively decomposing the Stage-2 into a Stage-2 and a Stage-3, we
obtain a three-stage SCAN. During the translation process, the resolution of the
output is growing from 128 × 128 to 256 × 256 and to 512 × 512, as shown in
Fig. 1. Figure 6 shows the comparison between our SCAN and the CycleGAN in
the high-resolution Cityscapes Labels → Photo task. We can clearly see that our
proposed SCAN generates more realistic photos compared with the results of
CycleGAN, and SCAN’s outputs are visually closer to the ground truth images.
The first row shows that our results contain realistic trees with plenty of details,
while the CycleGAN only generates repeated patterns. For the second row, we
can observe that the CycleGAN tends to simply ignore the cars by filling it with
a plain grey color, while cars in our results have more details.

Also, we run a user preference study comparing SCAN with the CycleGAN
with the setting described in Sect. 4.4. As a result, 74.9% of the queries prefer our
SCAN’s results, 10.9% prefer the CycleGAN’s results, and 14.9% suggest that
the two methods are equal. This result shows that our SCAN can generate overall
more realistic translation results against the CycleGAN in the high-resolution
translation task.

Table 3. PSNR and SSIM values in Map ↔ Aerial and Facades ↔ Labels tasks.

Method Aerial → Map Map → Aerial Facades → Labels Labels → Facades

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CycleGAN [34] 21.59 0.50 12.67 0.06 6.68 0.08 7.61 0.11

SCAN 25.15 0.67 14.93 0.23 8.28 0.29 10.67 0.17
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Zebra

Horse

Horse

Zebra

Input CycleGAN SCANCycleGAN+idt Input CycleGAN SCANCycleGAN+idt

Fig. 8. Translation results in the Horse ↔ Zebra tasks. The CycleGAN changes both
desired objects and backgrounds. Adding identity loss can fix this problem, but tends
to be blurry compared with those from SCAN, which without using the identity loss.

Map ↔ Aerial and Facades ↔ Labels. Table 3 reports the performances
regarding the PSNR/SSIM metrics. We can see that our methods outperform
the CycleGAN in both metrics, which indicates that our translation results are
more similar to ground truth in terms of colors and structures.

Figure 7 shows some of the sample results in the Aerial → Map task and the
Labels → Facades task. We can observe that our results contain finer details
while the CycleGAN results tend to be blurry.

Horse ↔ Zebra. Figure 8 compares the results of SCAN against those of the
CycleGAN in the Horse ↔ Zebra task. We can observe that both SCAN and
the CycleGAN successfully translate the input images to the other domain. As
the Fig. 8 shows, the CycleGAN changes not only the desired objects in input
images but also the backgrounds of the images. Adding the identity loss [34] can
fix this problem, but the results still tend to be blurry compared with those from
our proposed SCAN. A user preference study on Horse → Zebra translation is
performed with the setting described in Sect. 4.4. As a result, 76.3% of the sub-
jects prefer our SCAN’s results against CycleGAN’s, while 68.9% prefer SCAN’s
results against CycleGAN+idt’s.

4.6 Visualization of Fusion Weight Distributions

To illustrate the role of the adaptive fusion block, we visualize the three average
distributions of fusion weights (αx in Eq. 5) over 1000 samples from Cityscapes
dataset in epoch 1, 10, and 100, as shown in Fig. 9. We observed that the dis-
tribution of the fusion weights gradually shifts from left to right. It indicates a
consistent increase of the weight values in the fusion maps, which implies more
and more details of the second stage are bought to the final output.

4.7 Ablation Study

In Sect. 4.5, we report the evaluation results of SCAN and its variants, here we
further explore SCAN by removing modules from it:

– SCAN w/o Skip Connection: remove the skip connection from the input to
the translation network in the Stage-2 model, denoted by SCAN w/o Skip.

– SCAN w/o Adaptive Fusion Block: remove the final adaptive fusion block in
the Stage-2 model, denoted by SCAN w/o Fusion.
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Fig. 9. Distributions of fusion weights over all pixels in different epochs. Each distri-
bution is an average result over 1000 sample images from Cityscapes dataset. Dashed
arrows indicate the average weights of fusion maps.

– SCAN w/o Skip Connection and Adaptive Fusion Block: remove both the
skip connection from the input to the translation network and the adaptive
fusion block in the Stage-2 model, denoted by SCAN w/o Skip, Fusion.

Table 4. FCN Scores in the Cityscapes dataset for ablation study, evaluated on the
Labels → Photo task with different variants of the proposed SCAN.

Method Pixel acc. Class acc. Class IoU

SCAN Stage-1 128 0.457 0.188 0.124

SCAN Stage-2 128-256 w/o Skip,Fusion 0.513 0.186 0.125

SCAN Stage-2 128-256 w/o Skip 0.593 0.184 0.136

SCAN Stage-2 128-256 w/o Fusion 0.613 0.194 0.137

SCAN Stage-2 128-256 0.637 0.201 0.157

Table 4 shows the results of the ablation study, in which we can observe that
removing the adaptive fusion block as well as removing the skip connection both
downgrade the performance. With both of the components removed, the stacked
networks obtain marginal performance gain compared with Stage-1. Note that
the fusion block only consists of three convolution layers, which have a relatively
small size compared to the whole network. Refer to Table 1, in SCAN Stage-
2 256-256 experiment, we double the network parameters compared to SCAN
Stage-1 256, resulting in no improvement in the Label → Photo task. Thus, the
improvement of the fusion block does not simply come from the added capacity.

Therefore, we can conclude that using our proposed SCAN structure, which
consists of the skip connection and the adaptive fusion block, is critical for
improving the overall translation performance.

5 Conclusions

In this paper, we proposed a novel approach to tackle the unsupervised image-
to-image translation problem using a stacked network structure with cycle-
consistency, namely SCAN. The proposed SCAN decomposes a complex image
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translation process into a coarse translation step and multiple refining steps, and
then applies the cycle-consistency to learn the target translation from unpaired
image data. Extensive experiments on multiple datasets demonstrate that our
proposed SCAN outperforms the existing methods in quantitative metrics and
generates more visually pleasant translation results with finer details compared
to existing approaches.

Acknowledgement. This work was supported by two projects from NSFC
(#61622204 and #61572134) and two projects from STCSM (#16JC1420401 and
#16QA1400500).
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