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Abstract. Explanations of the decisions made by a deep neural network
are important for human end-users to be able to understand and diag-
nose the trustworthiness of the system. Current neural networks used for
visual recognition are generally used as black boxes that do not provide
any human interpretable justification for a prediction. In this work we
propose a new framework called Interpretable Basis Decomposition for
providing visual explanations for classification networks. By decomposing
the neural activations of the input image into semantically interpretable
components pre-trained from a large concept corpus, the proposed frame-
work is able to disentangle the evidence encoded in the activation feature
vector, and quantify the contribution of each piece of evidence to the final
prediction. We apply our framework for providing explanations to several
popular networks for visual recognition, and show it is able to explain
the predictions given by the networks in a human-interpretable way.
The human interpretability of the visual explanations provided by our
framework and other recent explanation methods is evaluated through
Amazon Mechanical Turk, showing that our framework generates more
faithful and interpretable explanations (The code and data are available
at https://github.com/CSAILVision/IBD).

1 Introduction

As deep networks continue to prove their capabilities on an expanding set of
applications in visual recognition such as object classification [19], scene recog-
nition [29], image captioning [24], and visual question answering [1], it is increas-
ingly important not only for a network to make accurate predictions, but also
to be able to explain why the network makes each prediction.

A good explanation of a deep network should play two roles: first, it should
be a faithful representation of the operation of the network; and second, it should
be simple and interpretable enough for a human to understand. There are two
approaches for creating human-understandable explanations for the internals of
a deep network. One is to identify the evidence that a network uses to make
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a specific decision by creating a heatmap that indicates which portions of an
input are most salient to the decision [2,20,28]. Such heatmaps can be created
using a variety of techniques and can be applied to identify the most salient
parts of images and training sets. A second approach is to identify the purpose
of the internal representations of a network by identifying the concepts that each
part of the network detects [3,7,27]. Such concept dictionaries can be created by
matching network units to a broad concept data set, by generating or sampling
example inputs that reveal the sensitivity of a unit, or by training parts of the
network to solve interpretable subproblems.

In this paper we describe a framework called Interpretable Basis Decomposi-
tion (IBD), for bringing these two approaches together to generate explanations
for visual recognition. The framework is able to decompose the evidence for
a prediction for image classification into semantically interpretable components,
each with an identified purpose, a heatmap, and a ranked contribution, as shown
in Fig. 1. In addition to showing where a network looks, we show which concepts
a network is responding to at each part of the input image.

Prediction: topiary garden

hedge (20.99%)

=

palm (7.57%) tail (6.60%)

brush (5.72%)

residual (45.97%)

+ +

+ +

CAM

+

+ + +

sculpture (5.17%) sheep (4.53%)

Fig. 1. Interpretable Basis Decomposition provides an explanation for a prediction by
decomposing the decision into the components of interpretable basis. Top contributing
components are shown with a label, contribution, and heatmap for each term.

Our framework is based on the insight that good explanations depend on
context. For example, the concepts to explain what makes up a ‘living room’ are
different from the concepts to explain an ‘airport’. A overstuffed pillow is not
an airliner, nor vice-versa. We formalize the idea of a salient set of concepts as a
choice of a interpretable basis in the feature space, and describe how to construct
a context-specific concept basis as the solution to a least-squares problem.

Each explanation we describe is both a visualization and a vector decom-
position of a layer’s internal state into interpretable components. As a vector
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decomposition, each explanation is faithful to the network, quantifying the con-
tribution of each component and also quantifying any uninterpreted residual.
The framework also provides explanations that are simple enough for a person
to understand. We conduct human evaluations to show that the explanations
give people accurate insights about the accuracy of a network.

We summarize our contributions as follows: (1) A new framework called Inter-
pretable Basis Decomposition to provide semantic explanations with labels and
heatmaps for neural decision making. (2) Application of the proposed framework
on a wide range of network architectures, showing its general applicability. (3)
Human evaluations to demonstrate that the explanations are understandable to
people, outperforming previous heatmap and unit-based explanation methods.

1.1 Related Work

Visualizing Neural Networks. A number of techniques have been developed
to visualize the internal representations of convolutional neural networks. The
behavior of a CNN can be visualized by sampling image patches that maximize
activation of hidden units [25], and by backpropagation to identify or generate
salient image features [16,21]. An image generation network can be trained to
invert the deep features by synthesizing the input images [5]. The semantics of
visualized units can be annotated manually [27] or automatically [3] by measur-
ing alignment between unit activations and a predefined dictionary of concepts.

Explaining Neural Network Decisions. Explanations of individual network
decisions have been explored by generating informative heatmaps such as CAM
[28] and grad-CAM [20], or through back-propagation conditioned on the final
prediction [21] and layer-wise relevance propagation [2]. The attribution of each
channel to the final prediction has been studied [18]. Captioning methods have
been used to generate sentence explanations for a fine-grained classification task
[9]. The limitation of the heatmap-based explanation methods is that the gen-
erated heatmaps are qualitative and not informative enough to tell which con-
cepts have been detected, while the sentence-based explanation methods require
an ad-hoc corpus of sentence description in order to train the captioning mod-
els. Our work is built upon previous work interpreting the semantics of units
[3] and on heatmaps conditioned on the final prediction [20,28]. Rather than
using the semantics of activated units to build explanations as in [26], we learn
a set of interpretable vectors in the feature space and decompose the represen-
tation in terms of these vectors. We will show that the proposed method is able
to generate faithful explanations which are more informative than the previous
heatmap-based and unit-activation methods.

Component Analysis. Understanding an input signal by decomposing it into
components is an old idea. Principal Component Analysis [12] and Independent
Component Analysis [11] have been widely used to disentangle a low-dimensional
basis from high-dimensional data. Other decomposition methods such as Bilinear
models [23] and Isomap [22] are also used to discover meaningful subspaces and
structure in the data. Our work is inspired by previous work on component
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decomposition. Rather than learning the components unsupervised, we learn
the set of components from a fully annotated dataset so that we have a ground-
truth label for each component. After projecting, the labeled components provide
interpretations, forming human-understandable explanations.

Concurrent work [14] proposes examining the behavior of representations in
the direction of a set of semantic concept vectors learned from a pre-defined
dataset. Those Concept Activation Vectors play a similar role as our Inter-
pretable Basis Vectors, but while that work focuses on using a single feature
at a time for retrieval and scoring of samples, our work uses basis sets of vectors
to create explanations and decomposed heatmaps for decisions.

2 Framework for Interpretable Basis Decomposition

The goal of Interpretable Basis Decomposition is to decode and explain every bit
of information from the activation feature vector in a neural network’s penul-
timate layer. Previous work has shown that it is possible to roughly invert a
feature layer to recover an approximation to the original input image using a
trained feature inversion network [5]. Instead of recovering the input image, our
goal is to decode the meaningful nameable components from the feature vector
so that we can build an explanation of the final prediction.

We will describe how we decompose feature vectors in three steps. We begin
by describing a way to decompose an output class k into a set of interpretable
components c. In our decomposition, both the class and the concepts are repre-
sented as vectors wk and qc that correspond to linear classifiers in the feature
space, and the decomposition is expressed as an optimal choice of basis for wk.
The result of this step is a set of elementary concepts relevant to each class.

Next, we describe how to derive vectors qc corresponding to a broad dictio-
nary of elementary interpretable concepts c. Each qc is learned by training a
linear segmentation model to locate the concept within the feature space.

Finally, we describe how to create explanations of instance decisions. This
is done by projecting the feature vector into the learned interpretable basis and
measuring the contribution of each interpretable component. An explanation
consists of a list of concepts that contribute most to the final score, together
with a heatmap for each concept that shows where the contributions arise for
the final prediction. The framework is illustrated in Fig. 2.

2.1 Defining an Interpretable Basis

Explaining a layer can be done by choosing an interpretable basis for the layer’s
input representation. To see why, set f(x) ∈ R

K as a deep net with K output
dimensions, considered without the final softmax. We are interested in explaining
properties of x which determine the score fk(x) for a particular class k ≤ K: for
example, we may wish to know if a concept c such as crowds of people tends to
cause the input to be classified as an output class k such as airports.
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Fig. 2. Illustration of Interpretable Basis Decomposition. The class weight vector wk

is decomposed to a set of interpretable basis vectors
∑

sciqci , each corresponding
to a labeled concept ci as well as a projection qTciA that reveals a heatmap of the
activations. An explanation of the prediction k consists of the concept labels ci and the
corresponding heatmaps for the most significant terms in the decomposition of wT

k a.
For this particular example, wall, sofa, table (and some others are not shown) are labels
of the top contributing basis elements that make up the prediction of living room.

We can express our question in terms of an intermediate representation. Write
f(x) = h(g(x)) where h(a) is the top of the network and a = g(x) ∈ R

D is a
point in the representation space of the layer of interest. Then to investigate the
properties of x that determine fk(x), we can ask about the properties of the
intermediate representation a = g(x) that determine hk(a).

Let us focus on the simple case where a = g(x) is the output of the second-
to-last layer and h(a) is a simple linear operation done by the last layer. Then hk

is a linear function that scores a according to the angle between a and wk ∈ RD:

h(a) ≡ W (h)a + b(h) (1)

hk(a) = wT
k a + bk (2)

Not all directions in the representation space RD are equally interpretable. Sup-
pose we have a set of directions qci ∈ R

D that each correspond to elementary
interpretable concepts ci that are relevant to class k but easier to understand
than k itself. Then we can explain wk by decomposing it into a weighted sum of
interpretable components qci as follows.

wk ≈ sc1qc1 + · · · + scnqcn (3)

Unless wk lies exactly in the space spanned by the {qci}, there will be some
residual error in the decomposition. Gathering the qci into columns of a matrix



Interpretable Basis Decomposition for Visual Explanation 127

C, we can recognize that minimizing this error is a familiar least-squares problem:

Find sci to minimize ||r|| where wk = sc1qc1 + · · · + scnqcn + r (4)
= Cs + r (5)

The optimal s is given by s = C+wk where C+ is the pseudoinverse of C.
When interpreting the decomposition of wk, negations of concepts are not as

understandable as positive concepts, so we seek decompositions for which each
coefficient sci > 0 is positive. Furthermore, we seek decompositions with a small
number of concepts.

We build the basis qci in a greedy fashion, as follows. Suppose we have already
chosen a set of columns C = [qc1 | · · · |qcn ], and the residual error is in (4) is
ε = ||wk −Cs||. Then we can reduce the residual by adding an (n+1)th concept
to reduce error. The best such concept is the one that results in the minimum
residual while keeping the coefficients positive:

argmin
c∈C

min
s,si>0

||wk − [C|qc]s|| (6)

where [C|qc] indicates the matrix that adds the vector qc for the candidate
concept c to the columns of C.

2.2 Learning the Interpretable Basis from Annotations

For explaining an image classification task, we build the universe of candidate
concepts C using the Broden dataset [3]. Broden includes pixel-level segmenta-
tions for a broad range of both high-level visual concepts such as objects and
parts, as well as low-level concepts such as colors and materials. For each candi-
date concept c in Broden, we compute an embedding qc ∈ C ⊂ R

D as follows.
Since Broden provides pixel-level segmentations of every concept, we train

a logistic binary classifier hc(a) = sigmoid(wT
c a + bc) to detect the presence of

concept c. Training is done on a mix of images balancing c present or absent at the
center, and hard negative mining is used to select informative negative examples
during the training progress; the training procedure is detailed in Sect. 3.1. The
learned wc captures the features relevant to class c, but it is scaled in a way that
is sensitive to the training conditions for c. To eliminate this arbitrary scaling,
we standardize qc as the normalized vector qc = (wc − wc)/||wc − wc||.

2.3 Explaining a Prediction via Interpretable Basis Decomposition

The decomposition of any class weight vector wk into interpretable components
Ck ⊂ C ⊂ R

D allows us to decompose the scoring of activations a into compo-
nents of Ck in exactly the same way as we decompose wk itself. This decompo-
sition will provide an interpretable explanation of the classification.

Furthermore, if we include define a larger basis C∗
k ⊃ Ck that adds the

residual vector r = wk − Cks, we can say something stronger: projecting a into
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the basis of C∗
k captures the entire linear relationship described by the network’s

final layer score hk(a) for class k.

hk(a) = wT
k a + bk (7)

= (C∗
ks)Ta + bk (8)

= s1q
T
c1a + · · · + siq

T
cia

︸ ︷︷ ︸

contribution of concept ci

+ · · · + snqTcna + rTa
︸︷︷︸

residual contribution

+bk (9)

Thus we can decompose the score into contributions from each concept, and
we can rank each concept according to its contribution. When the activation
a = pool(A) is derived by global average pooling of a convolutional layer A, we
can commute the dot product inside the pooling operation to obtain a picture
that localizes the contribution of concept ci.

siq
T
cia = siq

T
cipool(A) (10)

= pool(si qTciA
︸︷︷︸

heatmap for concept ci

) (11)

The explanation we seek consists of the list of concepts ci with the largest
contributions to hk(a), along with the heatmaps qTciA for each concept. The IBD
heatmaps qTciA are similar to the CAM heatmap wT

k A and can be used to recon-
struct the CAM heatmap if they are all summed. However, instead of summa-
rizing the locations contributing to a classification all at once, the interpretable
basis decomposition separates the explanation into component heatmaps, each
corresponding to a single concept that contributes to the decision.

Decomposing Gradients for GradCAM: Grad-CAM is an extension of
CAM [28] to generate heatmap for networks with more than one final non-
convolutional layers. Starting with the final convolutional featuremap a = g(x),
the Grad-CAM heatmap is formed by multiplying this activation by the pooled
gradient of the higher layers h(a) with respect class k.

wk(a) =
1
Z

∑

i

∑

j

∇ahk(a) (12)

Here the vector wk(a) plays the same role as the constant vector wk in CAM:
to create an interpretable basis decomposition, wk(a) can be decomposed as
described in Eqs. 4–6 to create a componentwise decomposition of the Grad-
CAM heatmap. Since wk(a) is a function of the input, each input will have its
own interpretable basis.

3 Experiments

In this section, we describe how we learn an interpretable basis from an annotated
dataset. Then we will show that the concepts of the interpretable basis that
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are associated with each prediction class of the networks sheds lights on the
abstractions learned by each network. After that we use the interpretable basis
decomposition to build explanations for the predictions given by the popular
network architectures: AlexNet [15], VGG [13], ResNet (18 and 50 layers) [8],
each trained scratch on ImageNet [4] and Places365 [29]. Finally we evaluate the
fidelity of the explanations given by our method through Amazon Mechanical
Turk and compare with other visual explanation generation methods.

3.1 Interpretable Basis Learned from Broden

We derive an interpretable basis from the fully annotated image dataset Broden
[26]. Because our focus is to explain high-level features of the neural networks in
terms of human interpretable concepts, we take a subset of the Broden dataset
consisting of object and part concepts. The annotations of the objects and parts
in Broden dataset originally come from the datasets ADE20K [30], Pascal Con-
text [17], and Pascal Parts [6]. We filter out the concepts with fewer than 10
image samples, resulting to 660 concepts from 30K images used for training and
testing.

For each concept in the Broden dataset, we learn a logistic binary classi-
fier. The input of the classifier is a feature vector a(i,j) ∈ R

D in activation
A ∈ R

D×H×W , and the output is the prediction of the probability of the con-
cept appearing at (i, j) ∈ (range(H), range(W )). Our ground truth labels for
the segmentations are obtained by downsampling the original concept masks to
H×W size using nearest neighbor. Note that Broden provides multi-labeled seg-
mentations, and there are often several concepts present in each downsampled
pixel. Therefore it is appropriate for each concept classifier to be trained inde-
pendent of each other. Because the number of positive samples and the number
of negative samples for some concepts are highly unbalanced, we resample the
training set to keep the ratio of positive and negative examples of each class
fixed at 1:20 and use five rounds of hard negative mining.

We evaluate the accuracy of the deep features learned from several networks
as shown in Table 1. All models are evaluated with mAP on a fixed validation
set of Broden dataset.

Table 1. The mAP of the learned concept classifiers for the object and part concepts
in the Broden dataset. The features used are the activations at the final convolutional
layer of the network trained from scratch on Places365.

Model AlexNet VGG16 Resnet18 Resnet50

mAP 0.625 0.691 0.784 0.804
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3.2 Explaining Classification Decision Boundaries

Interpretable Basis Decomposition assigns a basis of interpretable concepts for
each output class. This basis can be seen as a set of compositional rules between
the output classes and the elementary concepts in the Broden datasets. Different
network learns a different set of such semantic rules for a prediction, thus by
directly examining the interpretable basis decomposition of a network we can
gain insight about the decision boundaries learned by each network for each
class.

(b) Comparing di erent concepts that di erent networks 
(Resnet18, Resnet50, AlexNet-CAM, VGG16-CAM) 

utilize to make predictions (places365 label: dining hall, shoe shop). 

(a) Comparing di erent concepts that 
Resnet18 utilizes to make

 di erent predictions. 

Fig. 3. Visualizing how different networks compose the final prediction classes using
the Broden concepts. The left labels in each graph show the classes of Places365 and
the right labels are the concepts of Broden. The thickness of each link between a class
and a concept indicates the magnitude of the coefficient sci .

Specifically, our method decomposes each weight vector wk of class k in the
last layer1 as the sum wk = sc1qc1 + · · · + scnqcn + r, where qci represents the
embedding vector for concept ci and sci is the coefficient indicating its contribu-
tion to the overall class k. This decomposition indicates a relationship between
the output class k and the concept ci described by the coefficient sci . In Fig. 3,
we visualize a subset of Places365 classes k and how they are decomposed into
Broden concepts ci by different networks. The left column of the figure is the
list of Places365 classes to be decomposed. The right column shows the related
concepts from the Broden dataset. The thicknesses of the arcs between classes
and concepts are drawn to show the magnitude of the coefficients sci . The larger
sci , the more important concept ci is to the prediction of class k.

1 For this experiment, we replace the fc layers in AlexNet and VGG16 with a GAP
layer and retrain them, similar to [28].
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In Fig. 3(a), it can be seen how a single network composes concepts to con-
stitute a variety of different prediction classes. Note that all the classes shown
in (a) share the same concept “cliff” but differ in the importance given to this
concept, which can be seen as different sci . Figure 3(b), shows the different com-
positional rules that different networks use to make the same prediction for a
class. For example, in the prediction class “shoe shop”, all networks agree that
“shoe” is a key element that contributes to this prediction, while they disagree
on other elements. VGG16 treats “boot” and “price tag” as important indica-
tors of a “shoe shop,” while and AlexNet decomposes “shoe shop” into different
concepts such as “glass” and “check-in-desk.”

3.3 Explaining Image Predictions

Given the interpretable basis decomposition wk = sc1qc1 + · · · + scnqcn + r, the
instance prediction result wT

k a is decomposed as wT
k a = sc1q

T
c1a+ · · ·+scnqTcna+

rTa where each term sciq
T
cia can be regarded as the contribution of concept i to

the final prediction. We rank the contribution scores and use the concept labels
of the top contributed basis as an explanation for the prediction. Each term also
corresponds to a contribution to the CAM or Grad-CAM salience heatmap.

Figure 4 shows qualitative results of visual explanations done by our method.
For each sample, we show the input image, its prediction given by the net-
work, the heatmaps generated by CAM [28] for Resnet18 and Resnet18, and
the heatmaps generated by Grad-CAM heatmap [20] for AlexNet and VGG166,
and the top 3 contributing interpretable basis components with their labels and
numerical contribution.

In Fig. 4(a), we select three examples from Places365 in which VGG16 and
ResNet18 make the same correct predictions. In two of the examples, the expla-
nations provide evidence that VGG16 may be right for the wrong reasons in
some cases: it matches the airplane concept to contribute to the crosswalk pre-
diction, and it matches the sofa concept to contribute to its market prediction.
In contrast, ResNet18 appears to be sensitive to more relevant concepts.

In Fig. 4(b), we show how our method can provide insight on an inconsistent
prediction. ResNet18 classifies the image in last row as an art school because it
sees features described as hand and paper and drawing, while VGG16 classifies
the image as a cafeteria image because VGG16 it is sensitive to table and chair
and map features. Both networks are incorrect because the table is covered with
playing cards, not drawings or maps, and the correct label is recreation room.

In Fig. 4(c), we show the variations generated by different models for the
same sample.

3.4 Human Evaluation of the Visual Explanations

To measure whether explanations provided by our method are reasonable and
convincing to humans, we ask AMT raters to compare the quality of two dif-
ferent explanations for a prediction. We create explanations of decisions made
by four different models (Resnet50, Resnet18, VGG16, and AlexNet, trained on
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Fig. 4. Explaining specific predictions. The first image pair in each group contains orig-
inal image (left) and single heatmap (right), with the predicted label and normalized
prediction score in parentheses. Single heatmaps are CAM for ResNet and Grad-CAM
for Alexnet and VGG. This is followed by three heatmaps corresponding to the three
most significant terms in the interpretable basis decomposition for the prediction. The
percentage contribution of each component to the score is shown. (a) Examples where
two networks make the same prediction. (b) Explanations where two networks make
different predictions. (c) Comparisons of different architectures.

Places365) using different explanation methods (Interpretable Basis Decompo-
sition, Network Dissection, CAM and Grad-CAM).

The evaluation interface is shown in Fig. 5. In each comparison task, raters
are shown two scene classification predictions with identical outcomes but with
different explanations. One explanation is identified as Robot A and the other
as Robot B, and raters are asked to decide which robot is more reasonable on a
five-point Likert scale. Written comments about the difference are also collected.
In the interface, heatmaps are represented as simple masks that highlight the
top 20% of pixels in the heatmap; explanations are limited to four heatmaps;
and each heatmap can be labeled with a named concept.
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Fig. 5. Interface for human evaluations. Two different explanations of the same predic-
tion are presented, and human raters are asked to evaluate which is more reasonable.

Baseline CAM, Grad-CAM, and Network Dissection Explanations.
We compare our method to several simple baseline explanations. The first base-
lines are CAM [28] and Grad-CAM [20], which consist of a single salience
heatmap for the image, showing the image regions that most contributed to the
classification. Using the notation of Sect. 2.1, the CAM/Grad-CAM heatmap is
given by weighting the pixels of the penultimate feature layer A according to the
classification vector wk, or to the pooled gradient wk(A):

CAMk(A) ≡ wT
k A Grad-CAMk(A) ≡ wk(A)TA (13)

The second baseline is a simple unit-wise decomposition of the heatmap as
labeled by Network Dissection. In this baseline method, every heatmap cor-
responds to a single channel of the featuremap A that has an interpretation
as given by Network Dissection [26]. This baseline explanation ranks channels
according to the components i that contribute most to wT

k a =
∑

i wkiai. Using
the notation of Sect. 2.1, this corresponds to choosing a fixed basis C where each
concept vector is the unit vector in the ith dimension qci = ei, labeled according
to Network Dissection. Heatmaps are given by:

NetDissectk,i(A) ≡ eTi A, ranked by largestwkiai (14)

CAM and the Network Dissection explanations can be thought of as extremal
cases of Interpretable Basis Decomposition: CAM chooses no change in basis
and visualizes the contributions from the activations directly; while Network
Dissection always chooses the same unit-wise basis.

Comparing Explanation Methods Directly. In the first experiment, we
compare explanations generated by our method head-to-head with explanations
generated by Network Dissection [26] and CAM [28] and Grad-CAM [20]. In this
experiment, both Robot A and Robot B are the same model making the same
decision, but the decision is explained in two different ways. For each network
and pair of explanation methods, 200 evaluations of pairs of explanations are
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done by at least 40 different AMT workers. Figure 8 summarizes the six pairwise
comparisons. Across all tested network architectures, raters find our method
more reasonable, on average, than then explanations created by CAM, Grad-
CAM, and Network Dissection.

Representative samples with comments from the evaluation are shown in
Fig. 6. Raters have paid attention to the quality and relevance of the explanatory
regions as well as the quality and relevance of the named concepts. When compar-
ing the single-image explanations of CAM and Grad-CAM with our multiple-
image explanations, some raters express a preference for shorter explanations
and others prefer the longer ones. Since is generally assumed that humans have
a strong bias towards simpler explanations [10], it is interesting to find that, on
average, human raters prefer our longer explanations. The second experiment,
described next, controls for this bias by evaluating only comparisons where raters
see the same type of explanation for both Robot A and Robot B.

A: Resnet-50 explained with NetDissect

B: Resnet-50 explained with our method

Worker 1: B is clearly 
more reasonable because 
“Explains more items that 
are usually in a locker 
room”
Worker 2: B is clearly 
more reasonable because     
“Robot A has features that 
are not attributes of a 
locker room”

A: Resnet-50 with CAM

B: Resnet-50 with our method

Worker 1: B is slightly 
less reasonable because 
“A is simpler and slightly 
more accurate”
Worker 2: B is clearly 
more reasonable because 
“Robot B provides more 
pictures and details than 
Robot A”

Fig. 6. Representative examples of human feedback in head-to-head comparisons of
methods. For each image, one comparison is done. At left, explanations using Net
Dissection and our method are compared on same ResNet50 decision. At right, expla-
nations using CAM and our method are compared on another ResNet50 decision.

Comparing Evaluations of Model Trust. The second experiment evaluates
the ability of users to evaluate trustworthiness of a model based on only a single
pair of explanations. The ordinary way to evaluate the generalization ability of
a model is to test its accuracy on a holdout set of many inputs. This experiment
tests whether a human can compare two models based on a single comparison
of explanations of identical decisions made by the models on one input image.

In this experiment, as shown in Fig. 7, explanations for both Robot A and
Robot B are created using the same explanation method (either our method or
CAM), but the underlying networks are different. One is always Resnet50, and
the other is either AlexNet, VGG16, Resnet18, or a mirrored version of Resnet50
(resnet50∗) where all the convolutions are horizontally flipped. Only explanations
where both compared networks make the same decision are evaluated: as can be
seen in the feedback, our explanation method allow raters to discern a quality
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A: Resnet-18 explained with our method

B: Resnet-50 explained with our method

Worker 1: B is clearly 
more reasonable because 
“Both have accurately 
identified ‘stove’, but B is 
much closer on identifying 
‘door’ objects and 
correctly saw ‘work 
surface’ while the rest of 
A’s are questionable”
Worker 2: Equally 
reasonable because 
“They both show equal 
proof”

A: Resnet-18 with CAM

B: Resnet-50 with CAM

Worker 1: B is clearly less 
reasonable because  
“Search area [of A] is 
more focused on the 
major factors of a Galley”
Worker 2: Equally 
reasonable because      
“Same result via the same 
focus”

Fig. 7. Representative examples of human feedback in trust comparison. For each
image, two independent comparisons are done. At left, a decision of ResNet50 and
ResNet18 are compared using our method of explanation. At right, the same pair of
decisions is compared using a CAM explanation.

Fig. 8. Comparing different explana-
tion methods side-by-side. Each bar
keeps the network the same and com-
pares our explanations to another
method. Blue and green indicate rat-
ings of explanations of our method that
are clearly or slightly more reasonable,
and yellow and orange indicate rat-
ings for where our method is slightly
or clearly less reasonable than a differ-
ent explanation method. (Color figure
online)

Fig. 9. Comparing ability of users to
evaluate trust using different expla-
nation methods. Each bar keeps the
explanation method the same and com-
pares ResNet50 to another model.
Blue and green indicate evaluations
where ResNet50 explanations are rated
clearly and slightly more reasonable,
and yellow and orange indicate expla-
nations where ResNet50 is slightly and
clearly less reasonable. (Color figure
online)

difference between deeper and shallower methods, while the single-image CAM
heatmap makes the two networks seem less different.

Figure 9 summarizes results across several different network architectures.
With our explanation method, raters can identify that Resnet50 is more trust-
worthy than Alexnet, VGG16 and Resnet18; the performance is similar to or
marginally better than Grad-CAM, and it outperforms CAM. Comparisons of
two Resnet50 with each other are evaluated as mostly equivalent, as expected,
under both methods. It is interesting to see that it is possible to discern the dif-
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ference between shallower and deeper networks despite a very narrow difference
in validation accuracy between the models, even after observing only a single
case on which two different models perform identical predictions.

4 Discussion and Conclusion

The method has several limitations: first, it can only identify concepts in the
dictionary used. This limitation can be quantified by examining the magnitude
of the residual. For scene classification on ResNet50, explanations derived from
our dataset of 660 concepts have a mean residual of 65.9%, suggesting most of
the behavior of the network remains orthogonal to the explained concepts. A
second limitation is that the residual is not guaranteed to approach zero even if
the concept dictionary were vast: decisions may depend on visual features that
do not correspond to any natural human concepts. New methods may be needed
to characterize what those features might be.

We have proposed a new framework called Interpretable Basis Decomposition
for providing visual explanations for the classification networks. The framework
is able to disentangle the evidence encoded in the activation feature vector and
quantify the contribution of each part of the evidence to the final prediction.
Through crowdsourced evaluation, we have verified that the explanations are
reasonable and helpful for evaluating model quality, showing improvements over
previous visual explanation methods.
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