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Abstract. The large volume of video content and high viewing fre-
quency demand automatic video summarization algorithms, of which a
key property is the capability of modeling diversity. If videos are lengthy
like hours-long egocentric videos, it is necessary to track the temporal
structures of the videos and enforce local diversity. The local diversity
refers to that the shots selected from a short time duration are diverse
but visually similar shots are allowed to co-exist in the summary if they
appear far apart in the video. In this paper, we propose a novel prob-
abilistic model, built upon SeqDPP, to dynamically control the time
span of a video segment upon which the local diversity is imposed. In
particular, we enable SeqDPP to learn to automatically infer how local
the local diversity is supposed to be from the input video. The resulting
model is extremely involved to train by the hallmark maximum likeli-
hood estimation (MLE), which further suffers from the exposure bias
and non-differentiable evaluation metrics. To tackle these problems, we
instead devise a reinforcement learning algorithm for training the pro-
posed model. Extensive experiments verify the advantages of our model
and the new learning algorithm over MLE-based methods.

1 Introduction

The Internet age has come to such a new phase that high-definition videos
are both ubiquitous and dominant in the IP traffic featured by the boom of
video sharing websites, online movies and television shows, and the emerging
live video streaming services. Some statistics indicate that about 300 h of video
are uploaded to YouTube per minute and more than 500 million hours of video
are watched on YouTube daily. Such a large volume of video content and high
viewing frequency demand automatic video summarization algorithms. By dis-
tilling important events from the original video and condensing them to a short
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Fig. 1. Dynamic Sequential DPP (DySeqDPP) for video summarization

video clip (or a story board, text description, etc.), video summarization has a
great potential in many real-world applications.

Video summarization has been one of the basic research areas in the fields
of computer vision and multimedia for decades [2]. A variety of techniques have
been proposed for different scenarios of video summarization. In general, a good
video summary is supposed to describe main events [3–5] happened in the video
and meanwhile remove the video shots that are redundant [6,7] and/or unim-
portant [8,9].

We consider video summarization as a diverse subset selection problem: given
a video that can be seen a collection of shots, the goal is to select a subset
from the collection to summarize the whole video. This view opens the door
for supervised learning approaches to video summarization [1,10–13] that fit
subset selection models to the video summaries annotated by users. Unlike the
conventional unsupervised video summarization methods [3–5,7–9,14,15], the
supervised ones implicitly infer users’ intentions and summarization criteria as
opposed to domain experts’ handcrafting.

In the supervised video summarization models, a key factor they are supposed
to encompass is the diversity of the selected subset of video shots. This is often
imposed by submodularity [10,16] and determinant [1,11,17]. When a video
sequence is short, global diversity over the whole sequence seems like a natural
choice [10,11].

However, if the videos are lengthy like the egocentric videos that are often
hours long, it is necessary to track the temporal structures of the videos and
enforce local diversity instead [1,18]. The local diversity refers to that the
shots selected from a short time duration are diverse but visually similar shots are
allowed to co-exist in the summary if they appear far apart in the video. Consider
a video sequence that is about “leaving home for shopping in the morning and
then coming back home to have lunch”. Although the video shots of the “home”
scene in the morning may be similar to those at noon, the summary should
contain some shots of both in order to make the summary a complete story
carried by the video.

In this paper, we are mainly interested in summarizing extremely
lengthy (e.g., egocentric) videos and, accordingly, models that are capable of
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observing the local diversity. Among the existing works, sequential determi-
nantal point process (SeqDPP) [1] and dppLSTM [19] both account for the
temporal dynamics of the videos. However, neither of them explores “how local”
the local diversity should be. Take the SeqDPP for instance, it requires users
to manually partition the video into disjoint segments of the same length and
then impose diversity both within each of them and between adjacent segments,
locally. There is no guiding principle about how to best partition a video sequence
into such segments. Besides, it could be sub-optimal to make the segments of
the same length because different types of events often unroll at distinct frame
rates. The same snags exist in dppLSTM.

We propose to improve the SeqDPP model [1] by a latent variable that
dynamically controls the time span of a segment upon which the local diver-
sity is then defined in the form of a conditional DPP. In other words, we enable
SeqDPP to learn to automatically infer how local the local diversity is in the
input video. Figure 1 illustrates our main idea. Given an input video shown on
the top panel, our dynamic SeqDPP seeks the appropriate and possibly different
lengths of the segments (cf. the middle panel) from which it selects video shots
(the bottom panel) and places them on a story board or links them into a short
video clip as the summary of the video.

Another contribution of this paper is a novel reinforcement learning algorithm
for the proposed dynamic SeqDPP (DySeqDPP). While DySeqDPP seems like
a straightforward extension to the vanilla SeqDPP, it is less obvious how to
efficiently train the model. The DPPs [20] and its variants (e.g., SeqDPP [1],
dppLSTM [19], and SH-DPP [17]) are almost all trained by the hallmark max-
imum likelihood estimation (MLE) except for the large-margin DPP [21] and
Bayesian DPP [22]. However, it is often difficult to maximize the likelihood of a
sequential model with latent variables; gradient ascent fails to track the statisti-
cal structure, and the EM algorithm [23] becomes involved and inefficient unless
one assumes special compositions of a sequential model [24].

In light of these challenges, we instead provide a reinforcement learning per-
spective for understanding SeqDPPs. The proposed DySeqDPP is used as a
policy by an agent to interact with the environment—the input video. Accord-
ingly, we train this DySeqDPP model by policy gradient descent [25]. Not only
we do not have to explicitly deal with the latent variables, but also we benefit
from the flexible reward functions in policy gradient descent—we can bridge the
training and validation phases of the summarizer by defining the reward function
as some evaluation metric(s).

We evaluate this dynamic SeqDPP model on standard video summariza-
tion datasets. Extensive results show that it significantly outperforms competing
baselines especially the vanilla SeqDPP, verifying the necessity of dynamically
determining how local the local diversity is. The rest of the paper is organized
as follows. Section 2 discusses some related existing video summarization works.
After that, we describe our dynamic SeqDPP and the reinforcement learning
algorithm in Sect. 4. We report empirical results in Sect. 5 and then conclude
the paper by Sect. 6.
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2 Related Work

2.1 Video Summarization

Different algorithms for automatic video summarization are generally designed
by the same principles. Those informative guidelines contain three main fac-
tors: (1) individual interestingness or relevance [8,9], which means selecting
frames/shots that are important in the video; (2) representativeness [3–5], which
means the summary should contain the main event of the videos; (3) collective
diversity or coverage [6,7], which is to reduce redundant frames/shots without
losing much information. These factors are used in most of the existing works.
Next, we review the representative approaches in two common classes, unsuper-
vised and supervised video summarization.

Unsupervised Video Summarization: A variety of prior works is designed based
on basic visual quality like low-level appearance and motion cues [3–9,14,15,
26]. Graph models are utilized for event detection in some approaches [5,26].
In general, the criteria applied in those methods for making decisions about
including or excluding shots are devised by the system developers empirically.
Besides, some approaches leverage Web images for video summarization based
on the assumption that the static Web pictures tend to contain information of
interest to people, so the Web images reveal user-oriented importance selecting
video shots/frames [4,27–29].

Supervised Video Summarization: Recently, several explorations on supervised
video summarization have been exerted for various goals [1,8–13,17–19,30]. They
achieve superior performance over the traditional unsupervised clustering algo-
rithms. Among them, Gygli et al. try to add some supervised flavor to optimize
mixture objectives with learning each criterion’s weight [10,12]. A hierarchical
model has been proposed to learn with few labels, and it is optimized to generate
video summary containing interesting objects [30]. Egocentric videos [31] can be
compacted with importance of people and objects [8]; on the other hand, Zheng
et al. explicitly consider how one sub-event leads to another in order to provide
a better sense of story for those kinds of videos [9]. Meanwhile, Yao et al. pro-
pose a pairwise deep ranking model to highlight video segments of first-person
videos [32]. In conclusion, supervised methods are capable of utilizing the inten-
tions of users about what a qualified video summary is rather than designing
the systems only relying on the experts’ own perspective.

Besides, as a powerful diverse subset selection model, the determinantal point
process (DPP) has been widely used for video summarization. For instance, Gong
et al. propose the first supervised video summarization method [1] (SeqDPP) as
far as we know, it models local diversity to capture the temporal information of
videos rather than modeling global diversity. Combining long short-term mem-
ory (LSTM) with DPPs has been studied in [19] to model the variable-range
temporal dependency and diversity among video frames at the same time. Effort
has been spent to study transferring summary structures from annotated videos
to unseen test videos in [11]. Sharghi et al. explore the query-focused video
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summarization in [17,18]. Large margin separation principle has been leveraged
for DPPs to estimate parameters in [13].

We will provide more details of DPPs and SeqDPP in Sects. 3.1 and 3.2.
Reinforcement learning (RL) provides a unified solution to both problems

above. The REINFORCE algorithm [38] is utilized to train recurrent neural
network [33]. Rennie et al. borrow ideas from [33] in the image captioning task
and obtain very promising results [39]. We note that the use of RL in those
contexts is icing on the case in the sense that, while RL boosts the results to
some degree, the MLE is still applicable. For our DySeqDPP model, however,
RL becomes a necessary choice because it is highly involved to handle the latent
variables in DySeqDPP by MLE.

3 Background: DPP and SeqDPP

We briefly review the determinantal point process (DPP) and the sequential DPP
(SeqDPP) in this section. It will become clear soon how the former promotes
diversity in the selected subsets and the latter enables local diversity.

3.1 DPPs

A discrete DPP defines a distribution over the subsets of a ground set and assigns
high probability to a subset if its items are diverse from each other. The notion
of diversity is induced by a kernel matrix whose entries can be understood as
pairwise similarities between the items. The more similar two items are, the less
likely they co-occur in a subset sampled from the DPP.

More concretely, given a ground set Y = {1, 2, . . . ,N} of N items, let K ∈
R

N×N be a symmetric positive semidefinite matrix, called the kernel of DPP. It
measures pairwise similarities between the N items. A distribution over a random
subset Y ⊆ Y is a DPP, if for every y ⊆ Y we have

Pdpp(y ⊆ Y ;K) = det(Ky ), (1)

where Pdpp(·) is the probability of an event, Ky denotes a squared submatrix
of K with rows and columns indexed by y, and det(·) is the determinant of a
matrix. All the eigenvalues of the kernel matrix K are between 0 and 1. Since
P (i, j ∈ Y ;K) = KiiKjj − K2

ij , i.e., the probability of any two items i, j co-
existing in the random subset Y is discounted by their similarity Kij . In other
words, the subsets whose items are less similar to each other are assigned higher
probabilities than the other subsets.

L-Ensemble. In practice, it is often more convenient to use the so-called L-
ensemble DPP that directly assigns atomic probabilities to all the possible sub-
sets of the ground set. Let L denote a symmetric positive semidefinite matrix in
R

N×N. The L-ensemble DPP draws a subset y ⊆ Y with probability

PL(Y = y;L) = det(Ly )/det(L + I), (2)
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where I is an identity matrix. The corresponding marginal kernel that defines
the marginal probability in (1) is given by K = L(L + I)−1.

Conditional DPP. One of the appealing properties of DPP is that there exists
an analytic form of its conditional distribution. For any y1 ⊆ Y and y0 ⊆ Y,
y1 ∩ y0 = ∅,

PL(Y = y1 ∪ y0|y0 ⊆ Y ;L) = det(Ly1∪y0)/det(L + IY\y0), (3)

where IY\y0 is a matrix with ones in the diagonal entries indexed by Y \ y0

and zeros everywhere else. Kulesza and Taskar have written an excellent tutorial
about DPPs [40].

3.2 Sequential DPPs

A sequential DPP (SeqDPP) [1] was proposed for supervised video summariza-
tion. It adheres to the inherent temporal structure in video sequences, thus
overcoming the deficiency of DPPs which treat video frames/shots as randomly
permutable items. The main technique is to use the conditional DPPs to con-
struct a Markov chain.

Given a long video sequence V, we partition it into T disjoint yet consecutive
short segments

⋃T
t=1 Vt = V. At the t-th time step, SeqDPP selects a diverse

subset of items (e.g., frames or shots), by a variable Xt ⊆ Vt, from the cor-
responding segment conditioning on the items xt−1 ⊆ Vt−1 selected from the
immediate past segment. This subset selection variable Xt follows a distribution
given by the conditional DPP,

Pseq(Xt = xt|Xt−1 = xt−1,Vt) := PL(Yt = xt ∪ xt−1|xt−1 ⊆ Yt;Lt) (4)

= det(Lt
xt∪xt−1

)/det(Lt + It
Vt

), (5)

where PL(Yt;Lt) is an L-ensemble with the ground set xt−1 ∪ Vt. Denote by
x0 = ∅. The SeqDPP over all the subset selection variables is factorized as

Pseq({Xt = xt}Tt=1,V) =
T∏

t=1

Pseq(Xt = xt|Xt−1 = xt−1,Vt). (6)

Figure 2 illustrates SeqDPP and compares it to the vanilla DPP and Markov
DPP [41]. Unlike the vanilla or Markov DPPs which considers the video
frames/shots as orderless items, SeqDPP maintains the temporal order among
the segments and yet ignores it among the frames/shots within an individual seg-
ment, locally. Furthermore, it retains the diversity property for adjacent video
segments but not for those that are far apart. Indeed, users may want to keep
visually similar video clips in the summary if they are far apart in a lengthy
video in order to tell a complete story of the video.
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Fig. 2. From left to right: Determinantal point process (DPP) [40], Markov DPP [41],
and sequential DPP (SeqDPP) [1]. The ground sets are denoted by the shaded nodes.

3.3 Reinforcement Learning

Consider an agent that takes actions according to some policy to interact with the
environment. Following the popular Markov decision process (MDP) formalism,
we describe the problem by (S,A, P,R, γ), where S and A are the state (s) space
and action (a) space, respectively, P (st+1|st, at) is a state transition distribution,
R(st+1; st, at) is a reward the agent receives if it takes action at at state st and
results in state st+1, and γ ∈ (0, 1) is a discount factor. A policy is denoted
by π : S �→ A, which is essentially a conditional distribution π(at|st) over the
actions given any state. Reinforcement learning aims to find the agent a policy
that maximizes the expected total discounted reward Eπ

∑∞
i=0 γiRt+i starting

from time step t.

4 Reinforcing Dynamic SeqDPPs

We are now ready to present our dynamic SeqDPP (DySeqDPP) along with a
reinforcement learning algorithm for estimating the model parameters.

4.1 DySeqDPP

We describe the DySeqDPP model using the MDP formalism (S,A, P,R, γ) so
that the corresponding learning algorithm follows naturally. We note that, in
addition to the new DySeqDPP, another contribution of this section is the rein-
forcement learning perspective for understanding SeqDPPs. Under this frame-
work, SeqDPP and DySeqDPP can be seen as two types of stochastic policies.

State st at time step t: An information state is about the history of an agent’s
observations (and rewards) about the environment. It is used to determine
what happens next upon an action taken by the agent. In our context, the
state st = {⋃t−1

t′=1 xt′ ,Vt} comprises the dynamic partition of the video Vt

at time step t and the generated video summary
⋃t−1

t′=1 xt′ right before the
current step t. One may wonder to alternatively treat all the video segments
V1, · · · ,Vt until step t as the state. We contend that it is oppressive and
unnecessary to carry them along over time. Instead, the summary of the past
conveys similar amount of information by design.
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Action at at time step t: In DySeqDPP, the agent takes actions (1) to select
a subset Xt from the video segment Vt and (2) to propose the length Lt

of the next segment Vt+1. The subset selection variable Xt ⊆ Vt and the
partition proposal variable Lt ∈ L jointly define the action space. In other
words, an action takes the form of At = (Xt, Lt) whose realization is denote
by at = (xt, lt). We limit the search of the segment’s length to the range of
L = {5, 6, · · · , 15} shots.

Policy π: We let the agent take a stochastic policy in the following manner,

π(at|st) = P (xt, lt|st) =P (xt|st)P (lt|xt, st), (7)

where P (xt|st) is a conditional DPP used to build SeqDPP [1], i.e.,

P (xt|st) = P (xt| ∪t−1
t′=1 xt′ ,Vt) := PL(Yt = xt ∪ xt−1|xt−1 ⊆ Yt;Lt) (8)

and P (lt|xt, st) is defined as a softmax function,

P (lt|xt, st) = P (lt| ∪t
t′=1 xt′ ,Vt) := softmax(wT

ltφ(∪t
t′=1xt′ ,Vt)). (9)

There are several points in the above worth clarifying and discussing. First of
all, Eq. (7–9) describe the main body of our DySeqDPP model. It improves
SeqDPP by the partition proposal variable Lt. It is a latent variable because
users annotate summaries of videos without explicitly knowing the boundaries
of the local diversities they have in their minds. Secondly, we condition the
DPP in Eq. (8) on its immediate past time step (xt−1) only instead of the
whole history of summaries included in the state st. This is due to the same
modeling intuition as SeqDPP, i.e., in order to maintain local diversity in
the summaries. Thirdly, φ(·) in Eq. (9) extracts features by max-pooling the
representations of all the video shots in the current state st as well as the
new summary xt selected according to Eq. (8). This ensures that sufficient
information about both the whole past history and the current of the video is
supplied to the softmax for the agent to predict the appropriate length of the
next segment. Last but not the least, {wl, l ∈ L} are the model parameters
to be learned from the user-annotated summaries. It is important to note
that the parameters are not bound to any particular environments/videos at
all, so the policy can be generalized to unseen videos, too. We postpone the
parameterization of the L-ensemble DPP’s kernel L to Sect. 4.2.

State-action value function: Our goal is to learn a policy to maximize the
expected total discounted reward the agent receives, called the state-action
value function,

Qπ(s0, a0) := Eπ

[ T∑

t=0

g(γ, t)Rt|S0 = s0, A0 = a0

]
, (10)

where g(γ, t) ∈ [0, 1] is a discount function and the reward Rt = R(st+1; st, at)
is a function of the state and action. For video summarization, the reward
can be evaluation metrics like precision, recall, or F-score computed between
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the video shots ∪t
t′=1xt′ selected by the agent and the user summaries of

the video (until the current segment Vt). The total number of time steps the
agent can take is T , which satisfies

∑T−1
t=0 lt < |V| and

∑T
t=0 lt ≥ |V|.

It is import to note that our goal is to maximize the state-action value
function at the initial state and action (s0, a0) which are fixed to s0 = ∅ and
a0 = (x0 = ∅, l0 = 10) in our experiments. In contrast to conventional setups
in reinforcement learning, we do not care about the state-action values at other
states because only the initial state gives rise to a whole summary of the video,
which is our interest. This insight also suggests a special design of the dis-
count function g(γ, t). Instead of using the common practice γt, we let it be
g(γ, t) = γ|V−t|, γ ∈ (0, 1), monotonically increasing with respect to t in order to
weigh the reward of the whole summary more than the incomplete summaries
at any other time steps.

Those differences highlight the fact that video summarization actually lacks
some characteristics of reinforcement learning (e.g., delayed feedback). Hence,
we have to customize the MDP formalism in order to match it with the goal
of interest. Nonetheless, by casting DySeqDPP as a policy, we can conveniently
learn its model parameters by algorithms in reinforcement learning—we employ
gradient descent in this paper.

4.2 Policy Gradient Descent for Learning DySeqDPP

We review the model parameters in DySeqDPP before deriving the learning
algorithm. We parameterize two conditional distributions in DySeqDPP for the
purpose of out-of-sample extension, so that one can readily apply the learned
model to unseen test videos. The first is the partition proposal distribution
(Eq. (9)) and the second is the conditional DPP (Eq. (8)) at each time step t,
whose L-ensemble kernel is constructed as follows,

[Lt]ij = zT
i W T Wzj , zi = ReLU(U ReLU(V fi)) (11)

where fi is the feature representation of video shot i in the ground set xt−1 ∪Vt

of the time step t. This feature vector goes through a feedforward network with
ReLU activations. Denote by θ the union of the weights of the network (W ,U ,V )
and the unknowns {wl, l ∈ L} in Eq. (8). We next derive a learning algorithm
using the policy gradient descent [42] to estimate the model parameters θ.

Recall that our goal is to maximize the state-action value function at the
initial state and action. Denoting by J � −Qπ(s0, a0), we can minimize it by
gradient descent,

∇θJ |θ=θold = −Eτ ∼π(θold)

[ T∑

t=1

g(γ, t)Rt∇θ log p(τ ; θ)|θ=θold

]
(12)

≈ − 1
K

K∑

k=1

[ Tk∑

t=1

g(γ, t) rtk ∇θ log p(τk; θ)|θ=θold

]
(13)
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where the last equation is obtained by sampling K trajectories {τk} from the
policy instantiated by the old parameter θold, rtk is the reward that the agent
receives at time step t of the k-th trajectory, and the first equation is due to the
following fact,

∇θEx∼θ[f(x)]|θ=θold = Ex∼θold

[
∇θ log p(x; θ)|θ=θoldf(x)

]
. (14)

We still need to work out ∇θ log p(τ ; θ) in Eq. (13). The key is that the state-
transition distribution p(st+1|st, at) is actually deterministic under our context
laid out in Sect. 4 (because the action at fully determines the summary xt and
the next segment Vt+1, and hence the next state). Therefore, for a trajectory
s0, a0, s1, a1, · · · , we have

∇θ log p(τ ; θ) = ∇θ log
[
p(s0, a0)

T∏

t=1

p(st|st−1, at−1)π(at|st; θ)
]

(15)

= ∇θ

T∑

t=1

log π(at|st; θ) =
T∑

t=1

[
∇θ log P (xt|st) + ∇θ log P (lt|xt, st)

]
(16)

where the first summand of the last equation is the gradient with respect to the
parameters of conditional DPP and the second is of the softmax (Eq. (9)).

Implementation: Instead of computing the gradients explicitly, one may use the
“autodiff” feature of many existing deep learning tools to obtain the gradients.
Take pytorch (http://pytorch.org) for instance. We may program the following
for a trajectory,

J(τ ; θ) = −
T∑

t=1

g(γ, t) rt

[
log P (xt|st; θ) + log P (lt|xt, st; θ)

]
,

and then use the backward() function to automatically compute the gradients
followed by calling the step() function to do a one-step gradient descent. After
that, we sample another trajectory and repeat the procedure until the termina-
tion condition.

5 Experiments

We run experiments on three datasets, UTE [8], SumMe [12], and TVSum [43],
and compare our approach to several competing baselines.

5.1 The UT Egocentric (UTE) Dataset

Data and Features. UTE [8] contains four egocentric videos, each of which
lasts between three and five hours long. It captures daily activities such as shop-
ping in a grocery store, having lunch, working, chatting with friends, meeting

http://pytorch.org
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with colleagues, etc. In addition to the big variety of content, the videos are also
quite challenging due to ego motions—as a result, the views change frequently.
The motion blur is more frequent and severe than “third-person” videos. In gen-
eral, the video shots of an activity are placed in between of blurred frames and
nuisance views. Following the experiment protocol of [18], we run four rounds
of experiments. In each round, we use two videos for training, one for valida-
tion, and the last for testing. We uniformly divide the videos to 5-second shots.
From each video frame, we extract 4,096D deep CNN features as the activation
of the last fully connected layer of the VGG19 network [44] pretrained on Ima-
geNet [45]. After that, we use PCA to reduce the feature dimension from 4,096D
to 512D, followed by max-pooling within each shot in order to have a shot-level
feature representation (i.e., fi in Eq. (11)).

Competing Methods. We mainly compare our approach (DySeqDPP) to the
following methods and their variations which, like ours, locally promote diver-
sity in video summaries: SeqDPP [1,9], dppLSTM [19], and uniform sampling
(Uniform). We let the methods automatically work out the lengths of the sum-
maries except for the uniform sampling, to which we supply the lengths of the
oracles. For SeqDPP, however, the length of each segment has to be manually
set. In addition to the 10-shot segments suggested in the original work [1], we
also include the results of segments of 5 shots and 12 shots. Finally, we include
another comparison by improving the original SeqDPP with our reinforcement
learning algorithm. This is implemented by fixing the partition proposal distribu-
tion P (Lt|xt, st) as a Dirac delta function δ(Lt = l), where l = 10 is independent
of the time steps. Besides, we learn using the reward of the whole summary by
setting g(γ, t) = 0 for t < T and g(γ, T ) = 1, unless specified otherwise.

Evaluation. In the literature, system-generated summaries have been evaluated
in a variety of manners including but not limited to user studies [46], percent-
age of frames overlapped with user summaries [19], bipartite matching based on
distances of low-level visual features [18], etc. Arguably, user study is the “gold”
standard, but it is extremely time-consuming. In this paper, we instead use the
bipartite matching based on a “semantic distance”—pairwise Hamming distance
between video shots computed upon the concepts annotated for each shot. This
imitates user studies in the sense that the “semantic distance” is strongly cor-
related with users’ perceptions about the difference between a system-generated
summary and an actual user’s summary. The concepts per video shot are bor-
rowed from an earlier work by Sharghi et al. [18], in which the authors asked
users to choose from 54 concepts the ones relevant to a given video shot.

Given two summaries (i.e., a system-generated one and a user summary),
we construct a bipartite graph between them with the shots as nodes. A node
in one part is connected to all the nodes in the other part with edge weights
as the (negative) Hamming distance computed from the per-shot concepts [18].
After that, we find the size of the maximum bipartite matching and divide it
by the length of the user (system) summary to obtain the recall (precision).
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Fig. 3. Comparison results in terms of average F1-score (the higher, the better) for 4
videos in UTE dataset where horizon axis means different K used in local bipartite
matching.

Additionally, we improve this metric by removing the edges between the video
shots that are more than K time steps away from each other. In other words, if
two shots are far away from each other for more than 5K seconds, there is no
edge between them in the improved evaluation metric.

Comparison Results. Figure 3 reports the results using the above evaluation
scheme at K = 8, 12, 16,∞. Each system-generated summary is compared against
three user summaries and the corresponding precision, recall, and F-measure
scores are averaged to reduce user bias. We can see that the proposed DySeqDPP
outperforms the competing methods by a large margin. The SeqDPP trained by
our reinforcement learning algorithm ranks the second. These results verify the
benefit of understanding the SeqDPPs from the novel reinforcement learning per-
spective. Moreover, the latent variable for dynamically partitioning the videos into
segments also helps. It not only removes the need of handcrafting the segments but
also gives rise to superior performance over the equally paced segments.

Another intriguing observation is that there is no significant difference among
the results of SeqDPP when we change the sizes of the segments (i.e., 5, 10,
and 12 shots). It indicates that one can hardly find an “optimal” length for
the equally placing segments of SeqDPP, signifying the need of dynamically
partitioning the videos to segments of variable lengths as our DySeqDPP does.

It is a little surprising to see that dppLSTM underperforms uniform sam-
pling. Upon examining the existing works [18,47] carefully, we find that uniform
sampling is actually a very competitive baseline partially because it receives
unfair information at inference—length of the oracle summary. Another possible
reason is that we did not pre-train the dppLSTM using any additional datasets
as done in [19].
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Table 1. Comparison results on UTE evaluated by the bipartite matching F1-score
(K = 12)

Method γ = 1e−20 Full

γ = 0.2

Full

γ = 0.5

Full

γ = 0.9

Partial

γ = 0.2

Partial

γ = 0.5

Partial

γ = 0.9

Greedy

sample

Pool

seg

Pool

video

Video 1 29.53 28.96 28.03 29.27 28.83 28.33 28.23 27.76 29.19 30.33

Video 2 31.17 30.67 31.61 30.80 32.53 32.07 30.91 29.24 31.20 31.90

Video 3 46.38 45.79 45.88 42.04 45.20 45.23 44.42 43.56 40.40 43.68

Video 4 26.72 26.93 26.35 26.51 26.07 26.41 27.51 23.81 24.56 24.91

Avg. 33.45 33.08 32.96 32.16 33.15 33.01 32.77 31.09 31.33 32.71

Ablation Study. Besides, we run some ablation studies to test several vari-
ations to our approach and illustrate the quantitative results in Table 1. First,
instead of sampling K trajectories {τk} based on the old policy, we sample the
trajectory τ in a greedy manner, which chooses the subsets with the maximum
probability at each step during training. The “Greedy Sample” column in Table 1
indicates that greedy sampling produces worse video summarization results. The
reason is that the system can not explore the real environment (video) thoroughly
under the greedy sampling strategy.

We also study how the hyper-parameter γ (γ = 1e−20, 0.2, 0.5, 0.9) influences
the model. Specifically, larger γ means we give higher weight to the incomplete
summaries at early time steps. Meanwhile γ = 1e−20 means we just consider the
whole video summary at the final time step. The experimental results in Table 1
verify our intuitive assumption that weighing more on the reward of the whole
summary is better than on the incomplete summaries at other time steps. In
addition, we notice a problem that it is unreasonable to calculate the reward of
each time step by comparing the incomplete summary up to the current step with
the full user summary (shown in the columns titled “Full γ = 0.2/0.5/0.9”). To
address this problem, we compute the reward by comparing the current system
summary with the user summary until this time step, as shown in the column
titled “Partial γ = 0.2/0.5/0.9”. The experimental results verify that the latter
kind of reward calculation is more reasonable.

Finally, we also study what features work better for predicting lt. Recall that,
for φ(∪t

t′=1xt′ ,Vt), we concatenate the features of the generated video summary
until the current time step and the features of the current segment. We test
two alternatives. One is pooling the features of this segment only (PoolSeg) and
the other is pooling the features of the whole video sequence up to the current
segment (PoolVideo). PoolSeg gives rise to worse results than PoolVideo since it
lacks the larger context than the current segment only. PoolVideo is a little worse
than and certainly incurs more computation cost than φ(∪t

t′=1xt′ ,Vt) because
pooling over the video encounters redundant information.

5.2 The SumMe and TVSum Datasets

Experiment Setup. In addition to the egocentric videos, we also test our
approach on two other popular datasets for video summarization: SumMe [12]



Reinforcing SeqDPP with Dynamic Ground Sets 169

Fig. 4. Generated video summary examples with SeqDPP and DySeqDPP

and TVSum [43]. They are both “third-person” video datasets. SumMe consists
of 25 consumer videos covering holidays, events, and sports. The lengths of the
videos range from about one to six minutes. TVSum contains 50 videos of 10
categories downloaded from YouTube. The videos are one to five minutes in
length.

We follow the same experimental setup as dppLSTM [19] in this work. We
extract the output (1,024D) of the penultimate layer (pool 5) of GoogLeNet [48]
for each video frame. Followed by max-pooling within each shot (15 frames), we
get the shot-level feature representation. In our experiments, we train the model
with 60% videos of SumMe (TVSum), validate on 20% of the dataset, and test
on the remaining 20% videos. We run 10 rounds of experiments with different
random splits of the dataset and report both the mean F1-scores and standard
errors.

Evaluation. We evaluate the results again by F1-score. However, the precisions
and recalls for computing the F1-score are calculated in a different way from the
bipartite graph matching earlier. Following by the practice in dppLSTM [19], we
first split a video into a set of disjoint temporal scenes (which are usually longer
and contain more visual information than the segments and shots used in the
UTE dataset) using the KTS approach [49]. We train the model with shot-level
feature representations and then use it to obtain shot-level importance scores.
Specifically, the importance score of each frame is equal to the score of shots
they belong to. We compute the scene-level scores by averaging the scores of
frames within each scene and then rank the scenes in the descending order by
their scores. In order to generate a video summary, we select the scenes with a
duration below a certain threshold (e.g., using the knapsack algorithm as in [43]).
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Table 2. Comparison results on video summarization on SumMe and TVsum dataset.
The results are evaluated by F1-score, the higher the better.

Dataset Method Unsupervised Canonical

SumMe Video-MMR [50] 26.6

Gygli et al. [12] 39.4

Gygli et al. [10] 39.7

Zhang et al. [11] 40.9

vsLSTM [19] 37.6 ± 0.8

dppLSTM [19] 38.6 ± 0.8

SeqDPP [1] 40.8 ± 4.8

DySeqDPP 44.3± 2.8

TVSum LiveLight [51] 46.0

Khosla et al. [4] 36.0

Song et al. [43] 50.0

vsLSTM [19] 54.2 ± 0.7

dppLSTM [19] 54.7 ± 0.7

SeqDPP [1] 57.4 ± 2.0

DySeqDPP 58.4± 2.5

Finally, we calculate the precision, recall, and F1-score according to the temporal
overlap between the generated summary and the user summaries.

In order to account for the above evaluation scheme, we make some changes to
our reinforcement learning algorithm on these two datasets. For training process,
firstly we sample the partition proposal lt with oracle summary based on the old
policy on each time step. Thus we can utilize the diagonal values of Lt as shot-
level scores and then generate the video summary using the approach described
above. Consequently, we can get the reward (F1-score) with the generated video
summary. Note that the trajectory τ here is the oracle summary. Therefore, we
can optimize the dynamic SeqDPP with reinforcement learning.

Comparison Results. Table 2 shows the comparison results between our DySe-
qDPP and several baselines. Note that some of the baseline methods are unsu-
pervised so they are tuned to achieve the best results on the test set. Nonethe-
less, the supervised ones in general perform better than them. Both SeqDPP and
DySeqDPP significantly outperform the others and DySeqDPP ranks to the first
by a big margin on SumMe.

Qualitative Results. Figure 4 demonstrates some exemplar video summaries
generated by SeqDPP and our DySeqDPP, respectively. It is interesting to see
that DySeqDPP captures some shots that are key for the story flow and are yet
missed by SeqDPP. Take the first video for instance. The sky diver shows up



Reinforcing SeqDPP with Dynamic Ground Sets 171

only at the end of SeqDPP’s summary while s/he is kept at both the beginning
and the end of DySeqDPP’s summary. The second is an amusing video recording
how a bird saves a ball from a dog’s mouth. However, SeqDPP fails to select the
key shot in which the dog bites the ball.

6 Conclusion

In this paper, we study “how local” the local diversity should be for video sum-
marization and utilize it as a guideline to devise a sequential model to tackle the
dynamic diverse subset selection problem. Furthermore, we apply reinforcement
inference [25] in the dynamic seqDPP model to solve the problem of exposure
bias [33] as well as the issue of non-differentiable metrics existing in SeqDPP [1].
The proposed DySeqDPP can not only seek the appropriate and possibly differ-
ent lengths of segments dynamically, but also bridge the training and validation
phases. Experimental results on video summarization demonstrate the effective-
ness of our approach.
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