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Abstract. The representation of 3D pose plays a critical role for 3D
action and gesture recognition. Rather than representing a 3D pose
directly by its joint locations, in this paper, we propose a Deformable
Pose Traversal Convolution Network that applies one-dimensional convo-
lution to traverse the 3D pose for its representation. Instead of fixing the
receptive field when performing traversal convolution, it optimizes the
convolution kernel for each joint, by considering contextual joints with
various weights. This deformable convolution better utilizes the contex-
tual joints for action and gesture recognition and is more robust to noisy
joints. Moreover, by feeding the learned pose feature to a LSTM, we per-
form end-to-end training that jointly optimizes 3D pose representation
and temporal sequence recognition. Experiments on three benchmark
datasets validate the competitive performance of our proposed method,
as well as its efficiency and robustness to handle noisy joints of pose.
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1 Introduction

With the success of pose estimation methods [1–3] using depth sensor, 3D action
and hand gesture recognition have drawn considerable attention. To recognize
3D action and gestures, each 3D pose is often characterized by its joints with
3D locations.

However, previous work [4–6] show that not every spatial joint is of equal
importance to the recognition of actions, and human body movements exhibit
spatial patterns among pose joints [7]. It is thus of great importance to iden-
tify those motion patterns and avoid the non-informative joints, via identifying
the key combinations of joints that matter for the recognition. For instance, to
recognize hand gesture “Okay”, the “approaching of index fingertip and thumb
tip” as well as the “stretching of other three fingers apart from the palm” should
be observed. The coordination of these five key fingertips is important to the
recognition of gesture “Okay”.
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(a) Pose Traversal (b) Pose Traversal Conv (c) D-Pose Traversal Conv

Fig. 1. Illustration of the Pose Traversal Representation, the Pose Traversal Convolu-
tion and the Deformable Pose Traversal Convolution. (a) Pose Traversal. The traversal
starts from the red torso joint, and follows the guidance of orange arrows. (b) Pose
Traversal Convolution. The red dots connected with the orange line indicate a 3 × 1
pose convolution kernel. The green dot indicates the convolution anchor (c) Deformable
Pose Traversal Convolution. The kernel in (b) is deformed to involve two hands and
the right shoulder in a convolution. (Color figure online)

To identify the joint patterns for 3D action and gesture recognition, deep-
learning-based methods have been popularly utilized recently [4,6,8–11]. For
example, [4,6] apply the attention mechanism to 3D action recognition by assign-
ing weights to joints and use the key joints to represent 3D poses. However, each
joint is considered individually in these works, and the discriminative cues in
the spatial configuration of pose is not fully utilized. Part-based models [12,13]
apply recurrent neural network (RNN) to explore the relationship among body
parts. Liu et al. [14] and Wang et al. [15] feed one 3D pose joint into a RNN
at each step to model the spatial dependency of joints, and show such spatial
dependency modeling can improve the recognition performance. However, con-
sidering in each step the current available spatial context is only the hidden state
from the previous steps, the spatial dependency of joints is not fully utilized by
the sequential way of these two models.

In this work, we propose to identify joint patterns via traditional convolution.
In image recognition, Convolution Neural Network (CNN) operates weighted
summation in each local window of input image, which involves the local spa-
tial relation of pixels. Meanwhile, each convolution is independent, and CNN is
suitable to model the spatial dependency of pixels in parallel rather than sequen-
tially. Similar to the appearance similarity measure among neighboring pixels via
convolution, given the coordinates of joints, we can use convolution to obtain
the spatial configuration among them. We follow the tree traversal rule in [14]
to preserve the spatial neighboring relation of joints, as shown in Fig. 1a. Then
we apply one-dimensional convolution to traverse the pose to extract spatial
representation.

We use Fig. 1b to illustrate this Pose Traversal Convolution. The kernel
anchored at right elbow operates convolution on the right arm, and it continues
to slide along the pose joints to obtain pose information following the traversal
guides in Fig. 1a. Meanwhile, the Pose Traversal Convolution can be optimized
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to search appropriate spatial context for each individual joint, which we call it
Deformable Pose Traversal Convolution. With Deformable Pose Traversal Con-
volution, we no longer fix the regular structure of the kernel for convolution,
and the convolution can easily involve key joints that are not neighbors of each
other, thus can capture essential dependency among joints. Also, each joint will
identify its own spatial context by identifying a suitable kernel.

Our Deformable Pose Traversal Convolution is inspired by Deformable Con-
volution Neural Network [16] that introduces the attention mechanism into con-
volution. As illustrated in Fig. 1c, the convolution kernel anchored on the right
elbow is deformed so that the left and right hands as well as the right shoulder
are also included in one convolution operation. We consider, due to the com-
plexity of actions and gestures, the key combination of joints varies during the
action performing. Therefore, the deformation offsets for the convolution kernel
are predicted by a one-layer ConvLSTM [17] based on the previously observed
pose data. The final extracted pose feature will be further fed into a LSTM net-
work [18]. The whole network utilizes Deformable Pose Traversal Convolution
to learn the spatial dependency among joints and use LSTM to model the long-
term evolution of the pose sequence. This network is trained end-to-end. The
performance on benchmark action and gesture datasets, as well as the compar-
ison with the state of the arts, demonstrates the effectiveness of the proposed
Deformable Pose Traversal Convolution for 3D action and gesture recognition.

Our contributions can be summarized as follows:

• We introduce a one-dimensional convolution neural network, Deformable Pose
Traversal Convolution, to represent 3D pose. It can extract pose feature by
identifying key combinations of joints, which is interpretable for action and
gesture understanding.

• We apply the ConvLSTM [17] to learn the deformation offsets of convolution
kernel. It models the temporal dynamics of key combinations of joints.

2 Related Work

3D Action and Gesture Recognition
3D action and gesture recognition task attracts a lot of attention in these
years. The recently proposed methods can be categorized into traditional
model [5,7,19–29] and deep-learning-based model [4,6,9–12,14,15,30–33]. Due
to the tremendous amount of these works, we limit the review to spatial pose
modeling in deep learning.

Part-based models consider 3D actions as the interaction between body parts.
In HBRNN [12], a 3D pose is decomposed into five parts, and multiples bi-
RNNs are stacked hierarchically to model the relationship between these parts.
In [6,14,15], the pose graph is flattened by the tree traversal rule, and the joints
are fed into LSTM sequentially to model the spatial dependency among them. In
2D CNN-based methods [30,32–34], a pose sequence is first visualized as images.
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Each pixel of the image is related to a joint. Then a two-dimensional CNN is
applied on the generated images to extract sequence-level CNN feature, by which
the spatio-temporal dependency of joints is implicitly learned. Compared with
the 2D CNN methods, we apply one-dimensional convolution on pose traversal
data to extract frame-level pose feature, which is more flexible especially for
tasks requiring frame-level feature.

Attention Mechanism in 3D Action and Gesture
In 3D action and gesture recognition, not every spatial joint is of equal impor-
tance to the recognition task. Hence it is essentially important to identify the
key joints that matter for recognition. In STA-LSTM [14], two sub-LSTMs are
trained to predict spatial and temporal weights for the discovery of key joints
and frames. In ST-NBNN [5], support tensor machine is introduced to assign
spatial and temporal weights on nearest-neighbor distance matrices for action
classification. In Orderlet [7], actions are described by a few key comparisons of
joints’ primitive features, and only a subset of joints is involved. The key com-
binations of joints are fixed during testing. In contrast, the proposed method
allows the optimal spatial context of each joint changes during the action per-
forming since we use a RNN structure to model the temporal dynamics of key
joint combinations.

3 Proposed Method

In this section, we introduce how the proposed Deformable Pose Traversal Con-
volution processes the pose data in each frame and recognizes the 3D actions
and gestures. The feature maps and the convolution kernels are two-dimensional
in our model. One dimension for the spatial domain and the other for the chan-
nel domain. The deformable pose convolution operates on the spatial domain,
and the deformation of kernel remains the same across the channel dimension.
For notation clarity, we describe the module on spatial dimension, omitting the
index of the channel dimension.

Each 3D action/gesture is represented as a sequence of 3D poses. Assuming
that each pose consists of J joints, a single pose can be represented as X ∈ R

J×C ,
where C is the number of channel. A 3D pose has six channels if the coordinates
and velocities of the joints are both involved, as shown in Fig. 3. We define
x ∈ R

J as the one-channel version of X. Then a 3D action/gesture sequence can
be described by a set of poses, V = {xt}T

t=1, where T is the length of a sequence
sample. Given a 3D pose sequence, our goal is to predict the corresponding label
k ∈ {1, 2, ...,K}, where K is the number of categories. The problem can be
formulated following the maximum a posteriori (MAP) rule,

k∗ = arg max
k

p(k|V ) (1)
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Fig. 2. Structures of the Pose Traversal Convolution Network and the Deformable Pose
Traversal Convolution Network. Each block in the structure represents an operation of
the network. The “in” and “out” of each block indicate the number of input channel and
output channel, respectively. The “kernel” indicates the kernel size, and the “stride”
indicates the stride of convolution operation. The size of the LSTM hidden neuron is
indicated by “hidden”.

3.1 Pose Traversal Convolution

To fully utilize the spatial kinematic dependency of joints in a single pose, we
follow the tree traversal rule in [14] to represent the pose data in our method,
as illustrated in Fig. 1a. By this manner, the length of the pose data is extended
from J to Je, and the arrangement of joints becomes a loop. We name it the
pose traversal data.

In our method, we apply the modified Temporal Convolution Network [35]
(TCN) on the pose traversal data to perform spatial pose convolution, which is
named as Pose Traversal Convolution. Each layer of the TCN is composed of
one-dimensional convolution, one-dimensional pooling, and channel-wise normal-
ization operations. After each convolution operation, there is a Rectified Linear
Unit (ReLU) included to involve nonlinearity. The TCN is an encoder-decoder
structure designed to solve temporal segmentation task. In this work, we only
use the encoder part of TCN and modify it to a two-layer one-dimensional convo-
lution neural network. The structure of the neural network with Pose Traversal
Convolution is shown in Fig. 2a. The two-layer convolution structure extracts
pose feature from each single frame, and the pose feature is then further fed
into the main LSTM network to model the long-term temporal dynamics of the
input pose sequence.

There are two steps for a regular one-dimensional convolution: (1) sampling
using a regular set G on the input pose data; (2) summation of sampled joints’
value weighted by w. The sampling set G defines the receptive field size and
dilation. For a N × 1 regular convolution kernel with dilation 1, where N =
2 ∗ M + 1 and M ∈ N

+, the regular sampling set can be defined as:

G = {−M, ...,−1, 0, 1, ...,M} (2)
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Fig. 3. Illustration of the Deformable Pose Traversal Convolution. A pose is repre-
sented by the pose feature and the velocity feature. The gray rectangles represent the
convolution kernels and the dark gray rectangles inside of them indicate the convo-
lution anchor. The pose traversal data is fed into the Offset Learning module, which
consists of a ConvLSTM and an Offset Convolution. The “in” and “out” in the figure
indicate the numbers of the input and output channels, respectively. The orange rect-
angles are the learned offsets to deform the convolution kernel at each anchor. The
Deformable Pose Traversal Convolution is operated at the bottom of the figure based
on the learned offsets.

For the location i0 of the output feature map y, we have

y(i0) =
∑

in∈G

w(in) · x(i0 + in) (3)

where in enumerates the elements in G.

3.2 Deformable Pose Traversal Convolution

Regular pose convolution focuses on the spatial neighboring joints. This tradi-
tional operation may involve non-informative joints and cannot well construct
the relationship of key joints far away from each other. We consider that the
optimal spatial context of a joint does not always come from its neighbors. It
is of great importance to break the limitation of regular convolution kernel to
learn the optimal spatial context. Inspired by the Deformable Convolution Net-
work [16], which is designed for image recognition, we propose a deformable
version of the Pose Traversal Convolution and apply it on pose data to discover
better combinations of joints. More specifically, we replace the first layer of the



148 J. Weng et al.

Pose Traversal Convolution network with a one-dimensional deformable convo-
lution, and a ConvLSTM [17] is involved to learn offsets δ for the kernel of each
convolution anchor, as illustrated in Fig. 3. The offsets are the adjustments of
convolution sampling locations on feature map.

By using a N ×1 deformable convolution kernel with new irregular sampling
set G̃ = {(in, δn)}N

n=1, the output feature y at the location i0 is defined as,

y(i0) =
∑

(in,δn)∈G̃

w(in) · x(i0 + in + δn) (4)

Now, the sampling is on the irregular locations i0+in+δn. The Pose Traversal
Convolution is a special case of the deformable version. When {δn}N

n=1 are all
set to zeros, the set G̃ becomes G. Considering that the learned δn could be
none-integer, bi-linear interpolation is used to sample the input feature map,

x(i) = α · x(�i�) + (1 − α) · x(�i�) (5)

where i = i0+ in +δn denotes the fractional location (sub-joint), and α = �i�− i.

Offset Learning
We involve a sub-path network to learn the offsets δ. Considering that to decide
which joints to pay attention to should be inferred from the previously observed
action/gesture, the sub-path network is constructed based on a RNN structure,
ConvLSTM [17]. With the involved RNN model, the sub-path is able to learn
the offsets δ on a temporal progress. ConvLSTM is first proposed for image
sequences. Each convolution in ConvLSTM is two dimensional. Here in our pro-
posed method, we modify it to one-dimensional version so that it can be well
applied on the pose traversal data. With the pose traversal representation, Con-
vLSTM takes the spatial neighboring relationship of joints into consideration in
each convolution operation.

In each time step, the input of offset learning module is the pose traversal
data with C channels, and the corresponding output is the offset with N channels
for the kernel on each anchor location. The hidden and memory cell tensor
inside ConvLSTM store significant information of an action/gesture. An Offset
Convolution is located at the output end of ConvLSTM which transfers the
hidden tensor to the offsets at each time step. The illustration of offset learning
is shown in Fig. 3, and the key equations of ConvLSTM are detailed in Eq. 6.

gt
i = σ(wxi ∗ xt + whi ∗ ht−1 + bi)

gt
f = σ(wxf ∗ xt + whf ∗ ht−1 + bf )

mt = gt
f ◦ ht−1 + gt

i ◦ tanh(wxm ∗ xt + whm ∗ ht−1 + bm)

gt
o = σ(wxo ∗ xt + who ∗ xt + bo)

ht = gt
o ◦ tanh(mt)

(6)

where the input, forget and output gates, gt
i, gt

f and gt
o, of ConvLSTM are

vectors. mt and ht are memory cell tensor and hidden state tensor respectively.
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σ(·) is the sigma function. w and b are the corresponding weights and bias in
each operation. ∗ is a symbol for one-dimensional convolution, and ◦ denotes the
element-wise product.

If the size of the convolution kernel is 1, the learned offset is defined as,

ot = wof ∗ ht + bof (7)

where ot ∈ R
Je is the learned offset tensor. If the size of convolution kernel is

N , the output offset is a matrix Ot ∈ R
Je×N . Each column of Ot corresponds

to an offset set {δn}N
n=1 on a convolution anchor.

3.3 Learning and Classification

After passing through the Deformable Pose Traversal Convolution network, the
pose traversal data is transferred to an abstract pose feature. The feature is
then fed into the main LSTM to model the long-term temporal evolution of the
input action or gesture. We use the hidden state hT

m from the last time step
to predict the label. The hidden state hT

m is passed into a fully-connected layer
and a softmax layer to generate ẑ ∈ R

K for action and gesture classification.
The k-th element of ẑ is the estimated probability of the input sequence V
belonging to class k, namely ẑk = p(k|V ). The objective function is to minimize
the cross-entropy loss, which can be optimized via back-propagation through
time(BPTT) [36] in an end-to-end manner.

4 Experiments

In this section, we evaluate and analyze the proposed method on three 3D action
and gesture datasets. The implementation details are introduced in Sect. 4.1.
Comparison results on the Dynamic Hand Gesture 14/28 dataset (DHG) [29],
the NTU-RGB+D dataset (NTU) [13], and the Berkeley Multi-modal Human
Action dataset (MHAD) [37] are provided and discussed in Sect. 4.3. Experi-
ment results show that the proposed Deformable Pose Traversal Convolution
effectively search the optimal joint combinations on-line and achieves the state-
of-the-arts performance for both 3D action and gesture recognition.

4.1 Implementation

Representation. The three datasets include single actions, two-person interac-
tions, and hand gestures. All the body actions and hand gestures are represented
as 3D poses. To ensure location and view invariance of the representation, each
joint of the pose is centralized by subtracting the temporal average pose-center,
and each pose is pre-rotated. For single-person actions and hand gestures, the
pose-centers are defined as the hip-joint and palm-joint respectively. For two-
person interaction, the pose-center is the average hip-joint of the two involved
persons in each frame. The two-person interaction is represented by the absolute
difference of corresponding joints in two persons.
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Table 1. Comparison of results on hand gesture dataset - DHG (%)

Method Fine Coarse Both-14 Both-28

Skeletal quads [38] 70.6 92.2 84.5 79.4

SoCJ+HoHD+HoWR [29] 73.6 88.3 83.1 80.0

Pose Chain Conv 76.2 90.4 80.4 75.7

Pose Traversal Conv 77.1 91.8 81.1 76.6

D-Pose Traversal Conv 81.9 95.2 85.8 80.2

Network. The convolution networks for pose feature extraction in all the experi-
ments share the same network parameters. We modify the Temporal Convolution
Network [35] to extract pose feature of each frame. The main parameters of the
network are shown in Fig. 2. In our experiments, we use one-layer ConvLSTM
for offset learning. The numbers of the main LSTM layer are two, three, and two
for DHG, NTU, and MHAD respectively.

Training. Our neural network is implemented by PyTorch. The stochastic opti-
mization method Adam [39] is adapted to train the network. We use gradient
clipping similar to [40] to avoid the exploding gradient problem. The initial learn-
ing rate of the training is set to 0.001. The batch size for the DHG, NTU, and
MHAD dataset are 64, 64, and 32 respectively. For efficient learning, we train
the Pose Traversal Convolution network first and use the learned parameters to
initialize the deformable network.

4.2 Datasets

Dynamic Hand Gesture 14/28. The Dynamic Hand Gesture 14/28 dataset
is collected with Intel Real Sense Depth Camera. It includes 14 hand gesture
categories, which are performed in two ways, using one finger and the whole
hand. Following the protocol introduced in [29], the evaluation experiment is
conducted under four settings, Fine, Coarse, Both-14, and Both-28. In each
experiment setting, we use leave-one-subject-out cross-validation strategy.

NTU-RGB+D. The NTU-RGB+D dataset is collected with Kinect V2 depth
camera. There are 60 different action classes. We follow the protocol described
in [13] to conduct the experiments. There are two standard evaluation settings,
the cross-subject (CS) and the cross-view (CV) evaluation. In CS setting, half
of the subjects are used for training and the remaining are for testing. In CV
setting, two of the three views are used for training and the remaining one is for
testing.

Berkeley MHAD. The action sequences in Berkeley MHAD dataset are cap-
tured by a motion capture system. There are 11 action categories in this dataset.
We follow the experimental protocol introduced in [37] to evaluate the proposed
method. The sequences performed by the first seven subjects are for training
while the ones performed by the rest subjects are for testing.
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Table 2. Comparison on NTU (%)

Method CS CV

ST-LSTM [14] 69.2 77.7

Two streams [35] 71.3 79.5

GCA-LSTM [6] 74.4 82.8

RNN tree [10] 74.6 83.2

CNN+MTLN [32] 79.6 84.8

Li et al. [41] 83.2 89.3

Pose Chain Conv 75.2 83.4

Pose Traversal Conv 76.1 84.3

D-Pose Traversal Conv 76.8 84.9

Table 3. Comparison on MHAD (%)

Method Accuracy

SMIJ [25] 95.4

Meta-Cognitive [42] 97.6

Dynemes and Forward [43] 98.2

HBRNN [12] 100.0

ST-LSTM [14] 100.0

ST-NBNN [5] 100.0

Pose Chain Conv 96.4

Pose Traversal Conv 98.6

D-Pose Traversal Conv 100.0

4.3 Results and Analysis

Comparison with Baselines
We compare the proposed method with two baselines on three datasets, DHG,
NTU and MHAD. The two baseline methods are the Pose Convolution with
single chain representation (Pose Chain Conv), which simply flatten the pose
graph without considering the neighboring relation of joints, and the Pose Con-
volution with Pose Traversal representation (Pose Traversal Conv). The com-
parison results are shown in Tables 1, 2 and 3 respectively. From the tables we
can see that Pose Traversal Convolution achieves better performance than the
Pose Chain Convolution, which verifies the effectiveness of the involvement of
traversal representation in pose convolution. In these three datasets, we can
also witness that the Deformable Pose Traversal Convolution (D-Pose Traversal
Conv) performs better than the Pose Traversal Convolution. The Deformable
Pose Traversal Convolution is able to find good combinations of key joints in
each convolution operation and to avoid non-informative or noisy joints, which
can effectively help improve the recognition accuracy. Moreover, the performance
improvement is significantly great on dynamic hand gestures which involve coor-
dination of more pose parts than body actions.

Figure 4a shows the comparison of confusion matrices between Pose Traversal
Convolution and Deformable Pose Traversal Convolution on DHG-14 dataset,
under the Both-14 setting. As can be seen from this figure, compared with the
Pose Traversal Convolution, the confusion matrix of the Deformable Pose Traver-
sal Convolution is clearer, which means that the confusion between gestures is
reduced by using Deformable Pose Traversal Convolution. We can also see that
there is great confusion between the gesture “Grab” and gesture “Pinch”. These
two gestures both belong to the “Fine” category, and they are very similar to
each other. The Deformable Pose Traversal Convolution can greatly reduce the
number of “Pinch” testing samples wrongly classified as “Grab”, as shown in
Fig. 4b. The recognition accuracy of the “Pinch” gesture is greatly improved
from 49% to 71.5%.
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Fig. 4. (a) Comparison of confusion matrices between Pose Traversal Convolution and
Deformable Pose Traversal Convolution on DHG-14. The red rectangle marks the sub
part of the matrix, which includes the two similar gestures “Grab” and “Pinch”. The
gestures in DHG-14 are 1. Grab, 2. Tap, 3. Expand, 4. Pinch, 5. Rotation CW, 6. Rota-
tion CCW, 7. Swipe Right, 8. Swipe Left, 9. Swipe Up, 10. Swipe Down, 11. Swipe
X, 12. Swipe V, 13. Swipe +, 14. Shake. (b) Comparison of Sub Confusion Matri-
ces between Pose Traversal Convolution and Deformable Pose Traversal Convolution.
(Color figure online)

Comparison with the State-of-the-Arts
In this section, the proposed method is compared with the existing methods on
three benchmark datasets, DHG-14/28, NTU-RGBD+D, and Berkeley MHAD.
As can be seen from Tables 1, 2 and 3, our method achieves comparable perfor-
mance with the state-of-the-arts on NTU-RGB+D dataset and Berkeley MHAD
dataset. On the Dynamic Hand Gesture dataset, the proposed method performs
significantly better than the existing methods. It is worth noting that the pro-
posed method, Deformable Pose Traversal Convolution network, performs better
than the ST-LSTM [14] and Two Streams network [15] which use Long-Short-
Term-Memory network (LSTM) to model the spatial context of joints.

Robustness Analysis
(1) Rotation. As 2D pose estimation methods [44,45] reach a new level recently,
we consider whether the proposed method is able to handle 2D pose data well.
We conduct an experiment to compare the performance of the Pose Traversal
Convolution (PTC) and the Deformable Pose Traversal Convolution (DPTC) on
both 2D and 3D data of DHG dataset. The results are shown in Table 4. As can
be seen, the accuracies of the proposed methods on 2D data are comparable with
the ones on 3D data under different settings. The reason is that the DHG dataset
is collected for human-computer interaction, and all the recorded gestures are
performed with the palm facing to the camera. Although there is one dimension
missing, the proposed method still achieves the performance that is similar to
the one on 3D data. The results verify the effectiveness of DPTC over PTC.
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We further evaluate the performance of our method under different data
rotation to see its robustness to rotation. We rotate the 3D hand pose along the
y-axis with −90◦, −60◦, −30◦, 30◦, 60◦, as well as 90◦, and record the recognition
accuracies under these settings. The results are shown in Fig. 5. As can be seen,
though with different rotations, the proposed methods can still maintain the
performance on 3D data, while on 2D data, the performance changes as along the
increase of the rotation degree. Under the 2D data setting, the Deformable Pose
Traversal Convolution still finds the optimal joint combinations and performs
better than the Pose Traversal Convolution. Considering the rotation of the
users’ hand is just around ±30◦ in human-computer interaction, our method is
able to handle the daily situation well.

(2) Noise. Although pose estimation methods achieve good performance
recently, the pose noise caused by the estimation errors and occlusion still can-
not be ignored in 3D action and gesture recognition. In this section, we conduct
experiments to show the tolerance of the proposed method to the pose noise on
Berkeley MHAD dataset. We randomly select 10%, 20%, 30%, 40% and 50% of
the pose joints and add severe random noise with maximum amplitude up to
50 on the selected joints. We evaluate the performance of Pose Traversal Con-
volution and Deformable Pose Traversal Convolution with different percentages
of noisy joint. The results are shown in Fig. 6. As can be seen from the figure,
thought the accuracy of PTC drops a lot due to the impact of noise, DPTC still
can avoid the noisy joints and achieve good performance. Under the setting of
50% noisy joints, the accuracy improvement from PTC to DPTC is 7.64%. Here
the noise we use is severe one with amplitude up to 50, and the proposed DPTC
can still perform well. Under the setting of 50% noisy joints, we also evaluate
PTC and DPTC by using small noise with amplitude up to only 5. The accuracy
of PTC and DPTC are 96.36% and 98.18% respectively. We can see that Pose
Traversal Convolution is able to well handle small noise by using the neighboring
spatial context of joints.

Fig. 5. Impact of Rotation on Accuracy Fig. 6. Impact of Noise on Accuracy
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Table 4. Comparison between 2D and 3D Data on DHG (%)

Method Fine Coarse Both-14 Both-28

Pose Traversal Conv-2D 74.6 90.1 81.2 77.1

Pose Traversal Conv-3D 77.1 91.8 81.1 76.6

D-Pose Traversal Conv-2D 81.9 94.9 85.1 80.4

D-Pose Traversal Conv-3D 81.9 95.2 85.8 80.2

Visualization
In this section, we visualize the learned offsets of a single frame from the offset
learning module in Fig. 7. The experiment is conducted on the cross-view setting
of the NTU dataset. To simplify the visualization of the experiment, we set the
size of the convolution kernel to one. Under this setting, the learned offsets re-
arrange the sampling points of the convolution and shift these sampling points to
key joint locations that matter to the action. For the action “Throw” in Fig. 7a,
the high response offsets are located around the right hand, marked by colored
points. The sketch part at the corner of the sub-figure is the right hand. As can
be seen, the kernels on the both side of the index finger are moving toward it,

Fig. 7. Visualization of the Learned Offsets. The blue curve shows the offset for con-
volution kernel on each anchor. The sketch on the corner of each sub-figure shows the
part of the pose that has high offset response in offset learning. The colors of the joints
in the sketch correspond to the colored marker on the x-axis of the figures. The red
arrows in the sketch guide the direction of the traversal. (Color figure online)
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which indicates that for the action “Throw” the key joints are near the right
index finger, and the model shifts its kernels to obtain better information. For
the action “Kick Something” in Fig. 7d, the high response offsets are located in
the left foot part, which guide the kernels to move toward the location between
the left knee and the left ankle, not the left tiptoe. The reason is that the pose
estimation of feet is not always stable in the NTU-RGB+D dataset especially
under the cross-view setting, and hence the offset module chooses the point
between the knee and the ankle to represent the “Kick” action. The action
“Cross Hand” is performed by two hands, and as can be seen from Fig. 7f, there
are high responses on the both hand parts.

5 Conclusions

In this work, we introduce a deformable one-dimensional convolution neural
network to traverse 3D pose for pose representation. The convolution kernel is
guided by ConvLSTM to deform for discovering optimal convolution context.
Due to the recurrent property of ConvLSTM, it can model the temporal dynam-
ics of kernel deformation. The proposed Deformable Pose Traversal Convolution
is able to discover the optimal key joint combinations, as well as avoid non-
informative joints, and hence achieves better recognition accuracy. Experiments
validate the proposed contribution and verify the effectiveness and robustness of
the proposed Deformable Pose Traversal Convolution.
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