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Abstract. Current methods for single-image depth estimation use
training datasets with real image-depth pairs or stereo pairs, which are
not easy to acquire. We propose a framework, trained on synthetic image-
depth pairs and unpaired real images, that comprises an image transla-
tion network for enhancing realism of input images, followed by a depth
prediction network. A key idea is having the first network act as a wide-
spectrum input translator, taking in either synthetic or real images, and
ideally producing minimally modified realistic images. This is done via a
reconstruction loss when the training input is real, and GAN loss when
synthetic, removing the need for heuristic self-regularization. The second
network is trained on a task loss for synthetic image-depth pairs, with
extra GAN loss to unify real and synthetic feature distributions. Impor-
tantly, the framework can be trained end-to-end, leading to good results,
even surpassing early deep-learning methods that use real paired data.

Keywords: Single-image depth estimation · Unpaired images
Synthetic data · Domain adaptation

1 Introduction

Single-image depth estimation is a challenging ill-posed problem for which good
progress has been made in recent years, using supervised deep learning tech-
niques [3,4,22,23] that learn the mapping between image features and depth
maps from large training datasets comprising image-depth pairs. An obvious
limitation, however, is the need for vast amounts of paired training data for
each scene type. Building such extensive datasets for specific scene types is
a high-effort, high-cost undertaking [9,32,34] due to the need for specialized
depth-sensing equipment. The limitation is compounded by the difficulty that
traditional supervised learning models face in generalizing to new datasets and
environments [23].

To mitigate the cost of acquiring large paired datasets, a few unsupervised
learning methods [7,10,20] have been proposed, focused on estimating accu-
rate disparity maps from easier-to-obtain binocular stereo images. Nonetheless,
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stereo imagery are still not as readily available as individual images, and sys-
tems trained on one dataset will find difficulty in generalizing well to other
datasets (observed in [10]), unless camera parameters and rigs are identical in
the datasets.

A recent trend that has emerged from the challenge of real data acquisition
is the approach of training on synthetic data for use on real data [14,28,33], par-
ticularly for scenarios in which synthetic data can be easily generated. Inspired
by these methods, we have researched a single-image depth estimation method
that utilizes synthetic image-depth pairs instead of real paired data, but which
also exploits the wide availability of unpaired real images. In short, our scenario
is thus: we have a large set of real imagery, but these do not have correspond-
ing ground-truth depth maps. We also have access to a large set of synthetic
3D scenes, from which we can render multiple synthetic images from different
viewpoints and their corresponding depth maps. The main goal then is to learn
a depth map estimator when presented with a real image. Consider two of the
more obvious approaches:

1. Train an estimator using only synthetic image and depth maps, and hope
that the estimator applies well to real imagery (Naive in Fig. 1).

2. Use a two-stage framework in which synthetic imagery is first translated into
the real-image domain using a GAN, and then train the estimator as before
(Vanilla version in Fig. 1).

The problem with (1) is that it is unlikely the estimator is oblivious to the differ-
ences between synthetic and real imagery. In (2), while a GAN may encourage
synthetic images to map to the distribution of real images, it does not explicitly
require the translated realistic image to have any physically-correct relationship
to its corresponding depth map, meaning that the learned estimator will not
apply well to actual real input. This may be somewhat mediated by introducing
some regularization loss to try and keep the translated image “similar” in con-
tent to the original synthetic image (as in SimGAN [33]), but we cannot identify
any principled regularization loss functions, only heuristic ones.

fT fT fT

fT

Naive

Synthetic

Realistic

Ours(T2Net)Vanilla version
Reconstruction loss

Fig. 1. Possible approaches to depth estimation using synthetic image-depth pairs
(xs, ys) and unpaired real images xr. See main text for details.

In this work, we introduce an interesting perspective on the approach of
(2). We propose to have the entire inference pipeline be agnostic as to whether
the input image is real or synthetic, i.e. it should work equally well regardless.
To do so, we want the synthetic-to-realistic translation network to also behave
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as an identity transform when presented with real images, which is effected by
including a reconstruction loss when training with real images.

The broad idea here is that, in a whole spectrum of synthetic images with
differing levels of realism, the network should modify a realistic image less than
a more obviously synthetic image. This is not true of original GANs, which
may transform a realistic image into a different realistic image. In short, for the
synthetic-to-real translation portion, real training images are challenged with
a reconstruction loss, while synthetic images are challenged with a GAN-based
adversarial loss [11]. This real-synthetic agnosticism is the principled formula-
tion that allows us to dispense with an ad hoc regularization loss for synthetic
imagery. When coupled with a task loss for the image-to-depth estimation por-
tion, it leads to an end-to-end trainable pipeline that works well, and does not
require the use of any real image-depth pairs nor stereo pairs (Ours(T2Net) in
Fig. 1).

In summary, the main contributions of this work are as follows:

1. A novel, end-to-end trainable architecture that jointly learns a synthetic-
to-realistic translation network and a task network for single-image depth
estimation, without real image-depth pairs or stereo pairs for training.

2. The concept of a wide-spectrum input translation network, trained by incor-
porating adversarial loss for synthetic training input and reconstruction loss
for real training images, which is justified in a principled manner and leads
to more robust translation.

3. The qualitative and quantitative results show that the proposed framework
performs substantially better than approaches using only synthetic data, and
can even outperform earlier deep learning techniques that were trained on
real image-depth pairs or stereo pairs.

2 Related Work

For this paper, the two related sets of work are single image depth estimation
methods, and unpaired image-to-image translation approaches.

After classical learning techniques were earlier applied to single-image depth
estimation [15,17,21,31,32], deep learning approaches took hold. In [4] a two-
scale CNN architecture was proposed to learn the depth map from raw pixel
values. This was followed by several CNN-based methods, which included com-
bining deep CNN with continuous CRFs for estimating depth values [23], simul-
taneously predicting semantic labels and depth maps [37], and treating the depth
estimation as a classification task [1]. One common drawback of these methods is
that they rely on large quantities of paired images and depths in various scenes
for training. Unlike RGB images, real RGB-depth pairs are much scarcer.

To overcome the above-mentioned problems, some unsupervised and semi-
supervised learning methods have recently been proposed that do not require
image-depth pairs during training. In [7], the autoencoder network structure is
translated to predict depths by minimizing the image reconstruction loss of image
stereo pairs. More recently, this approach has been extended in [10,20], where
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left-right consistency was used to ensure both good quality image reconstruction
and depth estimation. While the data availability for these cases was perhaps
not as challenging since special capture devices were not needed, nevertheless
they depend on the availability or collection of stereo pairs with highly accurate
rigs for consistent camera baselines and relative poses. This dependency makes it
particularly difficult to cross datasets (i.e. training on one dataset and testing on
another), as evidenced by the results presented in [10]. To alleviate this problem,
an unsupervised adaption method [36] was proposed to fine-tune a stereo network
to a different dataset from which it was pre-trained on. This was achieved by
running conventional stereo algorithms and confidence measures on the new
dataset, but on much fewer images and at sparser locations.

Separately, several other works have explored image-to-image translation
without using paired data. The earlier style-translation networks [8,16] would
synthesize a new image by combining the “content” of one image with the “style”
of another image. In [25], the weight-sharing strategy was introduced to learn
a joint representation across domains. This framework was extended in [24] by
integrating variational autoencoders and generative adversarial networks. Other
concurrent works [18,38,40] utilized cycle consistency to encourage a more mean-
ingful translation. However, these methods were focused on generating visually
pleasing images, whereas for us image translation is an intermediate goal, with
the primary objective being depth estimation, and thus the fidelity of 3D shape
semantics in the translation has overriding importance.

In [33], a SimGAN was proposed to render realistic images from synthetic
images for gaze estimation as well as human hand pose estimation. A self-
regularization loss is used to force the generated target images to be similar
to the original source images. However, we consider this loss to be somewhat
ad hoc and runs counter to the translation effort; it may work well in small
domain shifts, but is too limiting for our problem. As such, we use a more prin-
cipled reconstruction loss as detailed in the next sections. More recently, a cycle-
consistent adversarial domain adaption method was proposed [14] to generate
target domain training images for digit classification and semantic segmentation.
However this method is too complex for end-to-end training, which we consider
to be an important requirement to achieve good results.

3 Method

Our main goal is to train an image-to-depth network fT , such that when pre-
sented with a single RGB image, it predicts the corresponding depth map accu-
rately.

In terms of data availability for training, we assume that we have access to
a collection of individual real-world images xr, without stereo pairing nor corre-
sponding ground truth depth maps. Instead, we assume that we have access to a
collection of synthetic 3D models, from which it is possible to render numerous
synthetic images and corresponding depth maps, denoted in pairs of (xs, ys).

Instead of directly training fT on the synthetic (xs, ys) data, we expect that
the synthetic images are insufficiently similar to the real images, to require a
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prior image translation network GS→R for domain adaptation to make the syn-
thetic images more realistic. However, as discussed previously, existing image
translation methods do not adequately preserve the geometric content for accu-
rate depth prediction, or require heuristic regularization loss functions.
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Fig. 2. The proposed T 2Net consists of the Translation part (left, orange) and Task
prediction part (right, blue). See the main text for details. (Color figure online)

Our key novel insight is this: instead of training GS→R to be a narrow-
spectrum translation network that translates one specific domain to another,
we will train it as a wide-spectrum translation network, to which we can feed
a range of input domains, i.e. synthetic imagery as well as actual real images.
The intention is to have GS→R implicitly learn to apply the minimum change
needed to make an image realistic, and consider this the most principled way to
regularize a network for preserving shape semantics needed for depth prediction.

To achieve this, we propose the twin pipeline training framework shown in
Fig. 2, which we call T2Net to highlight the combination of an image translation
network and a task prediction network. The upper portion shows the training
pipeline with synthetic (xs, ys) pairs, while the lower portion shows the training
pipeline with real images xr. Note that both pipelines share identical weights
for the GS→R network, and likewise for the fT network. More specifically:

– For real images, we want GS→R to behave as an autoencoder and apply
minimal change to the images, and thus use a reconstruction loss.

– For synthetic data, we want GS→R to translate synthetic images into the
real-image domain, and use a GAN loss via discriminator DR on the output.
The translated images are next passed through fT for depth prediction, and
then compared to the synthetic ground truth depths ys via a task loss.

– In addition, we also propose that the inner feature representations of fT

should share similar distributions for both real and translated images, which
can be implemented through a feature-based GAN via Dfeat.

Note that one key benefit of this framework is that it can and should be trained
end-to-end, with the weights of GS→R and fT simultaneously optimized.
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3.1 Adversarial Loss with Target-Domain Reconstruction

Intuitively, the gap between synthetic and realistic imagery comes from low-level
differences such as color and texture (e.g. of trees, roads), rather than high-level
geometric and semantic differences. To bridge this gap between the two domains,
an ideal translator network, for use within an image-to-depth framework, needs
to output images that are impossible to be distinguished from real images and yet
retain the original scene geometry present in the synthetic input images. The
distribution of real world images can be replicated using adversarial learning,
where a generator GS→R tries to transform a synthetic image xs to be indistin-
guishable from real images of xr, while a discriminator DR aims to differentiate
between the generated image x̂s and real images xr. Following the typical GAN
approach [11], we model this minimax game using an adversarial loss given by

LGAN(GS→R,DR) = Exr∼XR
[log DR(xr)] + Exs∼XS

[log(1 − DR(GS→R(xs)))]
(1)

where generator and discriminator parameters are updated alternately.
However, a vanilla GAN is insufficiently constrained to preserve scene geom-

etry. To regularize this in a principled manner, we want generator GS→R to
behave as a wide-spectrum translator, able to take in both real and synthetic
imagery, and in both cases produce real imagery. When the input is a real image,
we would want the image to remain as much unchanged perceptually, and a
reconstruction loss

Lr(GS→R) = ||GS→R(xr) − xr||1 (2)

is applied when the input to GS→R is a real image xr. Note that while this may
bear some resemblance to the use of reconstruction losses in CycleGAN [40] and
α-GAN [30], ours is a unidirectional forward loss, and not a cyclical loss.

3.2 Task Loss

After a synthetic image xs is translated, we obtain a generated realistic image
x̂s, which can still be paired to the corresponding synthetic depth map ys. This
paired translated data (x̂s, ys) can be used to train the task network fT . Follow-
ing convention, we directly measure per-pixel difference between the predicted
depth map and the synthetic (ground truth) depth map as a task loss:

Lt(fT ) = ||fT (x̂s) − ys||1 (3)

We also regularize fT for real training images. Since real ground truth depth
maps are not available during training, a locally smooth loss is introduced to
guide a more reasonable depth estimation, in keeping with [7,10,13,20]. As depth
discontinuities often occur at object boundaries, we use a robust penalty with
an edge-aware term to optimize the depths, similar to [10]:

Ls(fT ) = |∂xfT (xr)|e−|∂xxr| + |∂yfT (xr)|e−|∂yxr| (4)

where xr is the real world image, and noting that fT share identical weights in
both real and synthetic input pipelines.
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In addition, we also want the internal feature representations of real and
translated-synthetic images in the encoder-decoder network of fT to have similar
distributions [6]. In theory, the decoder portion of fT should generate similar
prediction results from the two domains when their feature distributions are
similar. Thus we further define a feature-level GAN loss as follows:

LGANf
(fT ,Dfeat) = Efx̂s∼fX̂s

[log Dfeat(fx̂s
)]+Efxr∼fXr

[log(1−Dfeat(fxr
))] (5)

where fx̂s
and fxr

are features obtained by the encoder portion of fT for
translated-synthetic images and real images respectively. As noted in [11], the
optimal solution measures the Jensen-Shannon divergence between the two
distributions.

3.3 Full Objective

Taken together, our full objective is:

LT2Net(GS→R, fT ,DR,Dfeat) =LGAN(GS→R,DR) + αfLGANf
(fT ,Dfeat)

+ αrLr(GS→R) + αtLt(fT ) + αsLs(fT ) (6)

where LGAN encourages translated synthetic images to appear realistic, Lr spurs
translated real images to appear identical, LGANf

enforces closer internal fea-
ture distributions, Lt promotes accurate depth prediction for synthetic pairs,
and Ls prefers an appropriate local depth variation for real predictions. In our
end-to-end training, this objective is used in solving for optimal fT parameters:

f∗
T = arg min

fT

min
GS→R

max
DR,Dfeat

LT2Net(GS→R, fT ,DR,Dfeat) (7)

3.4 Network Architecture

The transform network, GS→R, is a residual network (ResNet) [12] similar to
SimGAN [33]. Limited by memory constraints and the large size of scene images,
one down-sampling layer is used in our model and the output is only passed
through 6 blocks. For the image discriminator networks, we use PatchGANs [33,
40], which have produced impressive results by discriminating locally whether
image patches are real or fake.

The task prediction network is inspired by [10], which outputs four predicted
depth maps of different scales. Instead of encoding input images into very small
dimensions to extract global information, we instead use multiple dilation convo-
lutions [39] with a large feature size to preserve fine-grained details. In addition,
we employ different weights for the paths with skip connections [29], which can
simultaneously process larger-scale semantic information in the scene and yet
also predict detailed depth maps. The use of these techniques allows our task
prediction network fT to achieve state-of-the-art performance in our own real-
supervised benchmark method (training fT on pairs of real images and depth),
even when the encoder portion of fT is primarily based on VGG, as opposed to
a more typical ResNet50-type network used in other methods [10,20].
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4 Experimental Results

We evaluated our model on the outdoor KITTI dataset [9] and the indoor NYU
Depth v2 dataset [34]. During the training process, we only used unpaired real
images from these datasets in conjunction with synthetic image-depth pairs,
obtained via SUNCG [35] and vKITTI [5] datasets, in our proposed framework.

4.1 Implementation Details

Training Details: In order to control the effect of GAN loss, we substituted
the vanilla negative log likelihood objective with a least-squares loss [26], which
has proven to be more stable during adversarial learning [40]. Hence, for GAN
loss LGAN(GS→R,DR) in (1), we trained GS→R by minimizing

Exs∼Xs
[(DR(GS→R(xs)) − 1)2]

and trained DR by minimizing

Exr∼Xr
[(DR(xr) − 1)2] + Exs∼Xs

[D2
R(GS→R(xs))].

A similar procedure was also applied for the GAN loss in (5).
We trained our model using PyTorch. During optimization, the weights of

different loss components were set to αf = 0.1, αr = 40, αt = 20, αs = 0.01 for
indoor scenes and αf = 0.1, αr = 100, αt = 100, αs = 0.01 for outdoor scenes.
For both indoor and outdoor datasets, we used the Adam solver [19], setting
β1 = 0.5, β2 = 0.9 for the adversarial network and β1 = 0.95, β2 = 0.999 for the
task network. All networks were trained from scratch, with a learning rate of
10−4 (task network) and 2 × 10−5 (translation network) for the first 10 epochs
and a linearly decaying rate for the next 10 epochs. In addition, as the indoor
synthetic images and real NYUDv2 images are visually quite different, they are
easily distinguished by the discriminator. To balance the minimax game, we
updated GS→R five times for each update of DR during the indoor experiments.
Please see the supplementary material for more details.

Our fT -only Benchmark Models: Besides our full T2Net model, we also
tested our partial model which comprised solely the fT task prediction network.
We evaluated this in two scenarios: (1) an “all-real” scenario, in which we
used real image and depth map pairs for training, for which we would expect to
upper bound our full model performance, and (2) an “all-synthetic” scenario, in
which we used only synthetic image-depth pairs and eschewed even unpaired real
images, for which we would expect to lower bound our full model performance.

Evaluation Metrics: We evaluated the performance of our approach using the
depth evaluation metrics reported in [4]:

RMSE(log) :
√

1
|T |

∑T
i=1 || log ŷr,i − log yr,i||2 RMSE :

√
1

|T |
∑T

i=1 ||ŷr,i − yr,i||2
Sq. relative : 1

|T |
∑T

i=1 ||ŷr,i − yr,i||2/yr,i Abs relative : 1
|T |

∑T
i=1 |ŷr,i − yr,i|/yr,i

Accuracy : % of yr,i s.t. max(
ŷr,i
yr,i

,
yr,i
ŷr.i

) = δ < thr
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Fig. 3. Example output of our translation network for SUNCG [35] renderings. Top:
synthetic images rendered from SUNCG. Middle: corresponding images after GS→R

translation. Bottom: real images from NYUDv2 [34] (no correspondence to above rows).

4.2 NYUDv2 Dataset

Synthetic Indoor Dataset: To generate the paired synthetic training data,
we rendered RGB images and depth maps from the SUNCG dataset [35], which
contains 45,622 3D houses with various room types. We chose the camera loca-
tions, poses and parameters based on the distribution of real NYUDv2 dataset
[34] and retained valid depth maps using the criteria presented in [35]: (a) valid
depth area (depth values in range of 1 m to 10 m) larger than 70% of image area,
and (b) more than two object categories in the scene. In total we generated
130,190 valid views from 4,562 different houses, with samples shown in Fig. 3.

Translated Results: Figure 3 shows sample output from translation through
GS→R. We observe that the visual differences between synthetic and real images
are obvious: colors, textures, illumination and shadows in real scenes are more
complex than in synthetic ones. Compared to synthetic images, the translated
versions are visually more similar to real images in terms of low-level appearance.

Depth Estimation Results: In Table 1, we report the performance of our
models (varying different application of the two GANs) as compared to latest
state-of-the-art methods on the public NYUDv2 dataset. In the indoor dataset,
these previous works were all based on supervised learning with real image-depth
pairs. The gray rows highlight methods in which real image-depth pairs were not
used in training. The train-set-mean baseline used the mean synthetic depth
map in the training dataset as prediction, with the results providing an indication
of the correlation between depth maps in the synthetic and real datasets. We also
present results from our fT -only benchmark models in the “all-real” and “all-
synthetic” setups (see Sect. 4.1), which we expect to provide the upper bound
and lower bound of our model respectively.

Our proposed models produced a clear gap to the train-set-mean baseline and
the synthetic-only benchmark. While our models were unable to outperform the
latest fully-supervised methods trained on real paired data, the full T2Net model
was even able to outperform the earlier supervised learning method of [21] on
two of the three metrics, despite not using real paired data.
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Table 1. Depth estimation results on NYUDv2 dataset [34]. Gray rows indicate meth-
ods in which training is conducted without real image-depth pairs. Best supervised
results are marked with *, while best unsupervised results are in bold.

lower is better higher is better

Method Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

Ladicky et al. [21] - - - - 0.542 0.829 0.940

Eigen et al.[4] Fine 0.215 0.212 0.907 0.285 0.611 0.887 0.971

Liu et al. [23] 0.213 - 0.759 - 0.650 0.906 0.976

Eigen et al.[3] (VGG) 0.158 0.121∗ 0.641 0.214 0.769 0.950∗ 0.988∗

Baseline, train set mean 0.439 0.641 1.148 0.415 0.412 0.692 0.856

Our fT , all-real 0.157∗ 0.125 0.556∗ 0.199∗ 0.779∗ 0.943 0.983

Our fT , all-synthetic 0.304 0.394 1.024 0.369 0.458 0.771 0.916

Our T2Net, Dfeat only 0.320 0.405 0.991 0.343 0.480 0.792 0.933

Our T2Net, Dimage only 0.274 0.336 1.001 0.325 0.496 0.814 0.938

Our full T2Net 0.257 0.281 0.915 0.305 0.540 0.832 0.948

Test Images Ground Truth Eigen et al. [1] Liu et.al [3] Ours(full T2Net) Ours(fT, all real)

Fig. 4. Qualitative results on NYUDv2. All results are shown as relative depth maps
(red = far, blue = close). See text for details. (Color figure online)

We also show qualitative results in Fig. 4. Although the absolute values of our
predicted depths were not as accurate as the latest supervised learning methods,
we observe that our T2Net model generates reasonably good relative depths with
distinct furniture shapes, even without using real paired training data.

4.3 KITTI Dataset

Data Preprocessing: We used Virtual KITTI (vKITTI) [5], a photo-realistic
synthetic dataset that contains 21,260 image-depth paired frames generated from
different virtual urban worlds. The scenes and camera viewpoints are similar to
the real KITTI dataset [27]; see samples in Fig. 5. However, the ground truth
depths in vKITTI and KITTI are quite different. The maximum sensed depth
in a real KITTI image is typically on the order of 80 m, whereas vKITTI has
precise depths to a maximum of 655.3 m. To reduce the effect of ground truth
differences, the vKITTI depth maps were clipped to 80 m.
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Synthetic Images Syn2Real Images Realistic Images

Fig. 5. Example translated images for the outdoor vKITTI dataset [5]. (Right) the
images in real KITTI. (Left) synthetic images from vKITTI and translated images.

Translated Results: Figure 5 shows examples of synthetic, translated, and real
images from the outdoor datasets. As shown, the translated images have sub-
stantially greater resemblance to the real images than the synthetic images. Our
translation network can visually replicate the distributions of colors, textures,
shadows and other low-level features present in the real images, and meanwhile
preserve the scene geometry of the original synthetic images.

Depth Estimation Results: In order to compare with previous work, we used
the test split of 697 images proposed in [4]. Following [10], we chose 22,600 RGB
images from the remaining 32 scenes for training the translation network. As
before, we did not use real depths nor stereo pairs in our T2Net models. The
ground truth depth maps in KITTI were obtained by aligning laser scans with
color images, which produced less than 5% depth values and introduced sensor
errors. For fair comparison with state-of-the-art single view depth estimation
methods, we evaluated our results based on the cropping given in [7] and clamp-
ing the predicted depth values within the range of 1–50 m.

Table 2 shows quantitative results of testing with real images of the KITTI
dataset. We can observe that the performance of T2Net has a substantial 9.1%
absolute improvement compared to our all-synthetic trained model. Unlike the
indoor results, the best performance comes from without Dfeat. This is likely
due to the translated images much closer to real KITTI, which does not need to
match the feature distribution using Dfeat adversarial learning. We also observe
that our model despite training without real paired data, is able to outperform
the method of [4] trained on real paired image-depth data, as well as the method
of [7] trained on real left-right stereo data.

We also qualitatively compared the performance of the proposed model with
the state-of-the-art in Fig. 6. We only chose two representatives that either used
real paired color-depth images [4], or real left-right stereo images [10]. Compared
to [4], our model can generate full dense depth maps of input image size. Our
method is also able to detect more detail at object boundaries than [10], with
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Table 2. Results on KITTI 2015 [27] using the split of Eigen et al. [4]. For dataset,
K is the real KITTI dataset [27], CS is Cityscapes [2] and vK is the synthetic KITTI
dataset [5]. L, R are the left and right stereo images, and I, D are the images and
depths. The gray rows highlight methods that did not use real image-depth pairs nor
stereo pairs for training. Best real-supervised or stereo-based results are marked with *,
while best unsupervised results are in bold.

lower is better higher is better

Method Dataset cap Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

Eigen et al.[4] Fine K(I+D) 0-80m 0.190 1.515 7.156 0.270 0.692 0.899 0.967

Garg et al.[7] L12 Aug.8x K(L+R) 1-50m 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Godard et al. [10] CS+K(L+R) 1-50m 0.117 0.762 3.972 0.206 0.860 0.948 0.976

Kuznietsov et al. [20] K(D+L+R) 1-50m 0.108∗ 0.595∗ 3.518∗ 0.179 0.875∗ 0.964∗ 0.988∗

Baseline, train set mean vK(I+D) 1-50m 0.521 11.024 10.598 0.473 0.638 0.755 0.835

Our fT , all-real K(I+D) 1-50m 0.114 0.627 3.549 0.178∗ 0.867 0.960 0.986

Our fT , all-synthetic vK(I+D) 1-50m 0.278 3.216 6.268 0.322 0.681 0.854 0.929

Our T2Net, Dfeat only vK(I+D) + K(I) 1-50m 0.233 2.902 6.285 0.300 0.743 0.880 0.938

Our T2Net, Dimage only vK(I+D) + K(I) 1-50m 0.168 1.199 4.674 0.243 0.772 0.912 0.966

Our full T2Net vK(I+D) + K(I) 1-50m 0.169 1.230 4.717 0.245 0.769 0.912 0.965

Test Images Ground Truth Eigen et al. [1] Godard et al. [9] Ours(full T2Net) Ours(fT, all real)

Fig. 6. Qualitative results on KITTI, Eigen split [4]. The ground truth depths in the
original dataset were very sparse and have been interpolated for visualization.We con-
verted the disparity maps provided in [10] to depth maps.

a likely reason being that the synthetic training depth maps preserved object
details better. Another interesting observation is the predicted depth maps were
treating glass windows as permeable based on synthetic data, while they were
mostly sensed as opaque in the laser-based ground truth.

Performance on Make3D: To compare the generalization ability of our T2Net
to a different test dataset, we used our full T2Net model, trained only on vKITTI
paired data and (unpaired) real KITTI images, for testing on the Make3D
dataset [32]. We evaluated our model quantitatively on Make3D using the stan-
dard C1 metric. The RMSE(m) accuracy is 8.935, Log-10 is 0.574, Abs Rel is
0.508 and Sqr Rel is 6.589. The qualitative results presented in Fig. 7 show that
our model can generate reasonable depth map in most situations. The right part
of Fig. 7 displays some failure cases, likely due to large building windows not
being widely observed in the vKITTI datasets.
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Test Images Ground Truth Liu et al. [3] Ours Test Images Ground Truth Ours

Fig. 7. Qualitative results on Make3D. For most cases the model generated reasonable
depths except scenes with new object types not present in the synthetic data.

Synthetic Image CycleGAN [28] Ours(no reconstruction) Ours(with reconstruction)SimGAN [12]

Fig. 8. The qualitative results of different unpaired image-to-image translation meth-
ods trained using vKITTI and real KITTI dataset.

4.4 Ablation Study

We evaluated the contribution of different design choices in the proposed T2Net.
Table 3 shows the quantitative results and Fig. 8 shows some example outputs
of different methods for unpaired image translation.

End-to-End vs Separated: We began by evaluating the effect of end-to-end
learning. We found that end-to-end training outperformed separated training of
the translation network and task prediction network. One reasonable explanation
is that task loss is a form of supervised loss for synthetic-to-realistic translation.
This incentivizes the translation network to preserve geometric content present
in a synthetic image.

We also experimented with the unpaired image translation network Cycle-
GAN [40]. This model has two encoder-decoder translation networks and two
discriminators, but we were limited by machine memory and trained the Cycle-
GAN and task network separately. From Fig. 8, we found that while this model
generated very visually realistic images, it also created some realistic-looking
details that significantly distorted scene geometry. The quantitative performance
is close to our separated training results.

No Image Reconstruction: We studied what happens when training without
real-image reconstruction loss. In Fig. 8, we may surmise that the task loss in
the depth domain is able to encourage reasonable depiction of scene geometry
in the translation network. However the lack of a real image reconstruction loss
appears to make it harder to generate high resolution images. In addition, we
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noticed that while the removal of reconstruction loss still led to relatively good
results as seen in Table 3, this was only true in early training with best results
in epoch 3, with accuracy dropping after more training epochs.

Table 3. Quantitative results of different variants of our T2Net on KITTI using the
split of [4]. All methods are trained without the real world ground truth.

lower is better higher is better

Method Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

baseline, synthetic only 0.278 3.216 6.268 0.322 0.681 0.854 0.929

vanilla task network, synthetic only 0.295 3.793 8.403 0.363 0.600 0.817 0.912

vanilla task network, full approach 0.259 2.891 6.380 0.324 0.694 0.853 0.927

separated training 0.234 2.706 6.068 0.293 0.747 0.882 0.942

separated training with CycleGAN 0.212 1.973 5.340 0.269 0.750 0.895 0.952

self-domain reconstruction 0.199 1.517 5.349 0.298 0.695 0.866 0.9420

No reconstruction loss(epoch 3) 0.201 1.941 5.619 0.286 0.741 0.882 0.945

No feature loss 0.168 1.199 4.674 0.243 0.772 0.912 0.966

No image GAN loss 0.233 2.902 6.285 0.300 0.743 0.880 0.938

our full approach 0.169 1.230 4.717 0.245 0.769 0.912 0.965

Target Reconstruction vs Self-Regularization: Since the self-regularization
component of SimGAN is closest to our target-domain reconstruction concept,
we also trained our full model with L1 reconstruction loss for synthetic imagery,
which forces the generated target images to be similar to original input images.
From Fig. 8, we observe that this is unable to work well for large domain shifts
for the GAN loss and self-domain reconstruction loss play opposite roles in the
translation task.

5 Conclusion and Future Work

We presented our T2Net deep neural network for single-image depth estima-
tion, that requires only synthetic image-depth pairs and unpaired real images
for training. The overall system comprises an image translation network and a
depth prediction network. It is able to generate realistic images via a learning
framework that combines adversarial loss for synthetic input and target-domain
reconstruction loss for real input in the translation network, and a further com-
bination of a task loss and feature GAN loss in the depth prediction network.
The T2Net can be trained end-to-end, and does not require real image-depth
pairs nor stereo pairs for training. It is able to produce good results on the
NYUDv2 and KITTI datasets despite the lack of access to real paired training
data, and even outperformed early deep learning methods that were trained on
real paired data. In future, we intend to explore mechanisms that provide greater
generalization capability across different datasets.
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