
SegStereo: Exploiting Semantic
Information for Disparity Estimation

Guorun Yang1, Hengshuang Zhao2, Jianping Shi3, Zhidong Deng1(B),
and Jiaya Jia2,4

1 Department of Computer Science, State Key Laboratory of Intelligent Technology
and Systems, Beijing National Research Center for Information Science and

Technology, Tsinghua University, Beijing, China
ygr13@mails.tsinghua.edu.cn, michael@mail.tsinghua.edu.cn

2 The Chinese University of Hong Kong, Shatin, Hong Kong
hszhao@cse.cuhk.edu.hk, leojia@cse.cuhk.edu.hk

3 SenseTime Research, Beijing, China
shijianping@sensetime.com

4 Tencent YouTu Lab, Shenzhen, China

Abstract. Disparity estimation for binocular stereo images finds a wide
range of applications. Traditional algorithms may fail on featureless
regions, which could be handled by high-level clues such as semantic
segments. In this paper, we suggest that appropriate incorporation of
semantic cues can greatly rectify prediction in commonly-used disparity
estimation frameworks. Our method conducts semantic feature embed-
ding and regularizes semantic cues as the loss term to improve learning
disparity. Our unified model SegStereo employs semantic features from
segmentation and introduces semantic softmax loss, which helps improve
the prediction accuracy of disparity maps. The semantic cues work well
in both unsupervised and supervised manners. SegStereo achieves state-
of-the-art results on KITTI Stereo benchmark and produces decent pre-
diction on both CityScapes and FlyingThings3D datasets.
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Semantic feature embedding · Softmax loss regularization

1 Introduction

Disparity estimation is a fundamental problem in computer vision. It is impor-
tant in depth prediction, scene understanding, autonomous driving, to name a
few. The main goal of disparity estimation is to find corresponding pixels from
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stereo images for inferring object distance according to the displacement between
matching pixels.

Most previous methods [5,7,15,36] used hand-crafted reliable features to rep-
resent image patches and then selected matching pairs. They either formulate
the task as supervised learning [22,26] based on current labeled dataset [14,41],
or resort to unsupervised learning to form photometric loss for disparity pre-
diction [13,17]. Recently, with the development of deep neural networks, the
performance of disparity estimation is significantly improved [43]. The deep fea-
ture extracted from networks can exploit inherent global information in paired
input compared to traditional methods, therefore benefits from a large number
of training data either in supervised or unsupervised manner.

Although deep learning based methods produce impressive feature represen-
tation given its large receptive field, it is still difficult to overcome local ambigu-
ity, which is a common problem in disparity estimation. For example, in Fig. 1,
the disparity prediction in the center of road and vehicle area is not correct. It
is because the matching clues for disparity estimation on those ambiguous areas
are not enough to guide the model to seek correct direction for convergence,
which is however the central objective for both supervised and unsupervised
stereo learners.

Fig. 1. Examples of prediction of unsupervised models on KITTI Stereo dataset. Left:
input stereo images. Top-middle and top-right: colorized disparity and error maps
predicted without semantic clues. Bottom-middle and bottom-right: colorized disparity
and error maps predicted by SegStereo. With the guidance of semantic cues, disparity
estimation of SegStereo is more accurate especially on the local ambiguous areas.

Human can perform binocular alignment well at ambiguous areas by exploit-
ing more cues such as global perception of foreground and background, scaling
relative to the known size of familiar objects, and semantic consistency for indi-
viduals. Such ambiguous areas in disparity estimation always locate in the central
region given a big target. They are easy to deal with by semantic classification.

Based on the above-mentioned observation, we design an unified model called
SegStereo that incorporates semantic cues into backbone disparity estimation
network. Basically, we use the ResNet [19] with correlation operation [11] as
the encoder and several deconvolutional blocks as decoder to regress a full-size
disparity map. The correlation operation is designed in [11] to compute match-
ing cost volumes based on pairs of feature maps. A segmentation sub-network
is employed in our model to extract semantic features that are connected to
the disparity branch as the semantic feature embedding. Moreover, we propose
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the warped semantic consistency via semantic loss regularization, which further
enhances robustness of disparity estimation. Both semantic and disparity eval-
uation is fully-convolutional so that the proposed SegStereo enables end-to-end
training.

Our SegStereo model with semantic clues embedded benefits both unsuper-
vised and supervised training. In the unsupervised training, both photomet-
ric consistency loss and semantic softmax loss are computed and propagated
backward. Both the semantic feature embedding and semantic softmax loss can
introduce beneficial constraints of semantic consistency. The results evaluated on
KITTI Stereo dataset [33] demonstrate the effectiveness of our strategies. We also
apply the unsupervised model to CityScapes dataset [10]. It yields better perfor-
mance than classical SGM method [21]. For the supervised training scheme, we
adopt the supervised regression loss instead of unsupervised photometric consis-
tency loss to train the model, which achieves state-of-the-art results on KITTI
Stereo benchmark. We further apply the SegStereo model to FlyingThings3D
dataset [31]. It reaches high accuracy with normal fine-tuning.

Our main contribution and achievement are summarized below.

– We propose a unified framework called SegStereo that incorporates semantic
segmentation information into disparity estimation pipeline, where semantic
consistency becomes an active guidance for disparity estimation.

– The semantic feature embedding strategy and semantic guidance softmax loss
help train the system in both unsupervised and supervised manner.

– Our method achieves state-of-the-art results on KITTI Stereo datasets. The
results on CityScapes and FlyingThings3D dataset also manifest the effec-
tiveness of our method.

2 Related Work

Supervised Stereo Matching. Traditional methods design local descriptors
to compute local matching cost [15,20], followed by some global optimization
steps [21]. Zbontar and LeCun [43] are the first to use CNN for matching cost
computation. Luo et al. [30] designed a siamese network that extracts marginal
distributions over all possible disparities for each pixel. Chen et al. [8] presented
a multi-scale deep embedding model that fuses feature vectors learned within
different scale-spaces. Shaked and Wolf [38] proposed a highway network archi-
tecture with a hybrid loss that conducts multi-level comparison of image patches.

Inspired by other pixel-wise labeling tasks, the fully-convolution network
(FCN) [29] was used to enable end-to-end learning of disparity maps. Mayer
et al. [31] raised DispNet with a correlation module to encode matching cues
instead of picking corresponding pairs from stereo images. Kendall et al. [25] pro-
posed the GC-Net framework that combines contextual information by means
of 3D convolutions over a cost volume. A three-stage network of Gidaris and
Komodakis [16] implements a pipeline to detect, replace, and refine disparity
errors respectively. Pang et al. [34] presented a cascade network where the sec-
ond stage learned the residual between initial result and ground-truth values.
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Yu et al. [42] designed a two-stream network for generation and selection of
cost aggregation proposals respectively. Liang et al. [28] integrated disparity esti-
mation and refinement into one network. It reaches state-of-the-art performance
on KITTI benchmark [33]. Chang and Chen [6] exploited context information for
finding correspondence by a pyramid stereo matching network. In contrast, our
method concentrates on combining semantic information to improve disparity
estimation by semantic feature embedding.

Unsupervised Stereo Matching. In recent years, a number of unsupervised
learning methods based on spatial transformation were proposed for view synthe-
sis, depth prediction, optical flow and disparity estimation. Unsupervised meth-
ods get rid of the dependence of ground-truth labels, which are always expensive
to access. Flynn et al. [12] presented an image synthesis network called Deep-
Stereo that learns a cost volume combined with a separate conditional color
model. Xie et al. [40] designed a Deep3D network that minimizes pixel-wise
reconstruction loss to generate right-view images.

Garg et al. [13] proposed an end-to-end framework to learn single-view depth
by optimizing the projection errors in a calibrated stereo environment. The
improved method [17] introduces a fully-differentiable structure and an extra
left-right consistency check that leads to better results. A semi-supervised app-
roach was proposed by Kuznietsov et al. [27] where supervised and unsupervised
alignment loss are used to train the network for depth estimation. Yu et al. [23]
focused on unsupervised learning of optical flow via photometric constancy and
motion smoothness. Meister et al. [32] defined a bidirectional census loss to
train optical flow. An iterative unsupervised learning network presented by Zhou
et al. [45] adopts left-right checking to pick suitable matching pairs. Compared
with these unsupervised methods, our model applies warping reconstruction to
both photometric image and semantic maps, along with additional semantic
feature embedding, to reliably estimate disparity.

Semantic-Guided Algorithms. Compared to disparity estimation, semantic
segmentation is a high-level classification task where each pixel in the image
is assigned to a class [7,29,39,44]. Several methods apply scene parsing infor-
mation to other tasks. Guney and Geiger [18] leveraged object knowledge in
MRF formulation to resolve stereo ambiguity. Bai et al. [2] tackled instance-
level segmentation and epipolar constraints to reduce the uncertainty of optical
flow estimation. A cascaded classification framework of Ren et al. [35] itera-
tively refines semantic masks, stereo correspondence and optical flow fields. Behl
et al. [4] integrated the instance recognition cues into a CRF-based model for
scene flow estimation.

With similar motivation to ours, Cheng et al. [9] designed an end-to-end
trainable network called SegFlow, which enables joint learning for video object
segmentation and optical flow. This model contains a segmentation branch and
a flow branch whose feature maps concatenate. We differently focus on dispar-
ity estimation, where objects in the scene are captured at the same time so
that stable structural information can be exploited. In addition, our SegStereo
model also propagates softmax loss back to disparity branch by warping, which
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makes semantic information effective in the whole training process. In addition,
our model enables unsupervised learning of disparity with photometric loss and
semantic-aware constraints.

3 Our Method

In this section, we describe our SegStereo disparity estimation architecture, suit-
able for both unsupervised and supervised learning. We first present the basic
network for disparity regression. Then we detail our incorporation strategies of
semantic cues, including semantic feature embedding and semantic loss regular-
ization. Both of them are effective to rectify disparity prediction. Finally, we
show how disparity estimation is achieved under unsupervised and supervised
conditions.

3.1 Basic Network Architecture

Our overall SegStereo network is shown in Fig. 2. The backbone network is
ResNet-50 [19]. Instead of directly computing disparity on raw pixels, we adopt

Fig. 2. Our SegStereo framework. We extract intermediate features Fl and Fr from
stereo input. We calculate the cost volume Fc via the correlation operator. The left
segmentation feature map Fs

l is aggregated into disparity branch as semantic feature
embedding. The right segmentation feature map Fs

r is warped to left view for per-pixel
semantic prediction with softmax loss regularization. Both steps incorporate semantic
information to improve disparity estimation. The SegStereo framework enables both
unsupervised and supervised learning, using photometric loss Lp or disparity regression
loss Lr.
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the shallow part of ResNet-50 model to extract image features F l and Fr on the
paired input Il and Ir, which is known as robust to local context information
encoding.

The cost volume features for stereo matching Fc are computed by correlation
layer between F l and Fr, similar to that of DispNetC [31]. To preserve detail
information on left stereo feature, we apply a convolution block on F l and obtain
transformed feature Ft

l. Meanwhile, a segmentation network is utilized to com-
pute semantic features Fs

l and Fs
r for left and right images respectively, shar-

ing shallow layer representation with disparity network. The left transformed
disparity features Ft

l, the correlated features Fc and the left semantic fea-
tures Fs

l are concatenated as hybrid feature representation Fh. Here, semantic
cues are preliminarily introduced to the disparity network as Semantic Feature
Embedding.

After feature embedding, we feed Fh into the disparity encoder-decoder to
get full-size disparity map D. The disparity map is further used to warp right
semantic feature Fs

r to left under Semantic Loss Regularization, detailed in
Sect. 3.3. They constitute the key components of our framework. We describe
more setting details in Sect. 4.1 and in supplementary material.

3.2 Semantic Feature Embedding

The basic disparity estimation frameworks work well on image patches with
edges and corners where clear matching cues are located. It can be optimized
with photometric loss in an unsupervised system or guided by supervised �1 norm
regularization otherwise. The remaining major issue is on flat regions, as shown
in the first row of Fig. 1. We use semantic cues to help prediction and rectify the
final disparity map. As a result, we first incorporate the cues by embedding of
semantic feature.

Our semantic feature embedding combines information from left disparity
features Ft

l, the correlated features Fc and the left semantic features Fs
l. It con-

tains the following advantages. (1) The employed segmentation branch shares the
shallow computation with backbone disparity network for efficient computation
and effective representation. (2) The semantic feature Fs

l gives more consistent
representations on those flat regions compared to the disparity feature Ft

l, which
introduce object-level prior knowledge. (3) The low-level features and high-level
recognition information are fused explicitly via the aggregation of Ft

l, Fc and
Fs

l. The experiments in Sects. 4.5 and 4.6 further manifest that our semantic
embedding helps disparity branch predict more convincing results in both unsu-
pervised and supervised learning. In addition, the right semantic features Fs

r

are reserved for the following semantic feature warping and loss regularization.

3.3 Semantic Loss Regularization

The semantic information cues can also guide learning of disparity as a loss
term. As shown in Fig. 2, based on the predictive disparity map D, we employ
feature warping on the right segmentation map Fs

r to get the reconstructed
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left segmentation map F̃s
l, and use left segmentation ground truth labels as

guidance to learn a per-pixel classifier. Finally, the semantic cues guidance loss
Lseg is measured between classified warped maps and ground-truth labels.

When training the disparity network, the semantic loss Lseg is propagated
back to disparity branch through semantic convolutional classifier and feature
warping layer. Along with basic photometric loss Lp or regression loss Lr, seman-
tic loss Lseg imposes extra object-aware constraints to guide disparity training.
The experiments prove that semantic loss regularization can effectively resolve
the local disparity ambiguities, especially in the unsupervised learning period.

3.4 Objective Function

The semantic information detailed above can be used in both unsupervised and
supervised systems. Here we detail the loss functions in these two conditions.

Unsupervised Manner. One image in a stereo pair can be reconstructed from
the other with estimated disparity, which should be close to the original raw
input. We utilize this property as photometric consistency to help learn the dis-
parity in an unsupervised manner. Given estimated disparity D, we apply image
warping Φ on the right image Ir and get the warped left image reconstruction
as Ĩl. Then we adopt �1 norm to regularize the photometric consistency with
photometric loss Lp expressed as

Lp =
1
N

∑

i,j

δpi,j‖Ĩl
i,j − Il

i,j‖1, (1)

where N is the number of pixels. δpi,j is a mask indicator to avoid outlier as
image boarder or occluded regions, where no pixel correspondence exists. If the
resulting photometric difference on position (i, j) is greater than a threshold ε,
δpi,j is 0, otherwise, it is 1.

The photometric consistency enables disparity learning in an unsupervised
manner. If there is no regularization term in Lp to enforce local smoothness
of the estimated disparity, local disparity may be incoherent. To remedy this
issue, we apply �1 penalty to disparity gradients ∂D with the smoothness loss
Ls defined as

Ls =
1
N

∑

i,j

[ρs(Di,j − Di+1,j) + ρs(Di,j − Di,j+1)], (2)

where ρs(·) is the spatial smoothness penalty implemented as generalized Char-
bonnier function [3].

With the semantic feature embedding and semantic loss, the overall loss in
our unsupervised system is Lunsup, containing the photometric loss Lp, smooth-
ness loss Ls, and the semantic cues loss Lseg. We note that disparity labels
are not involved in loss computation so that disparity estimation is considered
as an unsupervised learning process here. To balance learning of different loss
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branches, we introduce loss weights λp for Lp, λs for Ls, and λseg for Lseg. Thus
the total loss Lunsup is expressed as

Lunsup = λpLp + λsLs + λsegLseg. (3)

Supervised Manner. The proposed semantic cues for disparity prediction also
works in supervised training, where the ground truth disparity map D̂ is pro-
vided. We directly adopt the �1 norm to regularize prediction where the disparity
regression loss Lr is

Lr =
1

NV

∑

i,j∈V
‖Di,j − D̂i,j‖1, (4)

where V is the set of valid disparity pixels in D̂ and NV is the number of valid
pixels. For utilizing the semantic cues, both feature embedding and semantic
softmax loss are adopted as described in Sects. 3.2 and 3.3. Loss weight λr is
used for regression term Lr. The overall loss function Lsup becomes

Lsup = λrLr + λsLs + λsegLseg. (5)

4 Experimental Results

In this section, we evaluate key components in the SegStereo model. We mainly
pretrain the model on CityScapes dataset [10] and evaluate it on KITTI Stereo
2015 dataset [33]. We also compare the performance of our method with other
disparity estimation methods on KITTI benchmark [33]. Further, we apply our
SegStereo model to FlyingThings3D dataset [31] to assess performance on dif-
ferent scenes.

4.1 Model Specification

PSPNet-50 [44] is employed as a segmentation network due to its high perfor-
mance. The layers (from “conv1 1” to “conv3 1”) of PSPNet-50 are used as the
shallow part. The extracted features Fl and Fr have a 1/8 spatial size to raw
images. We select the output of “conv5 4” layer of PSPNet-50 as semantic fea-
tures. The weights in the shallow part and segmentation network are fixed when
training SegStereo.

For cost volume computation, we perform 1D-correlation [31] between F l

and Fr according to epipolar constraints. Both max displacement and padding
size are set to 24 so that the channel number of correlated features Fc is 25. For
left feature transformation, the kernel size of transformed convolutional layer
is 1 × 1 × 256. All of Fc, Ft

l and Fs
l have the same spatial size. We directly

concatenate them to form the hybrid feature map Fh.
Disparity encoder behind hybrid features Fh contains 12 residual blocks.

Several common convolutional operations in residual blocks are replaced with
dilation patterns [44] to integrate wider context information. Disparity decoder
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consists of 3 deconvolutional blocks and 1 convolutional regression layer to out-
put full-size disparity map. We provide more details in supplementary material.

The right segmentation map Fs
r is of 1/8 size to the raw image, while the

estimated disparity map D is of full size. To perform feature warping, we first
upsample Fs

r to the full size. We afterwards downsample warped feature map
to 1/8 size and get the final reconstructed left segmentation feature map as F̃s

l.

4.2 Baseline Model Excluding Semantic Information

To validate the effect of incorporating semantic cues, we design a baseline model
called ResNetCorr without any semantic information. The hybrid features Fh

in ResNetCorr is concatenated with the correlated features Fc and left trans-
formed features Ft

l. The rest encoder-decoders are attached behind Fh, as that
of SegStereo. The softmax Lseg term is excluded in loss computation. We provide
the structural definition of ResNetCorr model in supplementary material.

4.3 Datasets and Evaluation Metrics

The CityScapes dataset [10] is released for urban scene understanding. It
provides rectified stereo image pairs and corresponding disparity maps pre-
computed by SGM algorithm [21]. It contains 5,000 high quality pixel-level
finely annotated maps for left-view. These images are split into sets with num-
bers 2, 975, 500 and 1, 525 for training, validation and testing. In addition, this
dataset provides 19, 997 stereo images and their SGM labels in extra training
set. We will use these extra data for model pretraining.

The KITTI Stereo 2015 dataset [33] contains 200 training and 200 testing
image pairs. The 200 training images also has semantic labels [1]. We mainly use
the dataset for fine tuning and evaluation. The KITTI Stereo 2012 dataset [14]
also provides disparity maps, which contain 194 training and 195 testing image
pairs.

The FlyingThings3D dataset [31] is a virtual dataset for scene matching
including optical flow estimation and disparity prediction. This dataset is ren-
dered by computer graphics techniques with background objects and 3D models.
It provides 22,390 images for training and 4,370 images for testing.

To evaluate the results, we apply the end-point-error (EPE), which measures
the average pixel deviation and the bad pixel error (D1). The latter calculates the
percentage of disparity errors below a threshold. Both the errors in non-occluded
region (Noc) and all pixels (All) are evaluated.

4.4 Implementation Details

Our implementation of the SegStereo model is based on a customized Caffe [24].
We use the “poly” learning rate policy where current learning rate equals to the
base one multiplying (1 − iter

max iter )power. Such learning policy is also adopted
in [5,44] for better performance. When training on CityScapes dataset, we set
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base learning rate to 0.01, power to 0.9. Momentum and weight decay are set
to 0.9 and 0.0001, respectively. These parameters of learning policy are kept on
supervised fine-tuning process.

For data augmentation, we adopt random resizing, color shift and contrast
brightness adjustment. The random factor is between 0.5 to 2.0. The maximum
color shift along RGB axes is set to 10 and the maximum brightness shift is set
to 5. The contrast multiplier is between 0.8 and 1.2. The “cropsize” is set to
513 × 513 and batch size is set to 16.

In unsupervised training, the loss weights λp, λs and λseg for photometric,
softmax and smoothness terms are set to 1.0, 10.0, 0.1, respectively. The thresh-
old ε in photometric loss is set to 10. When switching to supervised training,
if providing semantic labels, the loss weights for λr, λs and λseg for regression,
softmax and smoothness term are set to 1.0, 1.0, 0.1. If no semantic labels are
provided, the loss weight of softmax term is set to 0. The Charbonnier param-
eters α, β and ε in smoothness loss term are 0.21, 5.0 and 0.001 as described
in [23].

Table 1. Results of unsupervised training models on KITTI Stereo 2015 [33].

Model Noc pixels All pixels

EPE D1 error EPE D1 error

1. Evaluation of semantic feature embedding

ResCorr (photometric loss) 2.46 12.78 3.36 14.08

SegStereo (photometric
loss)

1.98 10.76 2.72 12.08

ResCorr (photometric loss +
smooth loss)

2.13 11.05 2.43 12.16

SegStereo (photometric loss
+ smooth loss)

1.87 9.39 2.17 10.53

2. Evaluation of softmax loss regularization

SegStereo (photometric) 1.98 10.76 2.72 12.08

SegStereo (photometric +
smooth)

1.87 9.39 2.17 10.53

SegStereo (photometric +
smooth + softmax)

1.61 8.95 1.89 10.03

3. Comparison to other unsupervised methods

Zhou [45] – 8.61 – 9.91

Godard [17] – – – 9.19

SegStereo (pretrain on
Cityscapes dataset)

1.61 8.95 1.89 10.03

SegStereo (ft on KITTI
Stereo dataset)

1.46 7.70 1.84 8.79



670 G. Yang et al.

4.5 Unsupervised Learning

Semantic Feature Embedding. The first experiment in Table 1 compares the
errors between ResNetCorr and SegStereo models. We observe that with seman-
tic features from PSPNet-50, EPE is improved by 20% and the D1 error is
reduced by 15% when only adopting photometric loss. When combining the pho-
tometric and smoothness losses to train the models, EPE is improved by 12%
and the D1 error is reduced by 13%. It shows that semantic feature embedding
significantly reduces the disparity errors.

Softmax Loss Regularization. The second experiment in Table 1 is to vali-
date the effect of softmax loss regularization. Based on photometric loss, we use
smoothness loss to penalize discontinuity on disparity maps, which reduces EPE
from 2.72 to 2.17 and the D1 error from 12.08 to 10.53 on all pixels. With addi-
tional softmax loss to constrain semantic consistency, EPE decreases from 2.17
to 1.89 and the D1 error decreases from 10.53 to 10.03. Thus, the regularization
of softmax loss reduces EPE by 13% and the D1 error by 5%, respectively.

Figure 3 shows results of different loss combinations (with or without softmax
loss). We observe that the gain of softmax loss mainly arises on big objects,
such as road and car, which directly help enhance disparity prediction on local
ambiguous regions.

Finetune on KITTI Stereo Dataset. We compare our approach with other
unsupervised methods in the third experiment as listed in Table 1. To adapt our
model to KITTI dataset, we finely tune SegStereo on the 200 images of KITTI
2015 training set. We set the maximum iteration number to 500 and batch size
to 16, so that 40 epochs are conducted. All photometric loss, smoothness loss

Fig. 3. Qualitative examples of unsupervised SegStereo models on KITTI Stereo 2015
dataset [33]. With the guidance of softmax regularization and additional fine-tune
process, the accuracy of disparity is improved.
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Fig. 4. Qualitative examples of unsupervised-learning version of the SegStereo model
on CityScapes validation set [10]. From left to right: left input images, disparity maps
predicted by SGM algorithm [21], and our disparity maps.

and softmax loss are used in this process. Qualitative results in Fig. 3 show that
prediction errors are further reduced by fine-tuning. Our model outperforms the
other two unsupervised methods [17,45] on KITTI 2015 benchmark.

CityScapes Results. We adapt the unsupervised SegStereo model to
CityScapes dataset [10]. In Fig. 4, we give several examples to visualize qual-
ity on the validation set. Compared to the results of SGM algorithm [21], our
method yields better structures in term of global scene information and details
of objects.

4.6 Supervised Learning

KITTI Results. In supervised learning, the ground-truth disparity maps are
directly applied to train our SegStereo model. As KITTI stereo dataset is too

Table 2. Results of supervised-training models evaluated on KITTI Stereo 2015 [33]

Model Train Test

EPE D1 EPE D1

Noc All Noc All Noc All Noc All

1. Pretrained on Cityscapes dataset

ResNetCorr – – – – 1.43 1.46 7.33 7.64

SegStereo – – – – 1.39 1.41 7.01 7.34

2. Pretrained on Cityscapes extra set and FlyingThings3D dataset

ResNetCorr – – – – 1.19 1.21 5.46 5.64

SegStereo – – – – 1.15 1.17 5.20 5.38

3. Finetune on KITTI stereo 2012 and 2015 dataset

ResNetCorr 0.40 0.41 0.68 0.76 0.73 0.76 2.13 2.40

SegStereo 0.40 0.41 0.65 0.70 0.73 0.75 2.11 2.30

SegStereo (corr13) 0.39 0.40 0.65 0.70 0.66 0.70 1.96 2.25
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small, we pre-train our model on CityScapes dataset. Although the disparity
maps computed by SGM algorithm contain errors and holes, they are useful for
our model to get reasonable accuracy. The maximum iteration is set to 90K.
Different from unsupervised training, here the disparity regression loss Lr plays
the major role. We also compare the performance between ResNetCorr and
SegStereo. The first experiment in Table 2 shows that disparity error rate is
slightly reduced by semantic feature embedding when we pretrain the models on
CityScapes dataset [10].

In the second experiment, we fuse the extra training set in CityScapes and
training set in FlyingThings3D dataset to pretrain ResNetCorr and SegStereo.
Since there is no semantic labels in such two datasets, we do not compute soft-
max loss. The weights in segmentation branch of SegStereo is pretrained on
CityScapes training set and fixed. We extend the maximum iterations to 500K.
Compared to the first experiment, with more training data, both ResNetCorr
and SegStereo achieve higher accuracy. And the performance of SegStereo is still
better than ResNetCorr.

Table 3. Comparison with other disparity estimation methods on the test set of KITTI
2015 [33]. Our method achieves state-of-the-art results on this benchmark.

Methods Noc All Runtime (s)

D1-bg D1-fg D1-all D1-bg D1-fg D1-all

SPS-st [41] 3.50 11.61 4.84 3.84 12.67 5.31 2

Content-CNN [30] 3.32 7.44 4.00 3.73 8.58 4.54 1

DispNetC [31] 4.11 3.72 4.05 4.32 4.41 4.34 0.06

MC-CNN [43] 2.48 7.64 3.33 2.89 8.88 3.89 67

PBCP [37] 2.27 7.71 3.17 2.58 8.74 3.61 68

Displets v2 [18] 2.73 4.95 3.09 3.00 5.56 3.43 265

L-ResMatch [38] 2.35 5.74 2.91 2.72 6.95 3.42 48

DRR [16] 2.34 4.87 2.76 2.58 6.04 3.16 0.4

GC-NET [25] 2.02 5.58 2.61 2.21 6.16 2.87 0.9

CRL [34] 2.32 3.12 2.45 2.48 3.59 2.67 0.47

DeepStereo [42] 2.06 5.32 2.32 2.17 5.46 2.79 1.13

iResNet [28] 2.07 2.76 2.19 2.25 3.40 2.44 0.12

PSMNet [6] 1.71 4.31 2.14 1.86 4.62 2.32 0.41

SegStereo (Ours) 1.76 3.70 2.08 1.88 4.07 2.25 0.6

In the third experiment, we use KITTI Stereo 2012 and 2015 datasets to
finely tune our pretrained models from the second experiment. We set the max-
imum iteration to 90K and base learning rate to 0.01. To facilitate performance
comparison, we split Stereo 2015 training set [30] so that 40 images are ran-
domly selected for validation and the remaining 160 images are used for train-
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ing. Table 2 lists errors on both training and validation sets. Compared to the
ResNetCorr model, semantic feature embedding prevents overfitting and brings
a certain improvement on disparity estimates.

To exploit more detailed matching cues on fine scales, we redesign SegStereo,
where the shallow part is end with the “conv1 3” layer of PSPNet-50. To adapt
to the increased feature map size, the maximum displacement and padding size of
the correlation layer are both set to 96. We also up-sample the semantic feature
maps from “conv5 4” layer for semantic feature embedding. This redesigned
model is also pretrained on the fusion set of CityScapes and FlyingThings3D,
followed by fine-tuning on KITTI Stereo dataset. The new SegStereo model (with
remark “corr13” in Table 2) outperforms general SegStereo by leveraging more
detail information.

Table 3 compares our model to other approaches on KITTI 2015 bench-
mark [33]. Our method achieves state-of-the-art results. Figure 5 gives several
visual examples on KITTI 2015 test set. By incorporating semantic information,
our SegStereo model is able to handle challenging scenarios. In supplementary
material, we also provide results on KITTI 2012 benchmark [14] and segmenta-
tion results.

Fig. 5. Supervised-learning results on KITTI Stereo 2015 test sets [33]. By incorporat-
ing semantic information, our method is able to estimate accurate disparity. From left
to right, we show left input images, disparity predictions of SegStereo, and error maps

Fig. 6. Qualitative examples of ResNetCorr and SegStereo model on FlyingThings3D
validation set [31]. From left to right, left images, ground-truth, ResNetCorr results
and SegStereo results
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Table 4. Comparison with other disparity estimation methods on the test set of Fly-
ingThings3D [31].

Model SGM [21] DispNetC [31] GC-Net [25] CRL [34] iResNet [28] ResNetCorr SegStereo

EPE 7.29 2.33 1.84 1.67 1.27 3.50 1.45

D1 16.18 10.04 9.67 6.70 4.90 8.45 3.50

FlyingThings3D Results. To illustrate that our SegStereo model can adapt
to other datasets, we test the supervised-training ResNetCorr and SegStereo
on FlyingThings3D dataset [31]. Here, we directly select the pretrained mod-
els from the second experiments of Table 2. The two models are compared with
other methods on the validation set of FlyingThings3D in Table 4. With the
guidance of semantic information, the SegStereo model outperforms ResNetCorr
and becomes state-of-the-art, which indicates that segmentation modules is effec-
tive and general for disparity estimation across various datasets. Figure 6 shows
several visual examples on validation set.

5 Conclusion

In this paper, we have proposed a unified model SegStereo, which integrates
semantic feature maps into disparity prediction pipeline. A softmax loss is com-
bined with common photometric loss or disparity regression loss to enable train-
ing in both unsupervised and supervised manners. Our SegStereo leads to more
reliable results, especially on ambiguous areas. Experiments on KITTI Stereo
datasets demonstrate the effectiveness of the semantic-guided strategy. Our
method achieves state-of-the-art performance on this benchmark. Results on
CityScapes and FlyingThings3D datasets further manifest its adaptability.
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