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Abstract. Most existing works in visual question answering (VQA) are
dedicated to improving the accuracy of predicted answers, while disre-
garding the explanations. We argue that the explanation for an answer
is of the same or even more importance compared with the answer itself,
since it makes the question answering process more understandable and
traceable. To this end, we propose a new task of VQA-E (VQA with
Explanation), where the models are required to generate an explanation
with the predicted answer. We first construct a new dataset, and then
frame the VQA-E problem in a multi-task learning architecture. Our
VQA-E dataset is automatically derived from the VQA v2 dataset by
intelligently exploiting the available captions. We also conduct a user
study to validate the quality of the synthesized explanations. We quanti-
tatively show that the additional supervision from explanations can not
only produce insightful textual sentences to justify the answers, but also
improve the performance of answer prediction. Our model outperforms
the state-of-the-art methods by a clear margin on the VQA v2 dataset.
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1 Introduction

In recent years, visual question answering (VQA) has been widely studied by
researchers in both computer vision and natural language processing communi-
ties [2,8,11,27,31,34]. Most existing works perform VQA by utilizing attention
mechanism and combining features from two modalities for predicting answers.

Although promising performance has been reported, there is still a huge gap
for humans to truly understand the model decisions without any explanation for
them. A popular way to explain the predicted answers is to visualize attention
maps to indicate ‘where to look’. The attended regions are pointed to trace the
predicted answer back to the image content. However, the visual justification
through attention visualization is implicit and it cannot entirely reveal what the
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Fig. 1. VQA-E provides insightful information that can explain, elaborate or enhance
predicted answers compared with the traditional VQA task. Q = Question, A =
Answer, E = Explanation. (Left) From the answer, there is no way to trace the corre-
sponding visual content to tell the name of the hotel. The explanation clearly points
out where to look for the answer. (Middle) The explanation provides a real answer
to the aspect asked. (Right) The word “anything” in the question refers to a vague
concept without specific indication. The answer is enhanced by the “madonna shirt”
in the explanation.

model captures from the attended regions for answering the questions. There
could be many cases where the model attends to right regions but predicts
wrong answers. What’s worse, the visual justification is not accessible to visually
impaired people who are the potential users of the VQA techniques. Therefore,
in this paper we intend to explore textual explanations to compensate for these
weaknesses of visual attention in VQA.

Another crucial advantage of textual explanation is that it elaborates and
enhances the predicted answer with more relevant information. As shown in
Fig. 1, a textual explanation can be a clue to justify the answer, or a complemen-
tary delineation that elaborates on the context of the question and answer, or a
detailed specification about abstract concepts mentioned in the QA to enhance
the short answer. Such textual explanations are important for effective com-
munication since they provide feedbacks that enable the questioners to extend
the conversation. Unfortunately, although textual explanations are desired for
both model interpretation and effective communication in natural contexts, little
progress has been made in this direction, partly because almost all the public
datasets, such as VQA [2,8], COCO-QA [22], and Visual7W [34], do not provide
explanations for the annotated answers.

In this work, we aim to address the above limitations of existing VQA systems
by introducing a new task called VQA-E (VQA with Explanations). In VQA-
E, the models are required to provide a textual explanation for the predicted
answer. We conduct our research in two steps. First, to foster research in this
area, we construct a new dataset with textual explanations for the answers. The
VQA-E dataset is automatically derived from the popular VQA v2 dataset [8] by
synthesizing an explanation for each image-question-answer triple. The VQA v2
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dataset is one of the largest VQA datasets with over 650k question-answer pairs,
and more importantly, each image in the dataset is coupled with five descriptions
from MSCOCO captions [4]. Although these captions were written without con-
sidering the questions, they do include some QA-related information and thus
exploiting these captions could be a good initial point for obtaining explanations
free of cost. We further explore several simple but effective techniques to synthe-
size an explanation from the caption and the associated question-answer pair.
To relieve concern about the quality of the synthesized explanations, we con-
duct a comprehensive user study to evaluate a randomly-selected subset of the
explanations. The user study results show that the explanation quality is good
for most question-answer pairs while being a little inadequate for the questions
asking for a subjective response or requiring common sense (pragmatic knowl-
edge). Overall, we believe the newly created dataset is good enough to serve as
a benchmark for the proposed VQA-E task.

To show the advantages of learning with textual explanations, we also pro-
pose a novel VQA-E model, which addresses both the answer prediction and the
explanation generation in a multi-task learning architecture. Our dataset enables
us to train and evaluate the VQA-E model, which goes beyond a short answer by
producing a textual explanation to justify and elaborate on it. Through extensive
experiments, we find that the additional supervisions from explanations can help
the model better localize the important image regions and lead to an improve-
ment in the accuracy of answer prediction. Our VQA-E model outperforms the
state-of-the-art methods in the VQA v2 dataset.

2 Related Work

Attention in Visual Question Answering. Attention mechanism is firstly
used in machine translation [3] and then is brought into the vision-to-language
tasks [9,10,15,18,19,28–33]. The visual attention in the vision-to-language tasks
is used to address the problem of “where to look” [25]. In VQA, the question is
used as a query to search for the relevant regions in the image. [31] proposes a
stacked attention model which queries the image for multiple times to infer the
answer progressively. Beyond the visual attention, Lu et al. [18] exploit a hier-
archical question-image co-attention strategy to attend to both related regions
in the image and crucial words in the question. [19] proposes the dual attention
network, which refines the visual and textual attention via multiple reasoning
steps. Attention mechanism can find the question-related regions in the image,
which can account for the answer to some extent. [6] has studied how well the
visual attention is aligned with the human gaze. The results show that when
answering a question, current attention-based models do not seem to be “look-
ing” at the same regions of the image as humans do. Although attention is a
good visual explanation for the answer, it is not accessible for visually impaired
people and is somehow limited in real-world applications.
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Fig. 2. An example of the pipeline to fuse the question (Q), the answer (A) and the
relevant caption (C) into an explanation (E). Each question-answer pair is converted
into a statement (S). The statement and the most relevant caption are both parsed
into constituency trees. These two trees are then aligned by the common node. The
subtree including the common node in the statement is merged into the caption tree
to obtain the explanation.

Model with Explanations. Recently, a number of works [14,17,20] have been
done for explaining the decisions from deep learning models, which are typically
black boxes due to the end-to-end training procedure. [14] proposes a novel
explanation model for bird classification. However, their class relevance metrics
are not applicable to VQA since there is no pre-defined semantic category for
the questions and answers. Therefore, we build a reference dataset to directly
train and evaluate models for VQA with explanations. The most similar work
to ours is Multimodal Explanations [20] that proposes a multimodal explanation
dataset for VQA, which is human-annotated and of high quality. In contrast,
our dataset focuses on textual explanations and is built free of cost and over six
times bigger (269,786 v.s. 41,817) than theirs.

3 VQA-E Dataset

We now introduce our VQA-E dataset. We begin by describing the process of
synthesizing explanations from image descriptions for question-answer pairs, fol-
lowed by dataset analysis and a user study to assess the quality of our dataset.

3.1 Explanation Synthesis

Approach. The first step is to find the caption most relevant to the question and
answer. Given an image caption C, a question Q and an answer A, we tokenize
and encode them into GloVe word embeddings [21]: Wc = {w1, ...,wTc

},Wq =
{w1, ...,wTq

},Wa = {w1, ...,wTa
}, where Tc, Tq, Ta are the number of words

in the caption, question, and answer, respectively. We compute the similarity
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Fig. 3. Top: similarity score distribution. Bottom: illustration of VQA-E examples at
different similarity levels.

between the caption and question-answer pair as follows:

s(wi,wj) =
1
2
(1 +

wT
i wj

||wi|| · ||wj || ) (1a)

S(Q, C) =
1
Tq

∑

wi∈Wq

max
wj∈Wc

s(wi,wj) (1b)

S(A, C) =
1
Ta

∑

wi∈Wa

max
wj∈Wc

s(wi,wj) (1c)

S(< Q,A >, C) =
1
2
(S(Q, C) + S(A, C)) (1d)

For each question-answer pair, we find the most relevant caption, coupled
with a similarity score. We have tried other more complex techniques like using
Term Frequency and Inverse Document Frequency to adjust the weights of dif-
ferent words, but we find this simple mean-max formula in Eq. (1) works better.

To generate a good explanation, we intend to fuse the information from both
the question-answer pair and the most relevant caption. Firstly the question and
answer are merged into a declarative statement. We achieve this by designing
simple merging rules based on the question types and the answer types. Simi-
lar rule-based methods have been explored in NLP to generate questions from
declarative statements [13] (i.e., opposite direction). We then fuse this QA state-
ment with the caption via aligning and merging their constituency parse trees.
We further refine the combined sentence by a grammar check and correction tool
to obtain the final explanation, and compute its similarity to the question-answer
pair with Eq. 1. An example of our pipeline is shown in Fig. 2.
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Similarity Distribution. Due to the large size and diversity of questions,
and the limited sources of captions for each image, it is not guaranteed that
a good explanation could be generated for each Q&A. The explanations with
low similarity scores are removed from the dataset to reduce noise. We present
some examples in Fig. 3. It shows a gradual improvement in explanation quality
when the similarity scores increase. With some empirical investigation, we select
a similarity threshold of 0.6 to filter out those noisy explanations. We also plot
the similarity score histogram in Fig. 3. Interestingly, we observe a clear trough
at 0.6 that makes the explanations well separated by this threshold.

Fig. 4. Distribution of synthesized explanations by different question types.

Table 1. Statistics for our VQA-E dataset.

Dataset Split #Images #Q&A #E #Unique Q #Unique A #Unique E

VQA-E Train 72,680 181,298 181,298 77,418 9,491 115,560

Val 35,645 88,488 88,488 42,055 6,247 56,916

Total 108,325 269,786 269,786 108,872 12,450 171,659

VQA-v2 Train 82,783 443,757 0 151,693 22,531 0

Val 40,504 214,354 0 81,436 14,008 0

Total 123,287 658,111 0 215,076 29,332 0

3.2 Dataset Analysis

In this section, we analyze our VQA-E dataset, particularly the automatically
synthesized explanations. Out of 658,111 existing question-answer pairs in orig-
inal VQA v2 dataset, our approach generates relevant explanations with high
similarity scores for 269,786 QA pairs (41%). More statistics about the dataset
are given in Table 1.

We plot the distribution of the number of synthesized explanations for each
question type in Fig. 4. While looking into different question types, the percent-
age of relevant explanations varies from type to type.
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Abstract Questions v.s. Specific Questions. It is observed that the percent-
age of relevant explanations is generally higher for ‘is/are’ and ‘what’ questions
than ‘how’, ‘why’ and ‘do’ questions. This is because ‘is/are’ and ‘what’ ques-
tions tend to be related to specific visual contents which are more likely being
described by image captions. In addition, a more specific question type could
further help in the explanation generation. For example, for ‘what sport is’ and
for ‘what room is’ questions, our approach successfully generates explanations
for 90% and 87% question and answer pairs, respectively. The rates of having
good explanations for these types of questions are much higher than the general
‘what’ questions (40%).

Fig. 5. Subjective examples: our method cannot handle the questions involving emo-
tional feeling (left), commonsense knowledge (middle) or behavioral reasoning (right).

Subjective Questions: Do You/Can You/Do/Could? The existing VQA
datasets involve some questions that require subjective feeling, logical thinking
or behavioral reasoning. These questions often fall in the question types starting
with ‘do you’, ‘can you’, ‘do’, ‘could’, and etc. For these questions, there may
be underlying clues from the image contents but the evidence is usually opaque
and indirect and thus it is hard to synthesize a good explanation. We illustrate
examples of such questions in Fig. 5 and the generated explanations are generally
inadequate to provide relevant details regarding the questions and answers.

Due to the inadequacy in handling the above mentioned cases, we only
achieve small percentages of good explanations for these question types. The
percentages of ‘do you’, ‘can you’, ‘do’ and ‘could’ questions are 4%, 5%, 13%
and 6% respectively which are far below the average 41%.

3.3 Dataset Assessment – User Study

It is not easy to use quantitative metrics to evaluate whether the synthesized
explanations can provide valid, relevant and complementary information to the
answers of the visual questions. Therefore, we conduct a user study to assess our
VQA-E dataset from human perspective. Particularly, we measure the explana-
tion quality from four aspects: fluent, correct, relevant, complementary.
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Fluent measures the fluency of the explanation. A fluent explanation should
be correct in grammar and idiomatic in wording. The correct metric indicates
whether the explanation is correct according to the image content. The relevant
metric assesses the relevance of an explanation to the question and answer pair.
If an explanation is relevant, users should be able to infer the answer from the
explanation. This metric is important to measure whether the proposed word
embedding similarity can effectively select and filter the explanations. Through
the user study, we evaluate the relevance of explanations from human under-
standing to verify whether the synthesized explanations are closely tied to their
corresponding QA pairs. Last but not least, we evaluate whether an explanation
is complementary to the answer. It is essential that the explanation can pro-
vide complementary details to the abbreviate answers so that visual accordance
between the answer and the image could be enhanced.

Table 2. User assessment results for the synthesized explanation, the most similar
caption, the random caption, and the generated explanation. To avoid bias, they are
evaluated jointly and in each sample, their order is shuffled and unknown to users.
They are assessed by the human evaluators in 1–5 grades: 1-very poor, 2-poor, 3-barely
acceptable, 4-good, 5-very good. Here we show the average scores of 2,000 questions.

Fluent Correct Relevant Complementary

Synthesized explanation 4.89 4.78 4.23 4.14

Most similar caption 4.97 4.91 2.72 2.87

Random caption 4.93 4.92 1.91 2.12

Generated explanation (QI-AE) 3.89 3.67 3.24 3.11

Evaluation Results Summary. We show the human evaluation results in
Table 2. Since the synthesized explanations are derived from existing human
annotated captions, their average fluency and correctness scores are both close
to 5. More importantly, their relevance and complementariness scores are both
above 4, which indicates that the overall quality of the explanations is good
from human perspective. These two metrics differentiate a general caption of an
image and our specific explanation dedicated for a visual question-answer pair.

4 Multi-task VQA-E Model

Based on the well-constructed VQA-E dataset, in this section, we introduce the
proposed multi-task VQA-E model. Figure 6 gives an overview of our model.
Given an image I and a question Q, our model can simultaneously predict an
answer A and generate a textual explanation E .
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Fig. 6. An overview of the multi-task VQA-E network. Firstly, an image is represented
by a pre-trained CNN, while the question is encoded via a single-layer GRU. Then the
image features and question features are input to the Attention module to obtain image
features for question-guided regions. Finally, the question features and attended image
features are used to simultaneously predict an answer and generate an explanation.

4.1 Image Features

We adopt a pre-trained convolutional neural network (CNN) to extract a high-
level representation φ of the input image I:

φ = CNN(I) = {v1, ...,vP } (2)

where vi is the feature vector of the ith image patch and P is the total number
of patches. We experiment with three types of image features:

– Global. We extract the outputs of the final pooling layer (‘pool5’) of the
ResNet-152 [12] as global features of the image. For these image features,
P = 1, and visual attention is not applicable.

– Grid. We extract the outputs of the final convolutional layer (‘res5c’) of
ResNet-152 as the feature map of the image, which corresponds to a uniform
grid of equally-sized image patches. In this case, P = 7 × 7 = 49.

– Bottom-up. [1] proposes a new type of image features based on object detec-
tion techniques. They utilize Faster R-CNN to propose salient regions, each
with an associated feature vector from the ResNet-101. The bottom-up image
features provide a more natural basis at the object level for attention to be
considered. We choose P = 36 in this case.

4.2 Question Embedding

The question Q is tokenized and encoded into word embeddings Wq =
{w1, ...,wTq

}. Then the word embeddings are fed into a gated recurrent unit
[5]: q = GRU(Wq). We use the final state of the GRU as the representation of
the question.

4.3 Visual Attention

We use the classical question-guided soft attention mechanism similar to most
modern VQA models. For each patch in the image, the feature vector vi and
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the question embedding q are firstly projected by non-linear layers to the same
dimension. Next we use the Hadamard product (i.e., element-wise multiplication)
to combine the projected representations and input to a linear layer to obtain a
scalar attention weight associated with that image patch. The attention weights
τττ are normalized over all patches with softmax function. Finally, the image
features from all patches are weighted by the normalized attention weights and
summed into a single vector v as the representation of the attended image. The
formulas are as follow and we omit the bias terms for simplicity:

τi = wT (Relu(Wvvi) � Relu(Wqq))
ααα = softmax(τττ)

v =
P∑

i=1

αivi

(3)

Note that we adopt a simple one-glimpse, one-way attention, as opposed to
complex schemes proposed by recent works [16,18,31].

Next, the representations of the question q and the image v are projected to
the same dimension by non-linear layers and then fused by a Hadamard product:

h = Relu(Wqhq) � Relu(Wvhv) (4)

where h is a joint representation of the question and the image, and then fed to
the subsequent modules for answer prediction and explanation generation.

4.4 Answer Prediction

We formulate the answer prediction task as a multi-label regression problem,
instead of a single-label classification problem in many other works. A set of
candidate answers is pre-determined from all the correct answers in the training
set that appear more than 8 times. This leads to N = 3129 candidate answers.
Each question in the dataset has K = 10 human-annotated answers, which are
sometimes not same, especially when the question is ambiguous or subjective
and has multiple correct or synonymous answers. To fully exploit the disagree-
ment between annotators, we adopt soft accuracies as the regression targets. The
accuracy for each answer is computed as:

Accuracy(a) =
1
K

K∑

k=1

min(

∑
1≤j≤K,j �=k 1(a = aj)

3
, 1) (5)

Such soft target provides more information for training and is also in line with
the evaluation metric.

The joint representation h is input into a non-linear layer and then through
a linear mapping to predict a score for each answer candidate:

ŝ = sigmoid (Wo Relu (Wf h)) (6)
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The sigmoid function squeezes the scores into (0, 1) as the probability of the
answer candidate. Our loss function is similar to the binary cross-entropy loss
while using soft targets:

Lvqa = −
M∑

i=1

N∑

j=1

sij log ŝij + (1 − sij) log(1 − ŝij) (7)

where M are the number of training samples and s is the soft targets com-
puted in Eq. 5. This final step can be seen as a regression layer that predicts the
correctness of each answer candidate.

4.5 Explanation Generation

To generate an explanation, we adopt an LSTM-based language model that
takes the joint representation h as input. Given the ground-truth explanation
E = {w1, w2, ..., wTe

}, the loss function is:

Lvqe = − log(p(E|h))

= −
Te∑

t=0

log(p(wt|h, w1, ..., wt−1))
(8)

The final loss of multi-task learning is the sum of the VQA and VQE loss:

L = Lvqa + Lvqe (9)

5 Experiments and Results

5.1 Experiment Setup

Model Setting. We use 300 dimension word embeddings, initialized with pre-
trained GloVe vectors [21]. For the question embedding, we use a single-layer
GRU with 1024 hidden units. For explanation generation, we use a single-layer
forward LSTM with 1024 hidden units. The question embedding and the expla-
nation generation share the word embedding matrix to reduce the number of
parameters. We use Adam solver with a fixed learning rate 0.01 and the batch
size is 512. We use weight normalization [24] to accelerate the training. Dropout
and early stop (15 epochs) are used to reduce overfitting.

Model Variants. We experiment with the following model variants:

– Q-E: generating explanation from question only.
– I-E: generating explanation from image only.
– QI-E: generating explanation from question and image and only training the

branch of explanation generation.
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– QI-A: predicting answer from question and image and only training the
branch of answer prediction.

– QI-AE: predicting answer and generating explanations, training both
branches.

– QI-AE(relevant): predicting answer and generating explanation and train-
ing both branches. The explanation used in this variant is the relevant caption
obtained in the process of explanation synthesis in Sect. 3.1.

– QI-AE(random): predicting answer and generating explanation and train-
ing both branches. The explanation is randomly selected from the ground-
truth captions for the same image except the relevant caption.

5.2 Evaluation of Explanation Generation

In this section, we evaluate the task of explanation generation. Table 3 shows the
performance of all model variants on the validation split of the VQA-E dataset.
First, the I-E model outperforms Q-E. This implies that it is easier to generate
an explanation from only the image than from only the question, and this image
bias is contrary to the well-known language bias in the VQA where it is easier
to predict an answer from only the question than from only the image. Second,
the QI-E models outperform both the I-E and Q-E by a large margin, which
means that both the question and the image are critical for generating good
explanations. Attention mechanism is helpful for the performance and bottom-
up image features are consistently better than grid image features. Finally, the
QI-AE using bottom-up image features improves the performance further and
achieves the best performance across all evaluation metrics. This shows that the
supervision on the answer side is helpful for the explanation generation task,
thus proving the effectiveness of our multi-task learning scheme.

Table 3. Performance of explanation generation task on the validation split of the
proposed VQA-E dataset, where B-N, M, R, and C are short for BLEU-N, METEOR,
ROUGE-L, and CIDEr-D. All scores are reported in percentage (%).

Model Image Features B-1 B-2 B-3 B-4 M C R

Q-E - 26.80 10.90 4.20 1.80 7.98 13.42 24.90

I-E Global 32.50 17.20 9.30 5.20 12.38 48.58 29.79

QI-E Global 34.70 19.30 11.00 6.50 14.07 61.55 31.87

Grid 36.30 21.10 12.50 7.60 15.50 73.70 34.00

Bottom-up 38.00 22.60 13.80 8.60 16.57 84.07 34.92

QI-AE Global 35.10 19.70 11.30 6.70 14.40 64.62 32.39

Grid 38.30 22.90 14.00 8.80 16.85 87.04 35.16

Bottom-up 39.30 23.90 14.80 9.40 17.37 93.08 36.33
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5.3 Evaluation of Answer Prediction

In this section, we evaluate the task of answer prediction, as shown in Table 4.
Overall, the QI-AE models consistently outperform QI-A models across all ques-
tion types. This indicates that forcing the model to explain can help it predict
a more accurate answer. We argue that the supervision on explanation in QI-
AE models can alleviate the headache of language bias in the QI-A models,
because in order to generate a good explanation, the model has to fully exploit
the image content, learn to attend to important regions, and explicitly interpret
the attended regions in the context of questions. In contrast, during the training
of QI-A models without explanations, when an answer can be guessed from the
question itself, the model can easily get the loss down to zero by understanding
the question only regardless of the image content. In this case, the training sam-
ple is not fully exploited to help the model learn how to attend to the important
regions. Another observation from Table 4 can further support our argument.
The additional supervision on explanation produces a much bigger improvement
on the attention-based models (Grid and Bottom-up) than the models without
attention (Global).

QI-AE(random)-Bottom-up produces a much lower accuracy than QI-AE-
Bottom-up, even lower than QI-A-Bottom-up. This implies that low-quality or
irrelevant explanations might confuse the model, thus leading to a big drop in
the performance. It also relieves the concern that the improvement is brought by
learning to describe the image, rather than explaining the answer. This further
substantiates the effectiveness of the additional supervision on explanation.

Table 5 presents the performance of our method and the state-of-the-art
approaches on the test-standard split of VQA v2 dataset. Our method outper-
forms the state-of-the-art methods over the answer types ‘Yes/No’ and ‘Other’
as well as in the overall accuracy, while producing a slightly lower accuracy over
the answer type ‘Number’ than BUTD [1,26].

Table 4. Performance of the answer prediction task on the validation split of VQA v2
dataset. Accuracies in percentage (%) are reported.

Model Image features All Yes/No Number Other

QI-A Global 57.26 77.19 39.73 46.74

Grid 59.25 76.31 39.99 51.38

Bottom-up 61.78 78.63 41.30 52.54

QI-AE Global 57.92 78.01 40.46 47.25

Grid 60.57 78.35 39.36 52.66

Bottom-up 63.51 80.85 43.02 54.16

QI-AE (random) Bottom-up 58.74 78.75 40.79 48.26

QI-AE (relevant) Bottom-up 62.18 79.02 41.07 53.26
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Table 5. Performance comparison with the state-of-the-art VQA methods on the test-
standard split of VQA v2 dataset. BUTD-ensemble is an ensemble of 30 models and
it will not participate in ranking. Accuracies in percentage (%) are reported.

rehtOrebmuNoN/seYllAdohteM

71.163.002.1689.52]8[roirP
Language-only [8] 44.26 67.01 31.55 27.37
d-LSTM+n-I [8] 54.22 73.46 35.18 41.83
MCB [7, 8] 62.27 78.82 38.28 53.36
BUTD [26, 1] 65.67 82.20 43.90 56.26
BUTD-ensemble [26, 1] 70.34 86.60 48.64 61.15

Ours: QI-AE-Bottom-up 66.31 83.22 43.58 56.79

5.4 Qualitative Analysis

In this section, we show qualitative examples to demonstrate the strength of
our multi-task VQA-E model, as shown in Fig. 7. Overall, the QI-AE model can
generate relevant and complementary explanations for the predicted answers.
For example, in the (a) of Fig. 7, the QI-AE model not only predicts the cor-
rect answer ‘Yes’, but also provides more details in the ‘kitchen’, i.e., ‘fridge’,
‘sink’, and ‘cabinets’. Besides, the QI-AE model can better localize the impor-
tant regions than the QI-A model. As shown in the (b) of Fig. 7, the QI-AE
model gives the biggest attention weight on the person’s hand and thus predicts
the right answer ‘Feeding giraffe’, while the QI-A model focuses more on the
giraffe, leading to a wrong answer ‘Standing’. In the (c), both QI-AE and QI-E
models attend to the right region, but these two models predict the opposite
answers. This interesting contrast implies that the QI-AE model, which has to

Fig. 7. Qualitative comparison between the QI-A and QI-AE models (both using
bottom-up image features). We visualize the attention by rendering a red box over
the region that has the biggest attention weight.
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fully exploit the image content to generate an explanation, can better under-
stand the attended region than the QI-A model that only needs to predict a
short answer.

6 Conclusions and Future Work

In this work, we have constructed a new dataset and proposed a task of VQA-
E to promote research on justifying answers for visual questions. Explanations
in our dataset are of high quality for those visually-specific questions, while
being inadequate for subjective ones whose evidences are indirect. For subjective
questions, we will need extra knowledge bases to find good explanations for them.

We have also proposed a novel multi-task learning architecture for the VQA-E
task. The additional supervision from explanations not only enables our model to
generate reasons to justify predicted answers, but also brings a big improvement
in the accuracy of answer prediction. Our VQA-E model is able to better localize
and understand the important regions in images than the original VQA model.
In the future, we will adopt more advanced approaches to train our model, like
the reinforcement learning in image captioning [23].
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