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Abstract. We present an approach to infer a layer-structured 3D rep-
resentation of a scene from a single input image. This allows us to infer
not only the depth of the visible pixels, but also to capture the texture
and depth for content in the scene that is not directly visible. We over-
come the challenge posed by the lack of direct supervision by instead
leveraging a more naturally available multi-view supervisory signal. Our
insight is to use view synthesis as a proxy task: we enforce that our rep-
resentation (inferred from a single image), when rendered from a novel
perspective, matches the true observed image. We present a learning
framework that operationalizes this insight using a new, differentiable
novel view renderer. We provide qualitative and quantitative validation
of our approach in two different settings, and demonstrate that we can
learn to capture the hidden aspects of a scene. The project website can
be found at https://shubhtuls.github.io/lsi/.

1 Introduction

Humans have the ability to perceive beyond what they see, and to imagine the
structure of the world even when it is not directly visible. Consider the image
in Fig. 1. While we can clearly see a street scene with objects such as cars and
trees, we can also reason about the shape and appearance of aspects of the scene
hidden from view, such as the continuation of the buildings behind the trees, or
the ground underneath the car.

While we humans can perceive the full 3D structure of a scene from a sin-
gle image, scene representations commonly used in computer vision are often
restricted to modeling the visible aspects, and can be characterized as 2.5D rep-
resentations [17]. 2.5D representations such as depth maps are straightforward
to use and learn because there is a one-to-one mapping between the pixels of an
input image and the output representation. For the same reason, they also fail
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Fig. 1. Perception beyond the visible. On the left is an image of a street scene.
While some parts of the scene are occluded, such as the building behind the tree
highlighted by the red box, humans have no trouble reasoning about the shape and
appearance of such hidden parts. In this work we go beyond 2.5D shape representations
and learn to predict layered scene representations from single images that capture
more complete scenes, including hidden objects. On the right, we show our method’s
predicted 2-layer texture and shape for the highlighted area: (a, b) show the predicted
textures for the foreground and background layers respectively, and (c, d) show the
corresponding predicted inverse depth. Note how both predict structures behind the
tree, such as the continuation of the building. (Color figure online)

to allow for any extrapolation beyond what is immediately visible. In contrast,
a robot or other agent might wish to predict the appearance of a scene from a
different viewpoint, or reason about which parts of the scene are navigable. Such
tasks are beyond what can be achieved in 2.5D.

In this work, we take a step towards reasoning about the 3D structure of
scenes by learning to predict a layer-based representation from a single image.
We use a representation known as a layered depth image (LDI), originally devel-
oped in the computer graphics community [22]. Unlike a depth map, which stores
a single depth value per pixel, an LDI represents multiple ordered depths per
pixel, along with an associated color for each depth, representing the multi-
ple intersections of a ray with scene geometry (foreground objects, background
behind those objects, etc.) In graphics, LDIs are an attractive representation for
image-based rendering applications. For our purposes, they are also appealing
as a 3D scene representation as they maintain the direct relationship between
input pixels and output layers, while allowing for much more flexible and general
modeling of scenes.

A key challenge towards learning to predict such layered representations is
the lack of available training data. Our approach, depicted in Fig. 2, builds on
the insight that multiple images of the same scene, but from different views,
can provide us with indirect supervision for learning about the underlying 3D
structure. In particular, given two views of a scene, there will often be parts of
the scene that are hidden from one view but visible from the second. We therefore
use view synthesis as a proxy task: given a single input image, we predict an LDI
representation and enforce that the novel views rendered using the prediction
correspond to the observed reality.
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Fig. 2. Approach overview. We learn a CNN that can predict, from a single input
image, a layered representation of the scene (an LDI). During training, we leverage
multi-view supervision using view synthesis as a proxy task, thereby allowing us to
overcome the lack of direct supervision. While training our prediction CNN, we enforce
that the predicted representation, when (differentiably) rendered from a novel view,
matches the available target image.

In Sect. 3, we present our learning setup that builds on this insight, and
describe a training objective that enforces the desired prediction structure. To
operationalize this learning procedure, we introduce an LDI rendering mecha-
nism based on a new differentiable forward splatting layer. This layer may also
be useful for other tasks at the intersection of graphics and learning. We then
provide qualitative and quantitative validation of our approach in Sect. 4 using
two settings: (a) analysis using synthetic data with known ground truth 3D, and
(b) a real outdoor driving dataset.

2 Related Work

Single-View Depth/Surface Normal Prediction. Estimating pixel-wise
depth and/or surface orientation has been a long-standing task in computer
vision. Initial attempts treated geometric inference as a part of the inverse
vision problem, leveraging primarily learning-free optimization methods for infer-
ence [4,23]. Over the years, the use of supervised learning has enabled more
robust approaches [14,21], most recently with CNN-based methods [3,7,28],
yielding impressive results.

We also adopt a learning-based approach, but go beyond commonly used
2.5D representations that only infer shape for the visible pixels. Some recent
methods, with a similar goal, predict volumetric 3D from a depth image [24], or
infer amodal aspects of a scene [6]. However, these methods require direct 3D
supervision and are thus restricted to synthetically generated data. In contrast,
our approach leverages indirect multi-view supervision that is more naturally
obtainable, as well as ecologically plausible.
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Depth Prediction via View Synthesis. The challenge of leveraging indirect
supervision for inference has been addressed by some recent multi-view super-
vised approaches. Garg et al. [9] and Godard et al. [12] used stereo images to
learn a single-view depth prediction system by minimizing the inconsistency
as measured by pixel-wise reprojection error. Subsequent works [26,33] further
relax the constraint of having calibrated stereo images, and learn a single-view
depth model from monocular videos.

We adopt a similar learning philosophy, i.e. learning using multi-view super-
vision via view synthesis. However, our layered representation is different from
the per-pixel depth predicted by these approaches, and in this work we address
the related technical challenges. As we describe in Sect. 3, our novel view ren-
dering process is very different from the techniques used by these approaches.

Multi-view Supervised 3D Object Reconstruction. Learning-based
approaches for single-view 3D object reconstruction have seen a similar shift in
the forms of supervision required. Initial CNN-based methods [5,11] predicted
voxel occupancy representations from a single input image but required full 3D
supervision during training. Recent approaches have advocated alternate forms
of supervision, e.g. multi-view foreground masks [19,25,32] or depth [25].

While these methods go beyond 2.5D predictions and infer full 3D struc-
ture, they use volumetric-occupancy-based representations that do not naturally
extend to general scenes. The layered representations we use are instead closer
to depth-based representations often used for scenes. Similarly, these methods
commonly rely on cues like foreground masks from multiple views, which are
more applicable to isolated objects than to complex scenes. In our scenario, we
therefore rely only on multiple RGB images as supervision.

Layered Scene Representations. Various layer-based scene representations
are popular in the computer vision and graphics communities for reasons of par-
simony, efficiency and descriptive power. Single-view based [14,15,20] or optical
flow methods [29] often infer a parsimonious representation of the scene or flow
by grouping the visible content into layers. While these methods do not reason
about occlusion, Adelson [1] proposed using a planar layer-based representation
to capture hidden surfaces and demonstrated that these can be inferred using
motion [27]. Similarly, Baker et al. [2] proposed a stereo method that represents
scenes as planar layers. Our work is most directly inspired by Shade et al. [22],
who introduced the layered depth image (LDI) representation to capture the
structure of general 3D scenes for use in image-based rendering.

We aim for a similar representation. However, in contrast to classical
approaches that require multiple images for inference, we use machine learning
to predict this representation from a single image at test time. Further, unlike
previous single-view based methods, our predicted representation also reasons
about occluded aspects of the scene.
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3 Learning LDI Prediction

Our aim is to predict a 3D representation of a scene that includes not only the
geometry of what we see, but also aspects of the scene not directly visible. A stan-
dard approach to geometric inference is to predict a depth map, which answers,
for each pixel the question: ‘how far from the camera is the point imaged at this
pixel?’. In this work, we propose to predict a Layered Depth Image (LDI) [22]
representation that, in addition to the question above, also answers: ‘what lies
behind the visible content at this pixel?’.

As we do not have access to a dataset of paired examples of images with
their corresponding LDI representations, we therefore exploit indirect forms of
supervision to learn LDI prediction. We note that since an LDI representation
of a scene captures both visible and amodal aspects of a scene, it can allow
us to geometrically synthesize novel views of the same scene, including aspects
that are hidden to the input view. Our insight is that we can leverage view
synthesis as a proxy target task. We first formally describe our training setup
and representation, then present our approach based on this insight. We also
introduce a differentiable mechanism for rendering an LDI representation from
novel views via a novel ‘soft z-buffering’-based forward splatting layer.

3.1 Overview

Training Data. We leverage multi-view supervision to learn LDI prediction.
Our training dataset is comprised of multiple scenes, with images from a few
views available per scene. We assume a known camera transformation between
the different images of the same scene. This form of supervision can easily be
obtained using a calibrated camera rig, or by any natural agent which has access
to its egomotion. Equivalently, we can consider the training data to consist of
numerous source and target image pairs, where the two images in each pair are
from the same scene and are related by a known transformation.

Concretely, we denote our training dataset of N image pairs with associated
cameras as {(In

s , In
t ,Kn

s ,Kn
t ,Rn, tn)}N

n=1. Here In
s , In

t represent two (source and
target) images of the same scene, with camera intrinsics denoted as Kn

s ,Kn
t

respectively. The relative camera transformation between the two image frames
is captured by a rotation Rn and translation tn. We note that the training data
leveraged does not assume any direct supervision for the scene’s 3D structure.

Predicted LDI Representation. A Layered Depth Image (LDI) representa-
tion (see Fig. 3 for an illustration) represents the 3D structure of a scene using
layers of depth and color images. An LDI representation with L layers is of the
form {(I l,Dl)}L

l=1. Here (I l,Dl) represent the texture (i.e., color) image I and
disparity (inverse depth) image D corresponding to layer l. An important prop-
erty of the LDI representation is that the structure captured in the layers is
increasing in depth i.e. for any pixel p, if l1 < l2, then Dl1(p) ≥ Dl2(p) (dispar-
ity is monotonically decreasing over layers, or, equivalently, depth is increasing).
Therefore, the initial layer l = 1 represents the visible content from the camera
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viewpoint (layers in an LDI do not have an alpha channel or mask). In fact, a
standard depth map representation can be considered as an LDI with a single
layer, with I1 being the observed image.

Fig. 3. Layered Depth Images (LDIs). Illustration of a layered depth image (LDI)
for a simple scene. The first layer captures the depth (darker indicates closer) and
texture of the visible points, and the second layer describes the occluded structure.

In our work, we aim to learn an LDI prediction function f , parametrized
as a CNN fθ, which, given a single input image I, can infer the corresponding
LDI representation {(I l,Dl)}L

l=1. Intuitively, the first layer corresponds to the
aspects of the scene visible from the camera viewpoint, and the subsequent layers
capture aspects occluded in the current view. Although in this work we restrict
ourselves to inferring two layers, the learning procedure presented is equally
applicable for the more general scenario.

View Synthesis as Supervision. Given a source image Is, we predict the cor-
responding LDI representation fθ(Is) = {(I l

s,D
l
s)}L

l=1. During training, we also
have access to an image It of the same scene as Is, but from a different view-
point. We write Vs→t ≡ (Ks,Kt,R, t) to denote the camera transform between
the source frame and the target frame, including intrinsic and extrinsic camera
parameters. With this transform and our predicted LDI representation, we can
render a predicted image from the target viewpoint. In particular, using a geo-
metrically defined rendering function R, we can express the novel target view
rendered from the source image as R(fθ(Is);Vs→t).

We can thus obtain a learning signal for our LDI predictor fθ by enforcing
similarity between the predicted target view R(fθ(Is);Vs→t) and the observed
target image It. There are two aspects of this learning setup that allow us to
learn meaningful prediction: (a) the novel view It may contain new scene content
compared to Is, e.g. disoccluded regions, therefore the LDI fθ(Is) must capture
more than the visible structure; and (b) the LDI fθ(Is) is predicted independently
of the target view/image It which may be sampled arbitrarily, and hence the
predicted LDI should be able to explain content from many possible novel views.

The Need for Forward-Rendering. As noted by Shade et al. when intro-
ducing the LDI representation [22], the rendering process for synthesizing a
novel view given a source LDI requires forward-splatting-based rendering. This
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requirement leads to a subtle but important difference in our training procedure
compared to prior multi-view supervised depth prediction methods [9,12,33]:
while prior approaches rely on inverse warping for rendering, our representation
necessitates the use of forward rendering.

Concretely, prior approaches, given a source image Is, predict a per-pixel
depth map. Then, given a novel view image, It, they reconstruct the source
image by ‘looking up’ pixels from It via the predicted depth and camera trans-
form. Therefore, the ‘rendered view’ is the same as the input view for which the
geometry is inferred, i.e. these methods do not render a novel view, but instead
re-render the source view. This procedure only enforces that correct geometry is
learned for pixels visible to both views.

However, in our scenario, since we explicitly want to predict beyond the
visible structure, we cannot adopt this approach. Instead, we synthesize novel
views using our layered representation, thereby allowing us to learn about both
the visible and the occluded scene structure. This necessitates forward rendering,
i.e. constructing a target view given the source view texture and geometry, as
opposed to inverse warping, i.e. reconstructing a source view by using source
geometry and target frame texture.

3.2 Differentiable Rendering of an LDI

Given a predicted LDI representation {(I l
s,D

l
s)} in a source image frame, we want

to render a novel viewpoint related by a transform Vs→t. We do so by treating
the LDI as a textured point cloud, with each pixel in each layer corresponding to
a point. We first forward-project each source point onto the target frame, then
handle occlusions by proposing a ‘soft z-buffer’, and finally render the target
image by a weighted average of the colors of projected points.

Forward Projection. Denoting by pl
s the pixel ps ≡ (xs, ys) in layer l, we can

compute its projected position and inverse depth in the target frame coordinates
using the (predicted) inverse depth dl

s ≡ Dl
s(ps) and the camera parameters.

⎡
⎢⎢⎣

x̄t(pl
s)

ȳt(pl
s)

1
d̄t(pl

s)

⎤
⎥⎥⎦ ∼

[
Kt 0̂
0̂ 1

] [
R t̂
0̂ 1

] [
K−1

s 0̂
0̂ 1

]
⎡
⎢⎢⎣

xs

ys

1
dl

s

⎤
⎥⎥⎦ (1)

Splatting with soft z-buffering. Using the above transformation, we can
forward splat this point cloud to the target frame. Intuitively, we consider the
target frame image as an empty canvas. Then, each source point pl

s adds paint
onto the canvas, but only at the pixels immediately around its projection. Via
this process, many source points may contribute to the same target image pixel,
and we want the closer ones to occlude the further ones. In traditional rendering,
this can be achieved using a z-buffer, with only the closest point contributing to
the rendering of a pixel.

However, this process results in a discontinuous and non-differentiable ren-
dering function that is unsuitable for our framework. Instead, we propose a soft
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z-buffer using a weight w(pt, p
l
s) that specifies the contribution of pl

s to the tar-
get image pixel pt. Defining B(x0, x1) ≡ max (0, 1 − |x0 − x1|), we compute the
weights as:

w(pt, p
l
s) = exp

(
d̄t(pl

s)
τ

)
B(x̄t(pl

s), xt) B(ȳt(pl
s), yt) (2)

The initial exponential factor, modulated by the temperature τ , enforces higher
precedence for points closer to the camera. A large value of τ results in ‘softer’ z-
buffering, whereas a small value yields a rendering process analogous to standard
z-buffering. The latter terms simply represent bilinear interpolation weights and
ensure that each source point only contributes non-zero weight to target pixels
in the immediate neighborhood.

Rendering. Finally, we compute the rendered texture Īt(pt) at each target pixel
pt as a weighted average of the contributions of points that splat to that pixel:

Īt(pt) =

∑
pl
s
I l
s w(pt, p

l
s) + ε∑

pl
s
w(pt, pl

s) + ε
(3)

The small ε in the denominator ensures numerical stability for target pixels
that correspond to no source point. A similar term in the numerator biases the
color for such pixels towards white. All operations involved in rendering the
novel target view are differentiable, including the forward projection, depth-
dependent weight computation, and final color computation. Hence, we can use
this rendering via forward splatting process as the differentiable R(fθ(Is);Vs→t)
required in our learning framework.

3.3 Network Architecture

We adopt the DispNet [18] architecture for our LDI prediction CNN shown in
Fig. 4. Given the input color image, a convolutional encoder processes it to com-
pute spatial features at various resolutions. We then decode these via upcon-
volutions to get back to the image resolution. Each layer in the decoder also
receives the features from the corresponding encoder layer via skip connections.
While we use a single CNN to predict disparities and textures for all LDI layers,
we find it critical to have disjoint prediction branches to infer each LDI layer.
We hypothesize that this occurs because the foreground layer gets more learning
signal, and sharing all the prediction weights makes it difficult for the learning
signals for the background layer to compete. Therefore, the last three decoding
blocks and final prediction blocks are independent for each LDI layer.

3.4 Training Objective

To train our CNN fθ, we use view synthesis as a proxy task: given a source
image Is, we predict a corresponding LDI and render it from a novel viewpoint.
As a training objective, we enforce that this rendered image should be similar
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Per-layer weights
and prediction.

Input

Upconvolution

Convolution

Predicted
Disparity

Predicted
Texture

Skip-connections

Fig. 4. Overview of our CNN architecture. We take as input an image and predict
per-layer texture and inverse depth. Our CNN architecture consists of a convolutional
encoder and decoder with skip-connections. We use disjoint prediction branches for
inferring the texture and depth for each LDI layer.

to the observed image from that viewpoint. However, there are some additional
nuances that we need to consider when formulating our training objective.

Depth Monotonicity. The layers in our LDI representation are supposed to
capture content at increasing depths. We therefore enforce that the inverse depth
across layers at any pixel is non-increasing:

Linc(Is) =
∑
ps,l

max(0,Dl+1
s (ps) − Dl

s(ps)). (4)

Consistency with Source. The typical LDI representation enforces that the
first layer’s texture corresponds to the observed source. We additionally enforce
a similar constraint even for background layers when the predicted geometry is
close to the foreground layer. We compute a normalized weight for the layers at
each pixel, denoted as w(ps, l) ∝ exp Dl

s(ps)
τ , and define a weighted penalty for

deviation from the observed image:

Lsc(Is) =
∑
ps,l

w(ps, l)‖Is(ps) − I l
s(ps)‖1. (5)

This loss encourages the predicted texture at each layer to match the source
texture, while allowing significant deviations in case of occlusions, i.e. where the
background layer is much further than the foreground. In conjunction with Linc,
this loss enforces that the predicted representation adheres to the constraints of
being an LDI.

Allowing Content Magnification. The forward-splatting rendering method
described in Sect. 3.2 computes a novel view image by splatting each source pixel
onto the target frame. This may result in ‘cracks’ [13]—target pixels that are
empty because no source pixels splat onto them. For example, if the target image
contains a close-up view of an object that is faraway in the source image, too
few source points will splat into that large target region to cover it completely.
To overcome this, we simply render the target frame at half the input resolution,
i.e. the output image from the rendering function described in Sect. 3.2 is half
the size of the input LDI.
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Ignoring Image Boundaries. While an LDI representation can explain the
disoccluded content that becomes visible in a novel view, it cannot capture the
pixels in the target frame that are outside the image boundary in the source
frame. We would like to ignore such pixels in the view synthesis loss. However,
we do not have ground-truth to tell us which pixels these are. Instead, we use
the heuristic of ignoring pixels around the boundary. Denoting as M a binary
mask that is zero around the image edges, we define our view synthesis loss as:

Lvs(Is, It, Vs→t) = ‖M � It − M � Īt‖1 where Īt = R(fθ(Is);Vs→t). (6)

As described above, the rendered image Īt and the target image It are spatially
smaller than Is.

Overcoming Depth Precedence. Consider synthesizing pixel pt as described
in Eq. 3. While the weighted averaging across layers resembles z-buffer-based
rendering, it has the disadvantage of making it harder to learn a layer if there
is another preceding (and possibly incorrectly predicted) layer in front of it. To
overcome this, and therefore to speed up the learning of layers independent of
other layers, we add an additional loss term. Denoting as Ī l

t a target image ren-
dered using only layer l, we add an additional ‘min-view synthesis’ loss measuring
the minimum pixel-wise error across per-layer synthesized views:

Lm−vs(Is, It, Vs→t) =
∑
pt

min
l

M(pt)‖It(pt) − Ī l
t(pt)‖1 (7)

In contrast to the loss in Eq. 6, which combines the effects of all layers when mea-
suring the reconstruction error at pt, this loss term simply enforces that at least
one layer should correctly explain the observed It(pt). Therefore, a background
layer can still get a meaningful learning signal even if there is a foreground layer
incorrectly occluding it. Empirically, we found that this term is crucial to allow
for learning the background layer.

Smoothness. We use a depth smoothness prior Lsm which minimizes the L1

norm of the second-order spatial derivatives of the predicted inverse depths Dl
s.

Our final learning objective, combining the various loss terms defined above
(with different weights) is:

Lfinal = Lvs + Lm−vs + Lsc + Linc + Lsm (8)

Using this learning objective, we can train our LDI prediction CNN fθ using a
dataset comprised only of paired source and target images of the same scene.

4 Experiments

We consider two different scenarios to learn single-view inference of a layer-
structured scene representation. We first study our approach in a synthetic, but
nevertheless challenging, setting using procedurally generated data. We then use
our method to learn from stereo pairs in an outdoor setting.
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4.1 Analysis Using Synthetic Data

In order to examine our method in a controlled setting with full knowledge of
the underlying 3D scene structure, we create a dataset of procedurally generated
scenes. We first describe the details of the generation process, and then discuss
the training details and our results.

Dataset. We generate our synthetic data to have a room-like layout with two
side ‘walls’, one back ‘wall’, a ‘ceiling’ and a ‘floor’. We additionally place one to
three upright segmented objects on the floor. The ‘room’ box is always at a fixed
location in the world frame, and is of a fixed size. The segmented foreground
objects are randomly placed, from left to right, at increasing depths and lie on
a front-facing planar surface. To obtain the foreground objects, we randomly
sample from the unoccluded and untruncated object instances in the PASCAL
VOC dataset [8]. The textures on the room walls are obtained using random
images from the SUN 2012 dataset [30].

To sample the source and target views for training our LDI prediction, we
randomly assign one of them to correspond to the canonical front-facing world
view. The other view corresponds to a random camera translation with a random
rotation. We ensure that the transformation can be large enough such that the
novel views can often image the content behind the foreground object(s) in the
source view. We show some sample source and target pairs in Fig. 5.

Note that while the geometry of the scene layout is relatively simple, the
foreground objects can have differing shapes due their respective segmentation.
Further, the surface textures are drawn from diverse real images and significantly

Fig. 5. Procedurally generated synthetic data. We show 6 random training sam-
ples (top: source image and corresponding inverse depth, bottom: target image with
corresponding inverse depth). Note that only the color images are used for learning.
(Color figure online)
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add to the complexity, particularly as our aim is to infer both the geometry and
the texture for the scene layers.

Training Details. We split the PASCAL VOC objects and the SUN 2012
images into random subsets corresponding to a train/validation/test split of
70% − 15% − 15%. We use the corresponding images and objects to generate
training samples to train our LDI prediction CNN fθ. We train our CNN for
600k iterations using the ADAM optimizer [16]. Based on the dataset statistics,
we restrict the maximum inverse depth predicted to correspond to 1 m.

Results. We visualize the predictions of our learned LDI prediction CNN in
Fig. 6. We observe that it is able to predict the correct geometry for the fore-
ground layer i.e. per-pixel depth. More interestingly, it can leverage the back-
ground layer to successfully infer the geometry of the occluded scene content
and hallucinate plausible corresponding textures. We observe some interesting
error modes in the prediction, e.g. incorrect background layer predictions at the
base of wide objects, or spurious details in the background layer at pixels outside
the ‘room’. Both these occur because we do not use any direct supervision for
learning, but instead rely on a view synthesis loss. The first error mode occurs
because we never fully ‘see behind’ the base of wide objects even in novel views.
Similarly, the spurious details are only present in regions which are consistently
occluded by the foreground layer and therefore ignored for view synthesis.

We analyze our learned representation by evaluating how well we can syn-
thesize novel views using it. We report in Table 1 the mean �1 error for view
synthesis and compare our 2 layer model vs a single layer model also trained
for the view synthesis task, using the same architecture and hyper-parameters.
Note that the single layer model can only hope to capture the visible aspects,
but not the occluded structure. We observe that we perform slightly better than
the single layer model. Since most of the scene pixels are visible in both, the
source and target views, a single layer model explains them well. However, we
see that the error difference is more significant if we restrict our analysis to only

Fig. 6. Sample LDI prediction results on synthetic data. For each input image
on the left, we show our method’s predicted 2-layer texture and geometry for the
highlighted area: (a, b) show the predicted textures for the foreground and background
layers respectively, and (c, d) depict the corresponding predicted disparity.
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Fig. 7. Sample LDI prediction results on the KITTI dataset. For each input
image on the left, we show our method’s predicted 2-layer texture and geometry for the
highlighted area: (a, b) show the predicted textures for the foreground and background
layers respectively, and (c, d) depict the corresponding predicted disparity.

Table 1. View synthesis error on synthetic data. We compare our 2 layer LDI
prediction CNN against a single layer model that can only capture the visible aspects.
We report the mean pixel-wise �1 error between the ground-truth novel view and the
corresponding view rendered using the predicted representations.

View synthesis error All pixels Dis-occluded pixels

1 layer model 0.0398 0.1439

2 layer model 0.0392 0.1301

the dis-occluded pixels i.e. pixels in the target image which are not visible in
the source view. This supports the claim that our predicted LDI representation
does indeed capture more than the directly visible structure.

We also report in Table 2 the error in the predicted inverse depth(s) against
the known ground-truth. We restrict the error computation for the background
layer to pixels where the depth differs from the foreground layer. Since the one
layer model only captures the foreground, and does not predict the background
depths, we measure its error for the background layer using the foreground layer
predictions. While this is an obviously harsh comparison, as the one layer model,
by design, cannot capture the hidden depth, the fact that our predicted back-
ground layer is ‘closer’ serves to empirically show that our learned model infers
meaningful geometry for the background layer.

4.2 Experiments on KITTI

We demonstrate the applicability of our framework in a more realistic setting:
outdoor scenes with images collected using a calibrated stereo camera setup.
We note that previous methods applied to this setting have been restricted to
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Table 2. Geometry prediction error on synthetic data. We measure mean pixel-
wise error in the predicted inverse depth(s) against the ground-truth. (*) As the single
layer model does not infer background, we evaluate its error for the background layer
using the foreground depth predictions. This serves to provide an instructive upper
bound for the error of the LDI model.

Inverse depth error Foreground layer
(All pixels)

Background layer
(Hidden pixels)

1 layer model 0.0092 0.1307 (*)

2 layer model 0.0102 0.0152

inferring the depth of the visible pixels, and that it is encouraging that we can
go beyond this representation.

Dataset. We use the ‘raw’ sequences from the KITTI dataset [10], restricting
our data to the 30 sequences from the city category as these more often contain
interesting occluders e.g. people or traffic lights. The multi-view supervision we
use corresponds to images from calibrated stereo cameras that are 0.5 m apart.
We use both the left and the right camera images as source images, and treat
the other as the target view for which the view synthesis loss is minimized. Due
to the camera setup, the view sampling corresponds to a lateral motion of 0.5 m
and is more restrictive compared to the synthetic data.

Training Details. We randomly choose 22 among the 30 city sequences for
training, and use 4 each for validation and testing. This results in a training set
of about 6,000 stereo pairs. We use similar hyper-parameters and optimization
algorithm to the synthetic data scenario, but alter the closest possible depth to
correspond to 2 m.

Table 3. View synthesis error on KITTI. We compare our 2 layer LDI prediction
CNN against a single layer model that can only capture the visible aspects. We report
the mean pixel-wise view synthesis error when rendering novel views using the predicted
representations.

View synthesis error All pixels Dis-occluded pixels

1 layer model 0.0583 0.0813

2 layer model 0.0581 0.0800

Results. We visualize sample predictions of our learned LDI prediction CNN
in Fig. 7. We observe that it is able to predict the correct geometry for the
foreground layer i.e. per-pixel depth. Similar to the synthetic data scenario, we
observe that it can leverage the background layer to hallucinate plausible geom-
etry and texture of the occluded scene content, although to a lesser extent. We
hypothesize that the reduction in usage of the background layer is because the



Layer-Structured 3D Scene Inference via View Synthesis 325

view transformation between the source and target views is small compared to
the scene scale, and we therefore only infer background layer mostly correspond-
ing to (a) thin scene structures smaller than the stereo baseline, or (b) around
the boundaries of larger objects/structures e.g. cars.

We do not have the full 3D structure of the scenes to compare our predicted
LDI against, but we can evaluate the ability of this representation to infer the
available novel views, and we report these evaluations in Table 3. As we do not
have the ground-truth for the dis-occluded pixels, we instead use the unmatched
pixels from an off-the-shelf stereo matching algorithm [31]. This algorithm, in
addition to computing disparity, attempts to identify pixels with no correspon-
dence in the other view, thus providing (approximate) dis-occlusion labels (see
supplementary material for visualizations). Measuring the pixel-wise reconstruc-
tion error, we again observe that our two-layer LDI model performs slightly bet-
ter than a single layer model which only models the foreground. Additionally,
the difference is a bit more prominent for the dis-occluded pixels.

While the above evaluation indicates our ability to capture occluded struc-
ture, it is also worth examining the accuracy of the predicted depth. To this end,
we compared results on our test set against the publicly available model from
Zhou et al. [33], since we use a similar CNN architecture facilitating a more
apples-to-apples comparison. We perform comparably, achieving an Absolute
Relative error of 0.1856, compared to an error of 0.2079 by [33]. While other
monocular depth estimation approaches can further achieve improved results
using stronger supervision, better architectures or cycle consistency [12], we note
that achieving state-of-the-art depth prediction is not our central goal. However,
we find it encouraging that our proposed LDI prediction approach does yield
somewhat competitive depth prediction results.

5 Discussion

We have presented a learning-based method to infer a layer-structured rep-
resentation of scenes that can go beyond common 2.5D representations and
allow for reasoning about occluded structures. There are, however, a number
of challenges yet to be addressed. As we only rely on multi-view supervision, the
learned geometry is restricted by the extent of available motion across training
views. Additionally, it would be interesting to extend our layered representa-
tion to include a notion of grouping, incorporate semantics and semantic pri-
ors (e.g. ‘roads are flat’). Finally, we are still far from full 3D understanding of
scenes. However, our work represents a step beyond 2.5D prediction and towards
full 3D.
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