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Abstract. Convolutional neural network (CNN) depth is of crucial
importance for image super-resolution (SR). However, we observe that
deeper networks for image SR are more difficult to train. The low-
resolution inputs and features contain abundant low-frequency informa-
tion, which is treated equally across channels, hence hindering the rep-
resentational ability of CNNs. To solve these problems, we propose the
very deep residual channel attention networks (RCAN). Specifically, we
propose a residual in residual (RIR) structure to form very deep network,
which consists of several residual groups with long skip connections. Each
residual group contains some residual blocks with short skip connec-
tions. Meanwhile, RIR allows abundant low-frequency information to be
bypassed through multiple skip connections, making the main network
focus on learning high-frequency information. Furthermore, we propose a
channel attention mechanism to adaptively rescale channel-wise features
by considering interdependencies among channels. Extensive experiments
show that our RCAN achieves better accuracy and visual improvements
against state-of-the-art methods.
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1 Introduction

We address the problem of reconstructing an accurate high-resolution (HR)
image given its low-resolution (LR) counterpart, usually referred as single image
super-resolution (SR) [8]. Image SR is used in various computer vision applica-
tions, ranging from security and surveillance imaging [45], medical imaging [33]
to object recognition [31]. However, image SR is an ill-posed problem, since
there exists multiple solutions for any LR input. To tackle such an inverse prob-
lem, numerous learning based methods have been proposed to learn mappings
between LR and HR image pairs.
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Fig. 1. Visual results with Bicubic (BI) degradation (4×) on “img 074” from Urban100.
SRCNN [5], FSRCNN [6], SCN [39], VDSR [16], DRRN [34], LapSRN [19], MSLap-
SRN [20], ENet-PAT [31], MemNet [35], EDSR [23], and SRMDNF [43]

Recently, deep convolutional neural network (CNN) based methods [5,6,
10,16,19,20,23,31,34,35,39,42–44] have achieved significant improvements over
conventional SR methods. Among them, Dong et al. [4] proposed SRCNN by
firstly introducing a three-layer CNN for image SR. Kim et al. increased the net-
work depth to 20 in VDSR [16] and DRCN [17], achieving notable improvements
over SRCNN. Network depth was demonstrated to be of central importance for
many visual recognition tasks, especially when He at al. [11] proposed resid-
ual net (ResNet). Such effective residual learning strategy was then introduced
in many other CNN-based image SR methods [21,23,31,34,35]. Lim et al. [23]
built a very wide network EDSR and a very deep one MDSR by using simplified
residual blocks. The great improvements on performance of EDSR and MDSR
indicate that the depth of representation is of crucial importance for image SR.
However, to the best of our knowledge, simply stacking residual blocks to con-
struct deeper networks can hardly obtain better improvements. Whether deeper
networks can further contribute to image SR and how to construct very deep
trainable networks remains to be explored.

On the other hand, most recent CNN-based methods [5,6,16,19,20,23,31,
34,35,39,43] treat channel-wise features equally, which lacks flexibility in deal-
ing with different types of information. Image SR can be viewed as a process,
where we try to recover as more high-frequency information as possible. The LR
images contain most low-frequency information, which can directly forwarded
to the final HR outputs. While, the leading CNN-based methods would treat
each channel-wise feature equally, lacking discriminative learning ability across
feature channels, and hindering the representational power of deep networks.

To practically resolve these problems, we propose a residual channel attention
network (RCAN) to obtain very deep trainable network and adaptively learn
more useful channel-wise features simultaneously. To ease the training of very
deep networks (e.g., over 400 layers), we propose residual in residual (RIR)
structure, where the residual group (RG) serves as the basic module and long skip
connection (LSC) allows residual learning in a coarse level. In each RG module,
we stack several simplified residual block [23] with short skip connection (SSC).
The long and short skip connection as well as the short-cut in residual block allow
abundant low-frequency information to be bypassed through these identity-based
skip connections, which can ease the flow of information. To make a further
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step, we propose channel attention (CA) mechanism to adaptively rescale each
channel-wise feature by modeling the interdependencies across feature channels.
Such CA mechanism allows our proposed network to concentrate on more useful
channels and enhance discriminative learning ability. As shown in Fig. 1, our
RCAN achieves better visual SR result compared with state-of-the-art methods.

Overall, our contributions are three-fold: (1) We propose the very deep resid-
ual channel attention networks (RCAN) for highly accurate image SR. (2) We
propose residual in residual (RIR) structure to construct very deep trainable net-
works. (3) We propose channel attention (CA) mechanism to adaptively rescale
features by considering interdependencies among feature channels.

2 Related Work

Numerous image SR methods have been studied in the computer vision com-
munity [5,6,13,16,19,20,23,31,34,35,39,43]. Attention mechanism is popular in
high-level vision tasks, but is seldom investigated in low-level vision applica-
tions [12]. Due to space limitation, here we focus on works related to CNN-based
methods and attention mechanism.

Deep CNN for SR. The pioneer work was done by Dong et al. [4], who pro-
posed SRCNN for image SR and achieved superior performance against previ-
ous works. SRCNN was further improved in VDSR [16] and DRCN [17]. These
methods firstly interpolate the LR inputs to the desired size, which inevitably
loses some details and increases computation greatly. Extracting features from
the original LR inputs and upscaling spatial resolution at the network tail then
became the main choice for deep architecture. A faster network structure FSR-
CNN [6] was proposed to accelerate the training and testing of SRCNN. Ledig
et al. [21] introduced ResNet [11] to construct a deeper network with perceptual
losses [15] and generative adversarial network (GAN) [9] for photo-realistic SR.
However, most of these methods have limited network depth, which has demon-
strated to be very important in visual recognition tasks [11]. Furthermore, most
of these methods treat the channel-wise features equally, hindering better dis-
criminative ability for different features.

Attention Mechanism. Generally, attention can be viewed as a guidance to
bias the allocation of available processing resources towards the most informative
components of an input [12]. Recently, tentative works have been proposed to
apply attention into deep neural networks [12,22,38], ranging from localization
and understanding in images [3,14] to sequence-based networks [2,26]. It’s usu-
ally combined with a gating function (e.g., sigmoid) to rescale the feature maps.
Wang et al. [38] proposed residual attention network for image classification
with a trunk-and-mask attention mechanism. Hu et al. [12] proposed squeeze-
and-excitation (SE) block to model channel-wise relationships to obtain signifi-
cant performance improvement for image classification. However, few works have
been proposed to investigate the effect of attention for low-level vision tasks (e.g.,
image SR).
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Fig. 2. Network architecture of our residual channel attention network (RCAN)

3 Residual Channel Attention Network (RCAN)

3.1 Network Architecture

As shown in Fig. 2, our RCAN mainly consists four parts: shallow feature extrac-
tion, residual in residual (RIR) deep feature extraction, upscale module, and
reconstruction part. Let’s denote ILR and ISR as the input and output of RCAN.
As investigated in [21,23], we use only one convolutional layer (Conv) to extract
the shallow feature F0 from the LR input

F0 = HSF (ILR) , (1)

where HSF (·) denotes convolution operation. F0 is then used for deep feature
extraction with RIR module. So we can further have

FDF = HRIR (F0) , (2)

where HRIR (·) denotes our proposed very deep residual in residual structure,
which contains G residual groups (RG). To the best of our knowledge, our pro-
posed RIR achieves the largest depth so far and provides very large receptive
field size. So we treat its output as deep feature, which is then upscaled via a
upscale module

FUP = HUP (FDF ) , (3)

where HUP (·) and FUP denote a upscale module and upscaled feature respec-
tively.

There’re several choices to serve as upscale modules, such as deconvolu-
tion layer (also known as transposed convolution) [6], nearest-neighbor upsam-
pling + convolution [7], and ESPCN [32]. Such post-upscaling strategy has been
demonstrated to be more efficient for both computation complexity and achieve
higher performance than pre-upscaling SR methods (e.g., DRRN [34] and Mem-
Net [35]). The upscaled feature is then reconstructed via one Conv layer

ISR = HREC (FUP ) = HRCAN (ILR) , (4)
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where HREC (·) and HRCAN (·) denote the reconstruction layer and the function
of our RCAN respectively.

Then RCAN is optimized with loss function. Several loss functions have been
investigated, such as L2 [5,6,10,16,31,34,35,39,43], L1 [19,20,23,44], perceptual
and adversarial losses [21,31]. To show the effectiveness of our RCAN, we choose
to optimize same loss function as previous works (e.g., L1 loss function). Given
a training set

{
IiLR, IiHR

}N

i=1
, which contains N LR inputs and their HR coun-

terparts. The goal of training RCAN is to minimize the L1 loss function

L (Θ) =
1
N

N∑

i=1

∥
∥HRCAN

(
IiLR

) − IiHR

∥
∥
1
, (5)

where Θ denotes the parameter set of our network. The loss function is optimized
by using stochastic gradient descent. More details of training would be shown in
Sect. 4.1. As we choose the shallow feature extraction HSF (·), upscaling mod-
ule HUP (·), and reconstruction part HUP (·) as similar as previous works (e.g.,
EDSR [23] and RDN [44]), we pay more attention to our proposed RIR, CA,
and the basic module RCAB.

3.2 Residual in Residual (RIR)

We now give more details about our proposed RIR structure (see Fig. 2), which
contains G residual groups (RG) and long skip connection (LSC). Each RG
further contains B residual channel attention blocks (RCAB) with short skip
connection (SSC). Such residual in residual structure allows to train very deep
CNN (over 400 layers) for image SR with high performance.

It has been demonstrated that stacked residual blocks and LSC can be used
to construct deep CNN in [23]. In visual recognition, residual blocks [11] can be
stacked to achieve more than 1,000-layer trainable networks. However, in image
SR, very deep network built in such way would suffer from training difficulty
and can hardly achieve more performance gain. Inspired by previous works in
SRRestNet [21] and EDSR [23], we proposed residual group (RG) as the basic
module for deeper networks. A RG in the g-th group is formulated as

Fg = Hg (Fg−1) = Hg (Hg−1 (· · · H1 (F0) · · · )) , (6)

where Hg denotes the function of g-th RG. Fg−1 and Fg are the input and output
for g-th RG. We observe that simply stacking many RGs would fail to achieve
better performance. To solve the problem, the long skip connection (LSC) is
further introduced in RIR to stabilize the training of very deep network. LSC
also makes better performance possible with residual learning via

FDF = F0 + WLSCFG = F0 + WLSCHg (Hg−1 (· · · H1 (F0) · · · )) , (7)

where WLSC is the weight set to the Conv layer at the tail of RIR. The bias
term is omitted for simplicity. LSC can not only ease the flow of information



Image Super-Resolution Using Very Deep RCAN 299

Fig. 3. Channel attention (CA). ⊗ denotes element-wise product

across RGs, but only make it possible for RIR to learning residual information
in a coarse level.

As discussed in Sect. 1, there are lots of abundant information in the LR
inputs and features and the goal of SR network is to recover more useful informa-
tion. The abundant low-frequency information can be bypassed through identity-
based skip connection. To make a further step towards residual learning, we stack
B residual channel attention blocks in each RG. The b-th residual channel atten-
tion block (RCAB) in g-th RG can be formulated as

Fg,b = Hg,b (Fg,b−1) = Hg,b (Hg,b−1 (· · · Hg,1 (Fg−1) · · · )) , (8)

where Fg,b−1 and Fg,b are the input and output of the b-th RCAB in g-th RG.
The corresponding function is denoted with Hg,b. To make the main network
pay more attention to more informative features, a short skip connection (SSC)
is introduced to obtain the block output via

Fg = Fg−1 + WgFg,B = Fg−1 + WgHg,B (Hg,B−1 (· · · Hg,1 (Fg−1) · · · )) , (9)

where Wg is the weight set to the Conv layer at the tail of g-th RG. The SSC
further allows the main parts of network to learn residual information. With LSC
and SSC, more abundant low-frequency information is easier bypassed in the
training process. To make a further step towards more discriminative learning,
we pay more attention to channel-wise feature rescaling with channel attention.

3.3 Channel Attention (CA)

Previous CNN-based SR methods treat LR channel-wise features equally, which
is not flexible for the real cases. In order to make the network focus on more
informative features, we exploit the interdependencies among feature channels,
resulting in a channel attention (CA) mechanism (see Fig. 3).

How to generate different attention for each channel-wise feature is a key
step. Here we mainly have two concerns: First, information in the LR space
has abundant low-frequency and valuable high-frequency components. The low-
frequency parts seem to be more complanate. The high-frequency components
would usually be regions, being full of edges, texture, and other details. On the
other hand, each filter in Conv layer operates with a local receptive field. Conse-
quently, the output after convolution is unable to exploit contextual information
outside of the local region.

Based on these analyses, we take the channel-wise global spatial information
into a channel descriptor by using global average pooling. As shown in Fig. 3,
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let X = [x1, · · · , xc, · · · , xC ] be an input, which has C feature maps with size
of H × W . The channel-wise statistic z ∈ R

C can be obtained by shrinking X
through spatial dimensions H ×W . Then the c-th element of z is determined by

zc = HGP (xc) =
1

H × W

H∑

i=1

W∑

j=1

xc (i, j) , (10)

where xc (i, j) is the value at position (i, j) of c-th feature xc. HGP (·) denotes the
global pooling function. Such channel statistic can be viewed as a collection of
the local descriptors, whose statistics contribute to express the whole image [12].
Except for global average pooling, more sophisticated aggregation techniques
could also be introduced here.

To fully capture channel-wise dependencies from the aggregated informa-
tion by global average pooling, we introduce a gating mechanism. As discussed
in [12], the gating mechanism should meet two criteria: First, it must be able
to learn nonlinear interactions between channels. Second, as multiple channel-
wise features can be emphasized opposed to one-hot activation, it must learn
a non-mututually-exclusive relationship. Here, we opt to exploit simple gating
mechanism with sigmoid function

s = f (WUδ (WDz)) , (11)

where f (·) and δ (·) denote the sigmoid gating and ReLU [27] function, respec-
tively. WD is the weight set of a Conv layer, which acts as channel-downscaling
with reduction ratio r. After being activated by ReLU, the low-dimension signal
is then increased with ratio r by a channel-upscaling layer, whose weight set is
WU . Then we obtain the final channel statistics s, which is used to rescale the
input xc

x̂c = sc · xc, (12)

where sc and xc are the scaling factor and feature map in the c-th channel. With
channel attention, the residual component in the RCAB is adaptively rescaled.

3.4 Residual Channel Attention Block (RCAB)

As discussed above, residual groups and long skip connection allow the main
parts of network to focus on more informative components of the LR fea-
tures. Channel attention extracts the channel statistic among channels to further
enhance the discriminative ability of the network.
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Table 1. Investigations of RIR (including LSC and SSC) and CA. We observe the best
PSNR (dB) values on Set5 (2×) in 5 × 104 iterations

Residual in Residual (RIR) LSC � � � � � � � �

SSC � � � � � � � �

Channel attention (CA) � � � � � � � �

PSNR on Set5 (2×) 37.45 37.77 37.81 37.87 37.52 37.85 37.86 37.90

At the same time, inspired by the success of residual blocks (RB) in [23],
we integrate CA into RB and propose residual channel attention block (RCAB)
(see Fig. 4). For the b-th RB in g-th RG, we have

Fg,b = Fg,b−1 + Rg,b (Xg,b) · Xg,b, (13)

where Rg,b denotes the function of channel attention. Fg,b and Fg,b−1 are the
input and output of RCAB, which learns the residual Xg,b from the input. The
residual component is mainly obtained by two stacked Conv layers

Xg,b = W 2
g,bδ

(
W 1

g,bFg,b−1

)
, (14)

where W 1
g,b and W 2

g,b are weight sets the two stacked Conv layers in RCAB.
We further show the relationships between our proposed RCAB and residual

block (RB) in [23]. We find that the RBs used in MDSR and EDSR [23] can be
viewed as special cases of our RCAB. For RB in MDSR, there is no rescaling
operation. It is the same as RCAB, where we set Rg,b (·) as constant 1. For RB
with constant rescaling (e.g., 0.1) in EDSR, it is the same as RCAB with Rg,b (·)
set to be 0.1. Although the channel-wise feature rescaling is introduced to train
a very wide network, the interdependencies among channels are not considered
in EDSR. In these cases, the CA is not considered.

Based on residual channel attention block (RCAB) and RIR structure, we
construct a very deep RCAN for highly accurate image SR and achieve notable
performance improvements over previous leading methods. More discussions
about the effects of each proposed component are shown in Sect. 4.2.

4 Experiments

4.1 Settings

Following [23,36,43,44], we use 800 training images from DIV2K dataset [36]
as training set. For testing, we use five standard benchmark datasets: Set5 [1],
Set14 [41], B100 [24], Urban100 [13], and Manga109 [25]. We conduct experi-
ments with Bicubic (BI) and blur-downscale (BD) degradation models [42–44].
The SR results are evaluated with PSNR and SSIM [40] on Y channel (i.e.,
luminance) of transformed YCbCr space. Data augmentation is performed on
the 800 training images, which are randomly rotated by 90◦, 180◦, 270◦ and
flipped horizontally. In each training batch, 16 LR color patches with the size of
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48 × 48 are extracted as inputs. Our model is trained by ADAM optimizor [18]
with β1 = 0.9, β2 = 0.999, and ε = 10−8. The initial leaning rate is set to 10−4

and then decreases to half every 2 × 105 iterations of back-propagation. We use
PyTorch [28] to implement our models with a Titan Xp GPU.1

We set RG number as G=10 in the RIR structure. In each RG, we set RCAB
number as 20. We set 3 × 3 as the size of all Conv layers except for that in
the channel-downscaling and channel-upscaling, whose kernel size is 1× 1. Conv
layers in shallow feature extraction and RIR structure have C=64 filters, except
for that in the channel-downscaling. Conv layer in channel-downscaling has C

r =4
filters, where the reduction ratio r is set as 16. For upscaling module HUP (·),
we use ESPCNN [32] to upscale the coarse resolution features to fine ones.

4.2 Effects of RIR and CA

We study the effects of residual in residual (RIR) and channel attention (CA).
Residual in Residual (RIR). To demonstrate the effect of our proposed resid-
ual in residual structure, we remove long skip connection (LSC) or/and short
skip connection (SSC) from very deep networks. Specifically, we set the number
of residual block as 200. In Table 1, when both LSC and SSC are removed, the
PSNR value on Set5 (×2) is relatively low, no matter channel attention (CA) is
used or not. This indicates that simply stacking residual blocks is not applicable
to achieve very deep and powerful networks for image SR. These comparisons
show that LSC and SSC are essential for very deep networks. They also demon-
strate the effectiveness of our proposed residual in residual (RIR) structure for
very deep networks.
Channel Attention (CA). We further show the effect of channel attention
(CA) based on the observations and discussions above. When we compare the
results of first 4 columns and last 4 columns, we find that networks with CA
would perform better than those without CA. Benefitting from very large net-
work depth, the very deep trainable networks can achieve a very high perfor-
mance. It’s hard to obtain further improvements from such deep networks, but
we obtain improvements with CA. Even without RIR, CA can improve the per-
formance from 37.45 dB to 37.52 dB. These comparisons firmly demonstrate
the effectiveness of CA and indicate adaptive attentions to channel-wise features
really improves the performance.

4.3 Results with Bicubic (BI) Degradation Model

We compare our method with 11 state-of-the-art methods: SRCNN [5], FSR-
CNN [6], SCN [39], VDSR [16], LapSRN [19], MemNet [35], EDSR [23],
SRMDNF [43], D-DBPN [10], and RDN [44]. Similar to [23,37,44], we also intro-
duce self-ensemble strategy to further improve our RCAN and denote the self-
ensembled one as RCAN+. More comparisons are provided in supplementary
material.

1 The RCAN source code is available at https://github.com/yulunzhang/RCAN.

https://github.com/yulunzhang/RCAN
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Table 2. Quantitative results with BI degradation model. Best and second best results
are highlighted and underlined

Method Scale Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×2 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339

SRCNN [5] ×2 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 35.60 0.9663

FSRCNN [6] ×2 37.05 0.9560 32.66 0.9090 31.53 0.8920 29.88 0.9020 36.67 0.9710

VDSR [16] ×2 37.53 0.9590 33.05 0.9130 31.90 0.8960 30.77 0.9140 37.22 0.9750

LapSRN [19] ×2 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9101 37.27 0.9740

MemNet [35] ×2 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 37.72 0.9740

EDSR [23] ×2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773

SRMDNF [43] ×2 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 38.07 0.9761

D-DBPN [10] ×2 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775

RDN [44] ×2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780

RCAN (ours) ×2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786

RCAN+ (ours) ×2 38.33 0.9617 34.23 0.9225 32.46 0.9031 33.54 0.9399 39.61 0.9788

Bicubic ×3 30.39 0.8682 27.55 0.7742 27.21 0.7385 24.46 0.7349 26.95 0.8556

SRCNN [5] ×3 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989 30.48 0.9117

FSRCNN [6] ×3 33.18 0.9140 29.37 0.8240 28.53 0.7910 26.43 0.8080 31.10 0.9210

VDSR [16] ×3 33.67 0.9210 29.78 0.8320 28.83 0.7990 27.14 0.8290 32.01 0.9340

LapSRN [19] ×3 33.82 0.9227 29.87 0.8320 28.82 0.7980 27.07 0.8280 32.21 0.9350

MemNet [35] ×3 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376 32.51 0.9369

EDSR [23] ×3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476

SRMDNF [43] ×3 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.00 0.9403

RDN [44] ×3 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484

RCAN (ours) ×3 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499

RCAN+ (ours) ×3 34.85 0.9305 30.76 0.8494 29.39 0.8122 29.31 0.8736 34.76 0.9513

Bicubic ×4 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866

SRCNN [5] ×4 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221 27.58 0.8555

FSRCNN [6] ×4 30.72 0.8660 27.61 0.7550 26.98 0.7150 24.62 0.7280 27.90 0.8610

VDSR [16] ×4 31.35 0.8830 28.02 0.7680 27.29 0.0726 25.18 0.7540 28.83 0.8870

LapSRN [19] ×4 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560 29.09 0.8900

MemNet [35] ×4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942

EDSR [23] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148

SRMDNF [43] ×4 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024

D-DBPN [10] ×4 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137

RDN [44] ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151

RCAN (ours) ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173

RCAN+ (ours) ×4 32.73 0.9013 28.98 0.7910 27.85 0.7455 27.10 0.8142 31.65 0.9208

Bicubic ×8 24.40 0.6580 23.10 0.5660 23.67 0.5480 20.74 0.5160 21.47 0.6500

SRCNN [5] ×8 25.33 0.6900 23.76 0.5910 24.13 0.5660 21.29 0.5440 22.46 0.6950

FSRCNN [6] ×8 20.13 0.5520 19.75 0.4820 24.21 0.5680 21.32 0.5380 22.39 0.6730

SCN [39] ×8 25.59 0.7071 24.02 0.6028 24.30 0.5698 21.52 0.5571 22.68 0.6963

VDSR [16] ×8 25.93 0.7240 24.26 0.6140 24.49 0.5830 21.70 0.5710 23.16 0.7250

LapSRN [19] ×8 26.15 0.7380 24.35 0.6200 24.54 0.5860 21.81 0.5810 23.39 0.7350

MemNet [35] ×8 26.16 0.7414 24.38 0.6199 24.58 0.5842 21.89 0.5825 23.56 0.7387

MSLapSRN [20] ×8 26.34 0.7558 24.57 0.6273 24.65 0.5895 22.06 0.5963 23.90 0.7564

EDSR [23] ×8 26.96 0.7762 24.91 0.6420 24.81 0.5985 22.51 0.6221 24.69 0.7841

D-DBPN [10] ×8 27.21 0.7840 25.13 0.6480 24.88 0.6010 22.73 0.6312 25.14 0.7987

RCAN (ours) ×8 27.31 0.7878 25.23 0.6511 24.98 0.6058 23.00 0.6452 25.24 0.8029

RCAN+ (ours) ×8 27.47 0.7913 25.40 0.6553 25.05 0.6077 23.22 0.6524 25.58 0.8092



304 Y. Zhang et al.

Urban100 ( ):
img_004

HR
PSNR/SSIM

Bicubic
21.08/0.6788

SRCNN
22.13/0.7635

FSRCNN
22.02/0.7628

VDSR
22.37/0.7939

LapSRN
22.41/0.7984

MemNet
22.35/0.7992

EDSR
24.07/0.8591

SRMDNF
22.93/0.8207

RCAN
25.64/0.8830

HR
PSNR/SSIM

Bicubic
19.48/0.4371

SRCNN
19.94/0.5124

FSRCNN
19.88/0.5158

VDSR
19.88/0.5229

HR
PSNR/SSIM

Bicubic
24.66/0.7849

SRCNN
26.22/0.8464

FSRCNN
26.38/0.8496

VDSR
26.89/0.8703

Urban100 ( ):
img_073

LapSRN
19.76/0.5250

MemNet
19.71/0.5213

EDSR
20.42/0.6028

SRMDNF
19.88/0.5425

RCAN
21.26/0.6298

Manga109 ( ):
YumeiroCooking

LapSRN
26.92/0.8739

MemNet
27.09/0.8811

EDSR
29.04/0.9230
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27.53/0.8901

RCAN
29.85/0.9368

Fig. 5. Visual comparison for 4× SR with BI model on Urban100 and Manga109
datasets. The best results are highlighted

Quantitative results by PSNR/SSIM. Table 2 shows quantitative compar-
isons for ×2, ×3, ×4, and ×8 SR. The results of D-DBPN [10] are cited from
their paper. When compared with all previous methods, our RCAN+ performs
the best on all the datasets with all scaling factors. Even without self-ensemble,
our RCAN also outperforms other compared methods. On the other hand, when
the scaling factor become larger (e.g., 8), the gains of our RCAN over EDSR also
becomes larger. EDSR has much larger number of parameters (43 M) than ours
(16 M), but our RCAN obtains much better performance. CA allows our net-
work to further focus on more informative features. This observation indicates
that very large network depth and CA improve the performance.

Visual results. In Fig. 5, we show visual comparisons on scale ×4. For image
“img 004”, we observe that most of the compared methods cannot recover the
lattices and would suffer from blurring artifacts. In contrast, our RCAN can alle-
viate the blurring artifacts better and recover more details. Similar observations
are shown in images “img 073” and“YumeiroCooking”. Such obvious compar-
isons demonstrate that networks with more powerful representational ability
can extract more sophisticated features from the LR space. To further illustrate
the analyses above, we show visual comparisons for 8× SR in Fig. 6. For image
“img 040”, due to very large scaling factor, the result by Bicubic would lose
the structures and produce different structures. This wrong pre-scaling result
would also lead some state-of-the-art methods (e.g., SRCNN, VDSR, and Mem-
Net) to generate totally wrong structures. Even starting from the original LR



Image Super-Resolution Using Very Deep RCAN 305

Urban100 (8 ):
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RCAN
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Fig. 6. Visual comparison for 8× SR with BI model on Urban100 and Manga109
datasets. The best results are highlighted

input, other methods cannot recover the right structure either. While, our RCAN
can recover them correctly. Similar observations are shown in image “TaiyouNiS-
mash”. Our proposed RCAN makes the main network learn residual information
and enhance the representational ability.

Table 3. Quantitative results with BD degradation model. Best and second best results
are highlighted and underlined

Method Scale Set5 Set14 B100 Urban100 Manga109

PSNRSSIM PSNRSSIM PSNRSSIM PSNRSSIM PSNRSSIM

Bicubic ×3 28.78 0.8308 26.38 0.7271 26.33 0.6918 23.52 0.6862 25.46 0.8149

SPMSR [29] ×3 32.21 0.9001 28.89 0.8105 28.13 0.7740 25.84 0.7856 29.64 0.9003

SRCNN [5] ×3 32.05 0.8944 28.80 0.8074 28.13 0.7736 25.70 0.7770 29.47 0.8924

FSRCNN [6] ×3 26.23 0.8124 24.44 0.7106 24.86 0.6832 22.04 0.6745 23.04 0.7927

VDSR [16] ×3 33.25 0.9150 29.46 0.8244 28.57 0.7893 26.61 0.8136 31.06 0.9234

IRCNN [42] ×3 33.38 0.9182 29.63 0.8281 28.65 0.7922 26.77 0.8154 31.15 0.9245

SRMDNF [43] ×3 34.01 0.9242 30.11 0.8364 28.98 0.8009 27.50 0.8370 32.97 0.9391

RDN [44] ×3 34.58 0.9280 30.53 0.8447 29.23 0.8079 28.46 0.8582 33.97 0.9465

RCAN (ours) ×3 34.70 0.9288 30.63 0.8462 29.32 0.8093 28.81 0.8647 34.38 0.9483

RCAN+ (ours)×3 34.83 0.929630.76 0.847929.39 0.810629.04 0.868234.76 0.9502

4.4 Results with Blur-Downscale (BD) Degradation Model

We further apply our method to super-resolve images with blur-down (BD)
degradation model, which is also commonly used recently [42–44].

Quantitative results by PSNR/SSIM. Here, we compare 3× SR results with
7 state-of-the-art methods: SPMSR [29], SRCNN [5], FSRCNN [6], VDSR [16],
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Fig. 7. Visual comparison for 3× SR with BD model on Urban100 dataset. The best
results are highlighted

IRCNN [42], SRMDNF [43], and RDN [44]. As shown in Table 3, RDN has
achieved very high performance on each dataset. While, our RCAN can obtain
notable gains over RDN. Using self-ensemble, RCAN+ achieves even better
results. Compared with fully using hierarchical features in RDN, a much deeper
network with channel attention in RCAN achieves better performance. This com-
parison also indicates that there has promising potential to investigate much
deeper networks for image SR.

Visual Results. We also show visual comparisons in Fig. 7. For challenging
details in images “img 062” and“img 078”, most methods suffer from heavy blur-
ring artifacts. RDN alleviates it to some degree and can recover more details.
In contrast, our RCAN obtains much better results by recovering more informa-
tive components. These comparisons indicate that very deep channel attention
guided network would alleviate the blurring artifacts. It also demonstrates the
strong ability of RCAN for BD degradation model.

Table 4. ResNet object recognition performance. The best results are highlighted

Evaluation BicubicDRCN [17]FSRCNN [6]PSyCo [30]ENet-E [31]RCANBaseline

Top-1 error 0.506 0.477 0.437 0.454 0.449 0.393 0.260

Top-5 error 0.266 0.242 0.196 0.224 0.214 0.167 0.072

4.5 Object Recognition Performance

Image SR also serves as pre-processing step for high-level visual tasks (e.g.,
object recognition). We evaluate the object recognition performance to further
demonstrate the effectiveness of our RCAN. Here we use the same settings as
ENet [31]. We use ResNet-50 [11] as the evaluation model and use the first 1,000
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Fig. 8. Performance and number of parameters. Results are evaluated on Set5

images from ImageNet CLS-LOC validation dataset for evaluation. The original
cropped 224 × 224 images are used for baseline and downscaled to 56× 56 for
SR methods. We use 4 stat-of-the-art methods (e.g., DRCN [17], FSRCNN [6],
PSyCo [30], and ENet-E [31]) to upscale the LR images and then calculate their
accuracies. As shown in Table 4, our RCAN achieves the lowest top-1 and top-5
errors. These comparisons further demonstrate the highly powerful representa-
tional ability of our RCAN.

4.6 Model Size Analyses

We show comparisons about model size and performance in Fig. 8. Although
our RCAN is the deepest network, it has less parameter number than that of
EDSR and RDN. Our RCAN and RCAN+ achieve higher performance, having a
better tradeoff between model size and performance. It also indicates that deeper
networks may be easier to achieve better performance than wider networks.

5 Conclusions

We propose very deep residual channel attention networks (RCAN) for highly
accurate image SR. Specifically, the residual in residual (RIR) structure allows
RCAN to reach very large depth with LSC and SSC. Meanwhile, RIR allows
abundant low-frequency information to be bypassed through multiple skip
connections, making the main network focus on learning high-frequency infor-
mation. Furthermore, to improve ability of the network, we propose channel
attention (CA) mechanism to adaptively rescale channel-wise features by con-
sidering interdependencies among channels. Extensive experiments on SR with
BI and BD models demonstrate the effectiveness of our proposed RCAN. RCAN
also shows promising results for object recognition.
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