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Abstract. In open set recognition, a classifier must label instances of
known classes while detecting instances of unknown classes not encoun-
tered during training. To detect unknown classes while still generalizing
to new instances of existing classes, we introduce a dataset augmentation
technique that we call counterfactual image generation. Our approach,
based on generative adversarial networks, generates examples that are
close to training set examples yet do not belong to any training cate-
gory. By augmenting training with examples generated by this optimiza-
tion, we can reformulate open set recognition as classification with one
additional class, which includes the set of novel and unknown examples.
Our approach outperforms existing open set recognition algorithms on a
selection of image classification tasks.

1 Introduction

In traditional image recognition tasks, all inputs are partitioned into a finite set of
known classes, with equivalent training and testing distributions. However, many
practical classification tasks may involve testing in the presence of “unknown
unknown” classes not encountered during training [1]. We consider the problem
of classifying known classes while simultaneously recognizing novel or unknown
classes, a situation referred to as open set recognition [2].

A typical deep network trained for a closed-set image classification task uses
the softmax function to generate for each input image the probability of classi-
fication for each known class. During training, all input examples are assumed
to belong to one of K known classes. At test time, the model generates for each
input x a probability P (yi|x) for each known class yi. The highest-probability
output class label y∗ is selected as y∗ = arg maxyi

P (yi|x) where P (y|x) is a
distribution among known classes such that

∑K
i=1 P (yi|x) = 1.

In many practical applications, however, the set of known class labels is
incomplete, so additional processing is required to distinguish between inputs
belonging to the known classes and inputs belonging to the open set of classes not
seen in training. The typical method for dealing with unknown classes involves
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Known Categories

Fig. 1. Left: Given known examples (green dots) we generate counterfactual examples
for the unknown class (red x). The decision boundary between known and counterfac-
tual unknown examples extends to unknown examples (blue +), similar to the idea
that one can train an SVM with only support vectors. Right: Example SVHN known
examples and corresponding counterfactual unknown images. (Color figure online)

thresholding the output confidence scores of a closed-set classifier. Most com-
monly, a global threshold δ is applied to P (y|x) to separate all positive-labeled
examples from unknown examples:

y∗ =

{
arg maxyi

P (yi|x) if maxyi
P (yi|x) > δ

unknown else
(1)

However, this type of global thresholding assumes well calibrated probabili-
ties, and breaks down in many real-world tasks. For example, convolutional net-
work architectures can output incorrect high-confidence predictions when faced
with test data from outside the training distribution, as evidenced by work in
adversarial example generation [3]. Better methods are needed to facilitate the
learning of a decision boundary between the known classes and the unknown
open set classes.

A number of approaches exist to separate known from unknown data at test
time. Some approaches involve learning a feature space through classification
of training data, then detecting outliers in that feature space at test time [4,5].
Other approaches follow the anomaly detection paradigm– where the distribution
of training data is modeled without classification, and inputs are compared to
that model at test time [6]. Our approach follows another line of research, in
which the set of unknown classes is modeled by synthetic data generated from
a model trained on the known classes [7].

Figure 1 illustrates our procedure applied to the SVHN dataset, where digits
0 through 4 are known and 5 through 9 are unknown (ie. not included in the
training data). We train a generative adversarial network on the set of known
classes. Starting from the latent representation of a known example, we apply
gradient descent in the latent space to produce a synthetic open set example.
The set of synthetic open set examples provide a boundary between known and
unknown classes.

Our contributions are the following: (1) We introduce the concept of counter-
factual image generation, which aims to generate synthetic images that closely
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resemble a given real image, but satisfy certain properties, (2) we present a
method for training a deep neural network for open set recognition using the
output of a generative model, (3) we apply counterfactual image generation, in
the latent space learned by a generative adversarial network, to generate syn-
thetic images that resemble known classes images, but belong to the open set;
and we show that they are useful for improving open set recognition.

2 Related Work

2.1 Open Set Recognition

A number of models and training procedures have been proposed to make image
recognition models robust to the open set of unknown classes. Early work in this
area primarily focused on SVM based approaches, such as 1-class SVM [8]. In
[9], a novel training scheme is introduced to refine the linear decision boundaries
learned by a 1-class or binary SVM to optimize both the empirical and the open
set risk. In [4], based on the statistical Extreme Value Theory (EVT), a Weibull
distribution is used to model the posterior probability of inclusion for each known
class and an example is classified as open class if the probability is below a
rejection threshold. In [2], W-SVM is introduced where Weibull distributions
are further used to calibrate the scores produced by binary SVMs for open set
recognition.

More recently, Bendale et al. explored a similar idea and introduced Weibull-
based calibration to augment the softmax layer of a deep network, which they
called “OpenMax” [5]. The last layer of the classifier, before the application
of the softmax function, is termed the “activation vector”. For each class, a
mean activation vector is computed from the set of correctly-classified training
examples. Distance to the corresponding mean activation vector is computed for
each training example. For each class, a Weibull distribution is fit to the tail of
largest distances from the mean activation vector. At test time, the cumulative
distribution function of the Weibull distribution fit to distance from the mean is
used to compute a probability that any input is an outlier for each class. In this
way, a maximum radius is fit around each class in the activation vector feature
space, and any activation vectors outside of this radius are detected as open set
examples. The OpenMax approach is further developed in [7] and [10].

In [11], a network is trained to minimize the “II-loss”, which encourages
separation between classes in a learned representation space. The network can
be applied to open set recognition tasks by detecting outliers in the learned
feature space as unknown class examples.

2.2 Generative Adversarial Nets

The Generative Adversarial Network was initially developed as an adversarial
minimax game in which two neural networks are simultaneously trained: a gener-
ator which maps random noise to “fake” generated examples and a discriminator
which classifies between“fake” and “real” [12]. Variations of the GAN architec-
ture condition the generator or discriminator on class labels [13], augment the
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generator with additional loss terms [14], or replace the discriminator’s classifi-
cation objective with a regression objective as in the Wasserstein critic [15]. The
original and primary application of GAN models is the generation of images
similar to a training set, and current state-of-the-art GAN models are capable
of generating photo-realistic images at high resolution [16].

Generative adversarial nets have been applied to unsupervised representation
learning, in which features learned on an unsupervised task transfer usefully to
a supervised or semi-supervised task [17,18]. Architectures that combine gener-
ator networks with encoder networks, which invert the function learned by the
generator, can be more stable during training and make it possible to distort
or adjust real input examples while preserving their realism, which is useful for
applications such as style transfer and single-image superresolution [19–22]. The
use of generative adversarial networks for data augmentation has been explored
in the context of image classification [23].

2.3 Generative Models for Open Set Recognition

Generative methods have the potential to directly estimate the distribution of
observed examples, conditioned on class identity. This makes them potentially
useful for open set recognition. A generative adversarial network is used in [6]
to compute a measure of probability of inclusion in a known set at test time by
mapping input images to points in the latent space of a generator.

Most closely related to our approach, the Generative OpenMax approach
uses a conditional generative adversarial network to synthesize mixtures of
known classes [7]. Through a rejection sampling process, synthesized images
with low probability of inclusion in any known class are selected. These images
are included in the training set as examples of the open set class. The Weibull-
calibration of OpenMax is then applied to the final layer of a trained classifier.
The Generative OpenMax (G-OpenMax) approach effectively detects new and
unknown classes in monochrome digit datasets, but does not improve open set
classification performance on natural images [7].

Different from G-OpenMax, our work uses an encoder-decoder GAN architec-
ture to generate the synthetic open set examples. This allows the features learned
from the known classes to be transfered to modeling new unknown classes. With
this architecture, we further define a novel objective for generating synthetic
open set examples, which starts from real images of known classes and morphs
them based on the GAN model to generate “counterfactual” open set examples.

3 Counterfactual Image Generation

In logic, a conditional statement p → q is true if the antecedent statement p
implies the consequent q. A counterfactual conditional, p �→q is a conditional
statement in which p is known to be false [24]. It can be interpreted as a what-if
statement: if p were true, then q would be true as well. Lewis [24] suggests the
following interpretation:
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Fig. 2. Input examples and corresponding counterfactual images for known classes,
generated by optimizing in latent space. Left: SVHN, Right: MNIST

“If kangaroos had no tails, they would topple over” seems to me to mean
something like this: in any possible state of affairs in which kangaroos
have no tails, and which resembles our actual state of affairs as much as
kangaroos having no tails permits it to, the kangaroos topple over.

Motivated by this interpretation, we wish to model possible “states of affairs”
and their relationships as vectors in the latent space of a generative adversarial
neural network. Concretely, suppose:

– The state of affairs can be encoded as a vector z ∈ Rn

– The notion of resemblance between two states corresponds to a metric
||z0 − z∗||

– There exists an indicator function Cp(z) that outputs 1 if p is true given z.

Given an actual state z0 and logical statements p and q, finding the state of
affairs in which p is true that resembles z0 as much as possible can be posed as
a numerical optimization problem:

minimize ||z0 − z∗||2
subject to Cp(z∗) = 1

We treat Cp : Rn → {0, 1} as an indicator function with the value 1 if
p is true. Given the optimal z∗, the truth value of the original counterfactual
conditional can be determined:

p �→q ⇐⇒ Cq(z∗) = 1

For a concrete example, let z be the latent representation of images of digits.
Given an image of a random digit and its latent representation z0, our formu-
lation of counterfactual image generation can be used to answer the question
“what would this image look like if this were a digit ‘3’?”, where p is “being
digit 3”. In Fig. 2, we show images from the known set (left column), and the
counterfactual images generated by optimizing them toward other known classes
for the SVHN and MNIST datasets. We can see that by starting from different
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original images, the generated counterfactual images of the same class differ
significantly from one another.

Optimization in the latent space is capable of producing examples that lie
outside of the distribution of any known class, but nonetheless remain within a
larger distribution within pixel space consisting of plausible images (see Fig. 3).
The counterfactual image optimization connects to the concept of adversarial
image generation explored in [25] and [26]. However, while optimization in pixel
space produces adversarial examples, the counterfactual optimization is con-
strained to a manifold of realistic images learned by the generative model. The
combination of diversity and realism makes generated images useful as train-
ing examples. In the following section, we show that training on counterfactual
images can improve upon existing methods of open set classification.

4 Open Set Image Recognition

In this section, we will first provide an overview of our method for open set
recognition, followed by a description of our generative model and the proposed
approach for generating counterfactual open set images.

4.1 Overview of the Approach

We assume that a labeled training set X consists of labeled examples of K classes
and a test set contains M > K classes, including the known classes in addition
to one or more unknown classes. We pose the open set recognition problem as a
classification of K +1 classes where all instances of the M −K unknown classes
must be assigned to the additional class.

We assume the open set classes and the known classes share the same latent
space. The essence of our approach is to use the concept of counterfactual image
generation to traverse in the latent space, generate synthetic open set examples
that are just outside of the known class boundaries, and combine the original
training examples of the known classes with the synthetic examples to train a
standard classifier of K +1 classes. Figure 3 provides a simple illustration of our
high level idea.

Training Images Realistic Images 

Encoder/Decoder
Model 

Fig. 3. Our model learns to encode training images into a latent space, and decode
latent points into realistic images. The space of realistic images includes plausible but
non-real examples which we use as training data for the open set of unknown classes.
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4.2 The Generative Model

The standard DCGAN training objective penalizes the generation of any image
outside of the training distribution, and generators normally suffer from some
level of mode collapse.

Inspired by the use of reconstruction losses to regularize the training of gen-
erators to avoid mode collapsing in [27] and in [28], we use a training objective
based on a combination of adversarial and reconstruction loss.

Our encoder-decoder GAN architecture consists of three components: an
encoder network E(x), which maps from images to a latent space, a generator
network G(z), which maps from latent space back to an image and a discrimi-
nator network D that discriminates fake (generated) images from real images.

The encoder and decoder networks are trained jointly as an autoencoder,
with the objective to minimize the reconstruction error ||x − G(E(x))||1. Simul-
taneously, the discriminator network D is trained as a Wasserstein critic with
gradient penalty. Training proceeds with alternating steps of optimization of the
losses LD and LG, where:

LD =
∑

x∈X

D(G(E(x))) − D(x) + P (D) (2)

LG =
∑

x∈X

||x − G(E(x))||1 − D(G(E(x))) (3)

where P (D) = λ(||∇x̂D(x̂)||2 − 1) is the interpolated gradient penalty term of
[29]. Finally, along with the generative model, we also train a simple K-class
classifier CK with cross-entropy loss on the labeled known classes.

4.3 Generating Counterfactual Open Set Examples

Our goal is to use counterfactual image generation to generate synthetic images
that closely resemble real examples of known classes but lie on the other side of
the true decision boundary between the known classes and the open set. This
can be formulated as follows:

minimize ||E(x) − z∗||2
subject to G(z∗) is an open set example

where x is the given initial real image.
We do not have a perfect decision function that tests for open set, but we

can approximate such a function using the classifier CK which has learned to
differentiate the known classes. We deem an example to belong to the open set
if the confidence of the classifier’s output is low. Specifically, we formulate the
following objective for counterfactual open set generation:

z∗ = min
z

||z − E(x)||22 + log

(

1 +
K∑

i=1

exp CK(G(z))i

)

(4)
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Here C(G(z))i are the logits of the classifier prediction for the counterfactual
image G(z) for class i. The second term of the objective is the negative log-
likelihood of the unknown class, assuming the unknown class has a score of zero.
By minimizing this term, we aim to simultaneously push the scores of all known
classes to be low.

To generate a counterfactual image, we select an input seed image x at ran-
dom from the training set. We encode the image to a latent point z = E(x),
then minimize Eq. (4) through gradient descent for a fixed number of steps to
find z∗, then decode the latent point to generate the counterfactual image G(z∗).
Each counterfactual image G(z∗) is augmented to the dataset with class label
K +1, indicating the unknown class. After a sufficient number of open set exam-
ples have been synthesized, a new classifier CK+1 is trained on the augmented
dataset.

4.4 Implementation Details

The architecture of our generative model broadly follows [14], with a few dif-
ferences. Instead of the traditional GAN classification loss, our discriminator is
trained as a Wasserstein critic with gradient penalty loss (see Eq. 3) as in [29].
The generator is trained jointly with an encoder E which maps from the input
image space to the latent space of the generator, with an effect similar to [19].
The encoder architecture is equivalent to the discriminator, with adjustments to
the final layer so that the output matches the dimensionality of the latent space,
and no nonlinearity applied.

We additionally include a classifier, both for the baseline method and for our
own method after training with generated open set examples. The classifier, both
in the K-class and K + 1 class training settings, has an equivalent architecture
to the discriminator and encoder.

In order to easily transfer weights from the K-class to the K + 1-class clas-
sifier, we follow the reparameterization trick from [14] by noting that a softmax
layer with K input logits and K output probabilities is over-parameterized. The
softmax function is invariant to the addition of any constant to all elements of
its input: ie. softmax(x) = softmax(x+C). Using this fact, the K-logit classifier
can be recast as a K +1-class classifier simply by augmenting the K-dimensional
vector of logits with an additional constant 0, then applying the softmax function
resulting in a K + 1-dimensional probability distribution.

Our generator network consists of blocks of transposed convolutional layers
with stride 2, each block increasing the size of the output feature map by a factor
of two. The discriminator, encoder, and classifier all consist of standard blocks
of convolutional layers with strided convolutions reducing the size of the feature
map after each block. The LeakyReLU nonlinearity is used in all layers, and
batch normalization is applied between all internal layers. Dropout is applied
at the end of each block in all networks except the generator. A full listing
of layers, hyperparameters, and source code is available at https://github.com/
lwneal/counterfactual-open-set.

https://github.com/lwneal/counterfactual-open-set
https://github.com/lwneal/counterfactual-open-set
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5 Experiments

We evaluate the performance of the open set classifier CK+1 by partitioning the
classes of labeled datasets into known and unknown sets. At training time, the
only input to the network consists of the K known classes. At test time, the
network must assign appropriate labels to examples of the known classes and
label K + 1 to examples of the M − K open set classes.

5.1 Datasets

We evaluate open set classification performance using the MNIST, SVHN,
CIFAR-10, and Tiny-Imagenet datasets. The MNIST digit dataset consists of
ten digit classes, each containing between 6313 and 7877 28 × 28 monochrome
images in the training fold. We use the labeled subset of the Street View House
Numbers dataset [30], consisting of ten digit classes each with between 9981 and
11379 32 × 32 color images. To test on a simple set of non-digit natural images,
we apply our method to the CIFAR-10 dataset, consisting of 6000 32 × 32 color
images of each of ten natural image categories. The Tiny-Imagenet dataset con-
sists of 200 classes of 500 training and 100 test examples each, drawn from the
Imagenet ILSVRC 2012 dataset and downsampled to 32 × 32.

Classes within each dataset are partitioned into separate known and
unknown sets. Models are trained using examples drawn from the training fold
of known classes, and tested using examples from the test fold of both known
and unknown classes.

5.2 Metrics

Open set classification performance can be characterized by the overall accuracy
or F-score for unknown class detection on a combination of known and unknown
data. However, such combined metrics are sensitive not only to the effectiveness
of the trained model, but also arbitrary calibration parameters. To disambiguate
between model performance and calibration, we measure open set classification
performance with two metrics.

Closed Set Accuracy. An open set classifier should remain capable of standard
closed-set classification without unreasonably degrading accuracy. To ensure that
the open set classifier is still effective when applied to the known subset of classes,
we measure classification accuracy of the classifier applied only to the K known
classes, with open set detection disabled.

Area Under the ROC Curve for Open Set Detection. In open set clas-
sification, it is not known at training time how rare or common examples from
the unknown classes will be. For this reason, any approach to open set detec-
tion requires an arbitrary threshold or sensitivity to be set, either explicitly or
within the training process. The Receiver Operating Characteristic (ROC) curve
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Table 1. Open set classification: area under the ROC curve. Mean and standard
deviation of the ROC AUCmetric for selected datasets. Results averaged over 5 random
partitions of known/open set classes. For all runs, K = 6 and M = 10.

Method CIFAR-10 SVHN MNIST

Softmax threshold .677± .038 .886± .014 .978± .006

OpenMax .695± .044 .894± .013 .981± .005

G-OpenMax∗ .675± .044 .896± .017 .984± .005

Ours .699± .038 .910± .010 .988± .004

characterizes the performance of a detector as its sensitivity is varied from zero
recall (in this case, no input is labeled as open set) to complete recall (all inputs
labeled as open set).

Computing the area under the ROC curve (AUC) provides a calibration-
free measure of detection performance, ranging from situations where open set
classes are rare to situations in which the majority of input belong to unknown
classes. To compute the ROC curve given a trained open set classifier, we vary
a threshold θ ∈ [0, 1] which is compared to the predicted probability of the open
set class P (yK+1|x) > θ for each input image x.

5.3 Experiments

Open Set Classification. In the Open Set Classification experiment, each
dataset is partitioned at random into 6 known and 4 unknown classes. We per-
form the open set classification experiment with the CIFAR, SVHN, and MNIST
datasets, repeated over 5 runs with classes assigned at random to the known or
unknown set.

Extended Open Set Classification. Following [9], we define the openness of
a problem based on the number of training and test classes:

openness = 1 −
√

K

M
(5)

Table 2. Closed set accuracy. Classification accuracy among K = 6 known classes
for the open set classifier trained on each dataset. Because softmax thresholding and
OpenMax use the same network, classification results are identical.

Method CIFAR-10 SVHN MNIST

Softmax/OpenMax .801± .032 .947± .006 .995± .002

G-OpenMax∗ .816± .035 .948± .008 .996± .001

Ours .821± .029 .951± .006 .996± .001
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The previous experiments test the effectiveness of the method where K = 6

and M = 10, so the openness score is fixed to 1 −
√

6
10 . To test the method in

a range of greater openness scores, we perform additional experiments using the
CIFAR10, CIFAR100, and TinyImagenet datasets.

We train on CIFAR10 as described previously with K = 4 known classes. At
test time, in place of the remaining classes of CIFAR10 we draw 10 unknown
classes at random from the more diverse CIFAR100 dataset. To avoid over-
lap between known and unknown classes, known classes are selected only from
non-animal categories and unknown classes are selected from animal categories.
The AUC metric for the resulting open set task is reported as CIFAR+10.
This experiment is repeated drawing 50 classes from CIFAR100 (CIFAR+50).
Finally for the larger TinyImagenet dataset we train with K = 20 known
classes, and test on the full M = 200 set. Results reported for all methods are
averaged among 5 separate samples of known/unknown classes.

5.4 Technical Details of Compared Approaches

Our Approach. We begin by training an ordinary K-class classifier CK with
cross-entropy loss on the labeled dataset. Simultaneously, we train the generative
model consisting of encoder, generator, and discriminator on the labeled data,
following the combined loss described in Sect. 4.

Once the classifier and generative model is fully trained, we apply the counter-
factual image generation process. Beginning with encoded training set examples,
the counterfactual image generation process finds points in the latent space of
the generative model that decode to effective open set examples. For all exper-
iments listed we generate 6400 example images. The original labeled dataset is
augmented with the set of all generated images, and all generated images are
labeled as open set examples. We initialize the new open-set classifier CK+1 with
the weights of the baseline CK classifier.

After training, we use the CK+1 classifier directly: unlike the OpenMax meth-
ods we do not perform additional outlier detection. For the open set detection
task however, we further improve discrimination between known and unknown
classes by including a measure of known class certainty. Given an output P (yi|x)
for i ∈ [1...K + 1] we recalibrate the probability of open set inclusion as

Table 3. Extended open set classification: area under the ROC curve. Known vs.
unknown class detection for selected datasets. Results averaged over 5 random class
partitions.

Method CIFAR+10 CIFAR+50 TinyImagenet

Softmax threshold .816 .805 .577

OpenMax .817 .796 .576

G-OpenMax∗ .827 .819 .580

Ours .838 .827 .586
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P ∗ = P (yK+1|x) − max
i≤K

P (yi|x) (6)

This modified value P ∗ is used for evaluation of the AUC metric (Table 3).

Softmax Threshold. We compare our open-set classification approach to a
standard confidence-based method for the detection of unknown classes without
dataset augmentation. In this method, a classifier network CK is trained only
on known classes and for each input x provides a class prediction P (y|x) for the
set of known classes y. For the purpose of open set detection, input images x
such that max CK(x) < θ are detected as open set examples.

OpenMax. We implement the Weibull distribution fitting method from [5].
This approach augments the baseline classifier CK with a new OpenMax layer
replacing the softmax at the final layer of the network. First, the baseline network
is applied to all inputs in the training set, and a mean activation vector is
computed for each class based on the output of the penultimate network layer
for all correctly classified examples. Given a mean activation vector for each class
j ∈ [1...K], a Weibull distribution with values (τj , κj , λj) is fit to the distance
from the mean of the set of a number η of outlier examples of class j. We
perform a grid search for values of η used in the FitHigh function, and we find
that η = 20 maximizes the AUC metric.

After fitting Weibull distributions for each class, we replace the softmax layer
of the baseline classifier with the a new OpenMax layer. The output of the Open-
Max layer is a distribution among K+1 classes, formed by recalibrating the input
logits based on the cumulative distribution function of the Weibull distribution of
distance from the mean of activation vectors, such that extreme outliers beyond
a certain distance from any class mean are unlikely to be classified as that class.

We make one adjustment to the method as described in [5] to improve per-
formance on the selected datasets. We find that in datasets with a small number
of classes (fewer than 1000) the calibration of OpenMax scores using a selected
number of top classes α is not required, and we can replace the α−i

α term with
a constant 1.

Generative OpenMax. The closest work to ours is the Generative OpenMax
method from [7], which uses a conditional GAN that is no longer state-of-the-
art. In order to provide a fair comparison with our method, we implemented a
variant of Generative OpenMax using our encoder-decoder network instead of a
conditional GAN.

Specifically, given the trained GAN and known-class classifier CK , we select
random pairs (x1, x2) of training examples and encode them into the latent
space. We interpolate between the two examples in the latent space as in [7] and
apply the generator to the resulting latent point to generate the image:

xint = G(θE(x1) + (1 − θ)E(x2))
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where θ ∈ [0, 1] is drawn from a uniform distribution.
Once the images are generated, we then apply a sample selection process

similar to that of [7] to identify a subset of the generated samples to include
as open set examples. In particular, we use confidence thresholding – that is,
generated examples for which CK ’s prediction confidence is less than a fixed
threshold maxi P (yi|xint) < φ are selected for use as open set examples. In all
experiments we set φ = 0.5.

Once the requisite number of synthetic open set examples have been gen-
erated, a new CK+1 classifier is trained using the dataset augmented with the
generated examples. For all experiments we generate 6,400 synthetic example
images. At test time, the Weibull distributions of the OpenMax layer are fit to
the penultimate layer activations of CK+1 and the OpenMax Weibull calibration
process is performed. We report scores for this variant of Generative OpenMax
as G-OpenMax∗.

5.5 Results

In Table 1, we present the open set detection performance of different approaches
on three datasets as measured by the area under the ROC curves. The closed
set accuracies are provided in Table 2. From the results we can see that clas-
sifiers trained using our method achieve better open set detection performance
compared to the baselines and do not lose any accuracy when classifying among
known classes.

It is interesting to note that all approaches perform most accurately on the
MNIST digit dataset, followed closely by SVHN, with the natural image data
of CIFAR and TinyImagenet trailing far behind, indicating that natural images
are significantly more challenging for all approaches.

Note in Table 1, our version of the Generative OpenMax outperforms Open-
Max on the more constrained digit datasets, but not in the CIFAR image dataset,
which includes a wider range of natural image classes that may not be as easily
separable as digits. This fits with the intuition given in [7] that generating latent
space combinations of digit classes is likely to result in images close to real, but
unknown digits. It is possible that combining the features of images of large
deformable objects like animals is not as likely to result in realistic classes. How-
ever, using the counterfactual optimization, we find that we are able to generate
examples that improve open set detection performance without hurting known
class classification accuracy.

In Fig. 4, we plot the ROC curves for the SVHN and CIFAR datasets. We see
that the curve of our method generally lies close to or above all other curves, sug-
gesting a better performance across different sensitivity levels. In contrast, Gen-
erative OpenMax performed reasonably well for low false positive rate ranges,
but became worse than the non-generative baselines when the false positive rates
are high.
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Fig. 4. Receiver operating curve plots for open set detection for the SVHN and CIFAR
datasets, for K = 6.

6 Conclusions

In this paper we introduce a new method for open set recognition, which uses a
generative model to synthesize examples that closely resemble images of known
classes but likely belong to the open set.

Our work uses an encoder-decoder model trained with adversarial loss to
learn a flexible latent space representation for images. We introduce counterfac-
tual image generation, a technique which we apply to this latent space, which
morphs any given real image into a synthetic one that is realistic looking but is
classified as an alternative class. We apply counterfactual image generation to
the trained GAN model to generate open set training examples, which are used
to adapt a classifier to the open set recognition task. On low-resolution image
datasets, our approach outperforms previous ones both in the task of detecting
known vs. unknown classes and in classification among known classes.

For future work, we are interested in investigating how to best select initial
seed examples for generating counterfactual open set images. We will also con-
sider applying counterfactual image generation to data other than still images
and increasing the size and resolution of the generative model.
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