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Abstract. Attention mechanisms in biological perception are thought
to select subsets of perceptual information for more sophisticated pro-
cessing which would be prohibitive to perform on all sensory inputs. In
computer vision, however, there has been relatively little exploration of
hard attention, where some information is selectively ignored, in spite of
the success of soft attention, where information is re-weighted and aggre-
gated, but never filtered out. Here, we introduce a new approach for hard
attention and find it achieves very competitive performance on a recently-
released visual question answering datasets, equalling and in some cases
surpassing similar soft attention architectures while entirely ignoring
some features. Even though the hard attention mechanism is thought
to be non-differentiable, we found that the feature magnitudes correlate
with semantic relevance, and provide a useful signal for our mechanism’s
attentional selection criterion. Because hard attention selects important
features of the input information, it can also be more efficient than anal-
ogous soft attention mechanisms. This is especially important for recent
approaches that use non-local pairwise operations, whereby computa-
tional and memory costs are quadratic in the size of the set of features.
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1 Introduction

Visual attention is instrumental to many aspects of complex visual reasoning in
humans [1,2]. For example, when asked to identify a dog’s owner among a group
of people, the human visual system adaptively allocates greater computational
resources to processing visual information associated with the dog and potential
owners, versus other aspects of the scene. The perceptual effects can be so dra-
matic that prominent entities may not even rise to the level of awareness when
the viewer is attending to other things in the scene [3–5]. Yet attention has not
been a transformative force in computer vision, possibly because many standard
computer vision tasks like detection, segmentation, and classification do not
involve the sort of complex reasoning which attention is thought to facilitate.
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Fig. 1. Given a natural image and a textual question as input, our visual QA archi-
tecture outputs an answer. It uses a hard attention mechanism that selects only the
important visual features for the task for further processing. We base our architecture
on the premise that the norm of the visual features correlates with their relevance, and
that those feature vectors with high magnitudes correspond to image regions which
contain important semantic content.

Answering detailed questions about an image is a type of task which requires
more sophisticated patterns of reasoning, and there has been a rapid recent pro-
liferation of computer vision approaches for tackling the visual question answer-
ing (visual QA) task [6,7]. Successful visual QA architectures must be able
to handle many objects and their complex relations while also integrating rich
background knowledge, and attention has emerged as a promising strategy for
achieving good performance [7–14].

We recognize a broad distinction between types of attention in computer
vision and machine learning – soft versus hard attention. Existing attention mod-
els [7–10] are predominantly based on soft attention, in which all information
is adaptively re-weighted before being aggregated. This can improve accuracy
by isolating important information and avoiding interference from unimportant
information. Learning becomes more data efficient as the complexity of the inter-
actions among different pieces of information reduces; this, loosely speaking,
allows for more unambiguous credit assignment.

By contrast, hard attention, in which only a subset of information is selected
for further processing, is much less widely used. Like soft attention, it has the
potential to improve accuracy and learning efficiency by focusing computation
on the important parts of an image. But beyond this, it offers better compu-
tational efficiency because it only fully processes the information deemed most
relevant. However, there is a key downside of hard attention within a gradient-
based learning framework, such as deep learning: because the choice of which
information to process is discrete and thus non-differentiable, gradients cannot
be backpropagated into the selection mechanism to support gradient-based opti-
mization. There have been various efforts to address this shortcoming in visual
attention [15], attention to text [16], and more general machine learning domains
[17–19], but this is still a very active area of research.

Here we explore a simple approach to hard attention that bootstraps on an
interesting phenomenon [20] in the feature representations of convolutional neu-
ral networks (CNNs): learned features often carry an easily accessible signal for
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hard attentional selection. In particular, selecting those feature vectors with the
greatest L2-norm values proves to be a heuristic that can facilitate hard attention
– and provide the performance and efficiency benefits associated with – with-
out requiring specialized learning procedures (see Fig. 1). This attentional signal
results indirectly from a standard supervised task loss, and does not require
explicit supervision to incentivize norms to be proportional to object presence,
salience, or other potentially meaningful measures [20,21].

We rely on a canonical visual QA pipeline [7,9,22–25] augmented with a hard
attention mechanism that uses the L2-norms of the feature vectors to select
subsets of the information for further processing. The first version, called the
Hard Attention Network (HAN), selects a fixed number of feature vectors by
choosing those with the top norms. The second version, called the Adaptive
Hard Attention Network (AdaHAN), selects a variable number of feature vec-
tors that depends on the input. Our results show that our algorithm can actually
outperform comparable soft attention architectures on a challenging visual QA
task. This approach also produces interpretable hard attention masks, where the
image regions which correspond to the selected features often contain semanti-
cally meaningful information, such as coherent objects. We also show strong per-
formance when combined with a form of non-local pairwise model [25–28]. This
algorithm computes features over pairs of input features and thus scale quadrat-
ically with number of vectors in the feature map, highlighting the importance of
feature selection.

2 Related Work

Visual question answering, or more broadly the Visual Turing Test, asks “Can
machines understand a visual scene only from answering questions?” [6,23,29–
32]. Creating a good visual QA dataset has proved non-trivial: biases in the early
datasets [6,22,23,33] rewarded algorithms for exploiting spurious correlations,
rather than tackling the reasoning problem head-on [7,34,35]. Thus, we focus
on the recently-introduced VQA-CP [7] and CLEVR [34] datasets, which aim
to reduce the dataset biases, providing a more difficult challenge for rich visual
reasoning.

One of the core challenges of visual QA is the problem of grounding language:
that is, associating the meaning of a language term with a specific perceptual
input [36]. Many works have tackled this problem [37–40], enforcing that lan-
guage terms be grounded in the image. In contrast, our algorithm does not
directly use correspondence between modalities to enforce such grounding but
instead relies on learning to find a discrete representation that captures the
required information from the raw visual input, and question-answer pairs.

The most successful visual QA architectures build multimodal representa-
tions with a combined CNN+LSTM architecture [22,33,41], and recently have
begun including attention mechanisms inspired by soft and hard attention for
image captioning [42]. However, only soft attention is used in the majority of
visual QA works [7–12,43–52]. In these architectures, a full-frame CNN repre-
sentation is used to compute a spatial weighting (attention) over the CNN grid
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cells. The visual representation is then the weighted-sum of the input tensor
across space.

The alternative is to select CNN grid cells in a discrete way, but due to
many challenges in training non-differentiable architectures, such hard attention
alternatives are severely under-explored. Notable exceptions include [6,13,14,53–
55], but these run state-of-the-art object detectors or proposals to compute the
hard attention maps. We argue that relying on such external tools is funda-
mentally limited: it requires costly annotations, and cannot easily adapt to new
visual concepts that aren’t previously labeled. Outside visual QA and caption-
ing, some prior work in vision has explored limited forms of hard attention.
One line of work on discriminative patches builds a representation by selecting
some patches and ignoring others, which has proved useful for object detec-
tion and classification [56–58], and especially visualization [59]. However, such
methods have recently been largely supplanted by end-to-end feature learning
for practical vision problems. In deep learning, spatial transformers [60] are one
method for selecting an image regions while ignoring the rest, although these
have proved challenging to train in practice. Recent work on compressing neu-
ral networks (e.g. [61]) uses magnitudes to remove weights of neural networks.
However it prunes permanently based on weight magnitudes, not dynamically
based on activation norms, and has no direct connection to hard-attention or
visual QA.

Attention has also been studied outside of vision. While the focus on soft
attention predominates these works as well, there are a few examples of hard
attention mechanisms and other forms of discrete gating [15–19]. In such works
the decision of where to look is seen as a discrete variable that had been optimized
either by reinforce loss or various other approximations (e.g. straight-through).
However, due to the high variance of these gradients, learning can be inefficient,
and soft attention mechanisms usually perform better.

3 Method

Answering questions about images is often formulated in terms of predic-
tive models [24]. These architectures maximize a conditional distribution over
answers a, given questions q and images x:

â = arg max
a∈A

p(a|x, q) (1)

where A is a countable set of all possible answers. As is common in question
answering [7,9,22–24], the question is a sequence of words q = [q1, ..., qn], while
the output is reduced to a classification problem between a set of common
answers (this is limited compared to approaches that generate answers [41],
but works better in practice). Our architecture for learning a mapping from
image and question, to answer, is shown in Figure 2. We encode the image with
a CNN [62] (in our case, a pre-trained ResNet-101 [63], or a small CNN trained
from scratch), and encode the question to a fixed-length vector representation
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Fig. 2. Our hard attention replaces commonly used soft attention mechanism. Oth-
erwise, we follow the canonical visual QA pipeline [7,9,22–25]. Questions and images
are encoded into their vector representations. Next, the spatial encoding of the visual
features is unraveled, and the question embedding is broadcasted and concatenated
(or added) accordingly to form a multimodal representation of the inputs. Our atten-
tion mechanism selectively chooses a subset of the multimodal vectors that are next
aggregated and processed by the answering module.

with an LSTM [64]. We compute a combined representation by copying the ques-
tion representation to every spatial location in the CNN, and concatenating it
with (or simply adding it to) the visual features, like previous work [7,9,22–
25]. After a few layers of combined processing, we apply attention over spatial
locations, following previous works which often apply soft attention mechanisms
[7–10] at this point in the architecture. Finally, we aggregate features, using
either sum-pooling, or relational [25,27] modules. We train the whole network
end-to-end with a standard logistic regression loss over answer categories.

3.1 Attention Mechanisms

Here, we describe prior work on soft attention, and our approach to hard atten-
tion.

Soft Attention. In most prior work, soft attention is implemented as a weighted
mask over the spatial cells of the CNN representation. Let x := CNN(x), q :=
LSTM(q) for image x and question q. We compute a weight wij for every xij

(where i and j index spatial locations), using a neural network that takes xij

and q as input. Intuitively, weight wij measures the “relevance” of the cell to the
input question. w is nonnegative and normalized to sum to 1 across the image
(generally with softmax). Thus, w is applied to the visual input via ĥij := wijxij

to build the multi-modal representation. This approach has some advantages,
including conceptual simplicity and differentiability. The disadvantage is that the
weights, in practice, are never 0. Irrelevant background can affect the output, no
features can be dropped from potential further processing, and credit assignment
is still challenging.

Hard Attention. Our main contribution is a new mechanism for hard atten-
tion. It produces a binary mask over spatial locations, which determines which
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features are passed on to further processing. We call our method the Hard Atten-
tion Network (HAN). The key idea is to use the L2-norm of the activations at
each spatial location as a proxy for relevance at that location. The correlation
between L2-norm and relevance is an emergent property of the trained CNN fea-
tures, which requires no additional constraints or objectives. [20] recently found
something related: in an ImageNet-pretrained representation of an image of a
cat and a dog, the largest feature norms appear above the cat and dog face, even
though the representation was trained purely for classification. Our architecture
bootstraps on this phenomenon without explicitly training the network to have
it.

As above, let xij and q be a CNN cell at the spatial position i, j, and a
question representation respectively. We first embed q ∈ R

q and x ∈ R
x into

two feature spaces that share the same dimensionality d, i.e.,

x̂ := CNN1×1(x; θx) ∈ R
w×h×d (2)

q̂ := MLP (q; θq) ∈ R
d (3)

where CNN1×1 stands for a 1 × 1 convolutional network and MLP stands
for a multilayer perceptron. We then combine both the convolutional image
features with the question features into a shared multimodal embedding by first
broadcasting the question features to match the w×d shape of the image feature
map, and then performing element-wise addition (1×1 conv net/MLP in Fig. 2):

mij := x̂ij ⊕ q̂ where m := [mij ]ij ∈ R
w×h×d (4)

Element-wise addition keeps the dimensionality of each input, as opposed to
concatenation, yet is still effective [12,24]. Next, we compute the presence vector,
p := [pij ]ij ∈ R

w×h which measures the relevance of entities given the question:

pij := ||mij ||2 ∈ R (5)

where || · ||2 denotes L2-norm. To select k entities from m for further processing,
the indices of the top k entries in p, denoted l = [l1, . . . , lk] are used to form
m̂k = [ml1 , ...,mlk ] ∈ R

k×d.
This set of features is passed to the decoder module and gradients will flow

back to the weights of the CNN/MLP through the selected features. Our assump-
tion is that important outputs of the CNN/MLP will tend to grow in norm, and
therefore are likely to be selected. Intuitively if non-useful features are selected,
the gradients will push the norm of these features down, making them less likely
to be selected again. But there is nothing in our framework which explicitly
incorporates this behavior into a loss. Despite its simplicity, our experiments
(Sect. 4) show the HAN is very competitive with canonical soft attention [9]
while also offering interpretability and efficiency.

Thus far, we have assumed that we can fix the number of features k that
are passed through the attention mechanism. However, it is likely that differ-
ent questions require different spatial support within the image. Thus, we also
introduce a second approach which adaptively chooses the number of entities
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to attend to (termed Adaptive-HAN, or AdaHAN) as a function of the inputs,
rather than using a fixed k. The key idea is to make the presence vector p (the
norm of the embedding at each spatial location) “compete” against a threshold
τ . However, since the norm is unbounded from above, to avoid trivial solutions
in which the network sets the presence vector very high and selects all entities,
we apply a softmax operator to p. We put both parts into the competition by
only selecting those elements of m whose presence values exceed the threshold,

m̂k = [ml1 , ...,mlk ] ∈ R
k×d where {li : softmax(pli) > τ} (6)

Note that due to the properties of softmax, the competition is encouraged not
only between both sides of the inequality, but also between the spatially dis-
tributed elements of the presence vector p. Although τ could be chosen through
the hyper-parameter selection, we decide to use τ := 1

w·h where w and h are spa-
tial dimensions of the input vector xij . Such value for τ has an interesting inter-
pretation. If each spatial location of the input were equally important, we would
sample the locations from a uniform probability distribution p(·) := τ = 1

w·h .
This is equivalent to a probability distribution induced by the presence vec-
tor of a neural network with uniformly distributed spatial representation, i.e.
τ = softmax(puniform), and hence the trained network with the presence vector
p has to “win” against the puniform of the random network in order to select
right input features by shifting the probability mass accordingly. It also natu-
rally encourages higher selectivity as the increase in the probability mass at one
location would result in decrease in another location.

In contrast to the commonly used soft-attention mechanism, our approaches
do not require extra learnable parameters. HAN requires a single extra but
interpretable hyper-parameter: a fraction of input cells to use, which trades off
speed for accuracy. AdaHAN requires no extra hyper-parameters.

3.2 Feature Aggregation

Sum Pooling. A simple way to reduce the set of feature vectors after attention
is to sum pool them into a constant length vector. In the case of a soft attention
module with an attention weight vector w, it is straightforward to compute a
pooled vector as

∑
ij wijxij . Given features selected with hard attention, an

analogous pooling can be written as
∑k

κ=1 mlκ .

Non-local Pairwise Operator. To improve on sum pooling, we explore an
approach which performs reasoning through non-local and pairwise computa-
tions, one of a family of similar architectures which has shown promising results
for question-answering and video understanding [25–27]. An important aspect
of these non-local pairwise methods is that the computation is quadratic in the
number of features, and thus hard attention can provide significant computa-
tional savings. Given some set of embedding vectors (such as the spatial cells of
the output of a convolutional layer) xij , one can use three simple linear projec-
tions to produce a matrix of queries, qij := W qxij , keys, kij := W kxij , and
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values, vij = W vxij at each spatial location. Then, for each spatial location
i, j, we compare the query qij with the keys at all other locations, and sum the
values v weighted by the similarity. Mathematically, we compute

x̃lk =
∑

ij

softmax
(
qT

lkkij

)
vij (7)

Here, the softmax operates over all i, j locations. The final representation of
the input is computed by summarizing all x̃lk representations, e.g. we use sum-
pooling to achieve this goal. Thus, the mechanism computes non-local [26] pair-
wise relations between embeddings, independent of spatial or temporal proxim-
ity. The separation between keys, queries, and values allows semantic information
about each object to remain separated from the information that binds objects
together across space. The result is an effective, if somewhat expensive, spatial
reasoning mechanism. Although expensive, similar mechanism has been shown
useful in various tasks, from synthetic visual question [25], to machine transla-
tion [27], to video recognition [26]. Hard attention can help to reduce the set
of comparisons that must be considered, and thus we aim to test whether the
features selected by hard attention are compatible with this operator.

4 Results

To show the importance of hard attention for visual QA, we first compare HAN
to existing soft-attention (SAN) architectures on VQA-CP v2, and exploring the
effect of varying degrees of hard attention by directly controlling the number
of attended spatial cells in the convolutional map. We then examine AdaHAN,
which adaptively chooses the number of attended cells, and briefly investigate the
effect of network depth and pretraining. Finally, we present qualitative results,
and also provide results on CLEVR to show the method’s generality.

4.1 Datasets

VQA-CP v2. This dataset [7] consists of about 121K (98K) images, 438K
(220K) questions, and 4.4M (2.2M) answers in the train (test) set; and it is
created so that the distribution of the answers between train and test splits
differ, and hence the models cannot excessively rely on the language prior [7].
As expected, [7] show that performance of all visual QA approaches they tested
drops significantly between train to test sets. The dataset provides a standard
train-test split, and also breaks questions into different question types: those
where the answer is yes/no, those where the answer is a number, and those
where the answer is something else. Thus, we report accuracy on each question
type as well as the overall accuracy for each network architecture.
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CLEVR. This synthetic dataset [34] consists of 100K images of 3D rendered
objects like spheres and cylinders, and roughly 1 m questions that were automat-
ically generated with a procedural engine. While the visual task is relatively sim-
ple, solving this dataset requires reasoning over complex relationships between
many objects.

4.2 Effect of Hard Attention

We begin with the most basic hard attention architecture, which applies hard
attention and then does sum pooling over the attended cells, followed by a small
MLP. For each experiment, we take the top k cells, out of 100, according to
our L2-norm criterion, where k ranges from 16 to 100 (with 100, there is no
attention, and the whole image is summed). Results are shown in the top of
Table 1. Considering that the hard attention selects only a subset of the input
cells, we might expect that the algorithm would lose important information and
be unable to recover. In fact, however, the performance is almost the same with
less than half of the units attended. Even with just 16 units, the performance
loss is less than 1%, suggesting that hard attention is quite capable of capturing
the important parts of the image.

Table 1. Comparison between different number of attended cells (percentage of the
whole input), and aggregation operation. We consider a simple summation, and non-
local pairwise computations as the aggregation tool.

Percentage
of cells

Overall Yes/No Number Other

HAN+sum 16% 26.99 40.53 11.38 24.15

HAN+sum 32% 27.43 41.05 11.38 24.68

HAN+sum 48% 27.94 41.35 11.93 25.27

HAN+sum 64% 27.80 40.74 11.29 25.52

sum 100% 27.96 43.23 12.09 24.29

HAN+pairwise 16% 26.81 41.24 10.87 23.61

HAN+pairwise 32% 27.45 40.91 11.48 24.75

HAN+pairwise 48% 28.23 41.23 11.40 25.98

Pairwise 100% 28.06 44.10 13.20 23.71

SAN [7,9] - 24.96 38.35 11.14 21.74

SAN (ours) - 26.60 39.69 11.25 23.92

SAN+pos (ours) - 27.77 40.73 11.31 25.47

GVQA [7] - 31.30 57.99 13.68 22.14

The fact that hard attention can work is interesting itself, but it should be
especially useful for models that devote significant processing to each attended
cell. We therefore repeat the above experiment with the non-local pairwise aggre-
gation mechanism described in Sect. 3, which computes activations for every pair
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of attended cells, and therefore scales quadratically with the number of attended
cells. These results are shown in the middle of Table 1, where we can see that hard
attention (48 entitties) actually boosts performance over an analogous model
without hard attention.

Finally, we compare standard soft attention baselines in the bottom of
Table 1. In particular, we include previous results using a basic soft attention
network [7,9], as well as our own re-implementation of the soft attention pooling
algorithm presented in [7,9] with the same features used in other experiments.
Surprisingly, soft attention does not outperform basic sum pooling, even with
careful implementation that outperforms the previously reported results with
the same method on this dataset; in fact, it performs slightly worse. The non-
local pairwise aggregation performs better than SAN on its own, although the
best result includes hard attention. Our results overall are somewhat worse than
the state-of-the-art [7], but this is likely due to several architectural decisions
not included here, such as a split pathway for different kinds of questions, special
question embeddings, and the use of the question extractor.

Table 2. Comparison between different adaptive hard-attention techniques with aver-
age number of attended parts, and aggregation operation. We consider a simple sum-
mation, and the non-local pairwise aggregation. Since AdaHAN adaptively selects rel-
evant features, based on the fixed threshold 1

w∗h , we report here the average number
of attended parts.

Percentage
of cells

Overall Yes/No Number Other

AdaHAN+sum 25.66% 27.40 40.70 11.13 24.86

AdaHAN+pairwise 32.63% 28.65 52.25 13.79 20.33

HAN+sum 32% 27.43 41.05 11.38 24.68

HAN+sum 48% 27.94 41.35 11.93 25.27

HAN+pairwise 32% 27.45 40.91 11.48 24.75

HAN+pairwise 48% 28.23 41.23 11.40 25.98

4.3 Adaptive Hard Attention

Thus far, our experiments have dealt with networks that have a fixed threshold
for all images. However, some images and questions may require reasoning about
more entities than others. Therefore, we explore a simple adaptive method, where
the network chooses how many cells to attend to for each image. Table 2 shows
results, where AdaHAN refers to our adaptive mechanism. We can see that on
average, the adaptive mechanism uses surprisingly few cells: 25.66 out of 100
when sum pooling is used, and 32.63 whenever the non-local pairwise aggrega-
tion mechanism is used. For sum pooling, this is on-par with a non-adaptive
network that uses more cells on average (HAN+sum 32); for the non-local pair-
wise aggregation mechanism, just 32.63 cells are enough to outperform our best
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Table 3. Comparison between different number of the attended cells as the percentage
of the whole input. The results are reported on VQA-CP v2. The second column denotes
the percentage of the attended input. The third column denotes number of layers of
the MLP (Eqs. 2 and 3).

Percentage
of cells

Number
of layers

Overall Yes/No Number Other

HAN+sum 25% 0 26.38 43.21 13.12 21.17

HAN+sum 50% 0 26.75 41.42 10.94 23.38

HAN+sum 75% 0 26.82 41.30 11.48 23.42

HAN+sum 25% 2 26.99 40.53 11.38 24.15

HAN+sum 50% 2 27.43 41.05 11.38 24.68

HAN+sum 75% 2 27.94 41.35 11.93 25.27

non-adaptive model, which uses roughly 50% more cells. This shows that even
very simple methods of adapting hard attention to the image and the ques-
tion can lead to both computation and performance gains, suggesting that more
sophisticated methods will be an important direction for future work.

4.4 Effects of Network Depth

In this section, we briefly analyze an important architectural choice: the number
of layers used on top of the pretrained embeddings. That is, before the ques-
tion and image representations are combined, we perform a small amount of
processing to “align” the information, so that the embedding can easily tell the
relevance of the visual information to the question. Table 3 shows the results of
removing the two layers which perform this function. We consistently see a drop
of about 1% without the layers, suggesting that deciding which cells to attend to
requires different information than the classification-tuned ResNet is designed
to provide.

4.5 Implementation Details

All our models use the same LSTM size 512 for questions embeddings, and
the last convolutional layer of the ImageNet pre-trained ResNet-101 [63] (yield-
ing 10-by-10 spatial representation, each with 2048 dimensional cells) for image
embedding. We also use MLP with 3 layers of sizes: 1024, 2048, 1000, as a classifi-
cation module. We use ADAM for optimization [65]. We use a distributed setting
with two workers computing a gradient over a batch of 128 elements each. We
normalize images by dividing them by their norm. We do not perform a hyper-
parameter search as there is no separated validation set available. Instead, we
rather choose default hyper-parameters based on our prior experience on visual
QA datasets. We trained our models until we notice a saturation on the training
set. Then we evaluate these models on the test set. Our tables show the perfor-
mance of all the methods wrt. the second digits precision obtained by rounding.
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Table 1 shows SAN’s [9] results reported by [7] together with our in-house
implementation (denoted as “ours”). Our implementation has 2 attention hops,
1024 dimensional multimodal embedding size, a fixed learning rate 0.0001, and
ResNet-101. In these experiments we pool the attended representations by
weighted average with the attention weights. Our in-house implementation of
the non-local pairwise mechanism strongly resembles implementations of [26],
and [27]. We use 2 heads, with embedding size 512. In Eqs. 2 and 3, we use
d := 2048 (the same as dimensionality as the image encoding) and two linear
layers with RELU that follows up each layer.

4.6 Qualitative Results

One advantage of our formulation is that it is straightforward to visualize the
masks of attended cells given questions and images (which we defer to Figs. 1 and
2 in the supplementary material due to space constraints). In general, relevant
objects are usually attended, and that significant portions of the irrelevant back-
ground is suppressed. Although some background might be kept, we hypothesize
the context matters in answering some questions. These masks are occasionally
useful for diagnosing behavior: for example, AdaHAN with sum pooling (row 2
in Fig. 1) attends incorrectly to the bridge but not the train in the second col-
umn, and therefore answers incorrectly. In the tennis court, however, the same
method attends incorrectly, but still answers correctly by chance.

We can also see broad differences between the network architectures. For
instance, the sum pooling method (row 2) is much more spatially constrained
than the pairwise pooling version (row 1), even though the adaptive attention
can select an arbitrarily large region. This suggests that sum pooling struggles
to integrate across complex scenes. The support is also not always contiguous:
non-adaptive hard attention with 16 entities (row 4) in particular distributes its
attention widely.

4.7 End-to-End Training

Since our network is not fully differentiable, one might suspect that it will become
more difficult to train the lower-level features, or worse, that untrained features
might prevent us from bootstrapping the attention mechanism. Therefore, we
also trained HAN+sum (with 16% of the input cells) end-to-end together with a
relatively small convolutional neural network initialized from scratch. We com-
pare our method against our implementation of the SAN method trained using
the same simple convolutional neural network. We call the models: simple-SAN,
and simple-HAN.

Analysis. In our experiments, simple-SAN achieves about 21% performance on
the test set. Surprisingly, simple-HAN+sum achieves about 24% performance
on the same split, on-par with the performance of normal SAN that uses more
complex and deeper visual architecture [66]; the results are reported by [7]. This
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result shows that the hard attention mechanism can indeed be tightly coupled
within the training process, and that the whole procedure does not rely heavily
on the properties of the ImageNet pre-trained networks. In a sense, we see that
a discrete notion of entities also “emerges” through the learning process, leading
to efficient training.

Implementation Details. In our experiments we use a simple CNN built of: 1
layer with 64 filters and 7-by-7 filter size followed up by 2 layers with 256 filters
and 2 layers with 512 filters, all with 3-by-3 filter size. We use strides 2 for all
the layers.

(a) HAN+RN (purple), RN (green) (b) HAN+RN (orange), ST+RN (blue)

Fig. 3. Validation accuracy plots on CLEVR of the methods under the same hyper-
parameters setting [25]. (a) HAN+RN (0.25 of the input cells) and standard RN
(all input cells) trained for 12 h to measure the efficiency of the methods. (b) Our
approaches to hard attention: the proposed one (orange), and the straight-through
estimator (blue). (Color figure online)

4.8 CLEVR

To demonstrate the generality of our hard attention method, particularly in
domains that are visually different from the VQA images, we experiment with
a synthetic visual QA dataset termed CLEVR [34], using a setup similar to the
one used for VQA-CP and [25]. Due to the visual simplicity of CLEVR, we follow
up the work of [25], and instead of relying on the ImageNet pre-trained features,
we train our HAN+sum and HAN+RN (hard attention with relation network)
architectures end-to-end together with a relatively small CNN (following [25]).

Analysis. As reported in prior work [25,34], the soft attention mechanism
used in SAN does not perform well on the CLEVR dataset, and achieves only
68.5% [34] (or 76.6% [25]) performance. In contrast, relation network, which also
realizes a non-local and pairwise computational model, essentially solves this
task, achieving 95.5% performance on the test set. Surprisingly, our HAN+sum
achieves 89.7% performance even without a relation network, and HAN+RN
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(i.e., relation network is used as an aggregation mechanism) achieves 93.9%
on the test set. These results show the mechanism can readily be used with
other architectures on another dataset with different visuals. Training with HAN
requires far less computation than the original relation network [25], although
performance is slightly below relation network’s 95.5%. Figure 3a compares com-
putation time: HAN+RN and relation network are trained for 12 h under the
same hyper-parameter set-up. Here, HAN+RN achieves around 90% validation
accuracy, whereas RN only 70%. Notably, owing to hard-attention, we are able to
train larger models, and achieve 94.7% and 98.8% for HAN+sum and HAN+RN
respectively (more details are found in the supplementary material). Although
others report slightly better results on CLEVR [49,50], these are not evaluated
on real-world datasets such as VQA-CP, or use higher image resolution. We also
found the performance to be sensitive to depth, and batch normalization [67],
which we present in more detail is the supplementary material.

As an additional baseline, we have experimented with straight-through esti-
mator [17] (supplementary), but we have found it quite unstable (Fig. 3b). We
also point out that it lacks the training-time computational benefit of our app-
roach: in straight-though, the gradients are still back-propagated through non-
selected cells.

5 Summary

We have introduced a new approach for hard attention in computer vision that
selects a subset of the feature vectors for further processing based on the their
magnitudes. We explored two models, one which selects subsets with a pre-
specified number of vectors (HAN), and the other one that adaptively chooses
the subset size as a function of the inputs (AdaHAN). Hard attention is often
avoided in the literature because it poses a challenge for gradient-based meth-
ods due to non-differentiability. However, since we found our feature vectors’
magnitudes correlate with relevant information, our hard attention mechanism
exploits this property to perform the selection. Our results showed our HAN and
AdaHAN gave competitive performance on challenging visual QA datasets. Our
approaches seem to be at least as good as a more commonly used soft attention
mechanism while providing additional computational efficiency benefits. This is
especially important for the increasingly popular class of non-local approaches,
which often require computations and memory which are quadratic in the num-
ber of the input vectors. Finally, our approach also provides interpretable rep-
resentations, as the spatial locations of the selected features correspond most
strongly to those parts of the image which contributed most strongly.
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