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Abstract. We propose a novel algorithm for stabilizing selfie videos.
Our goal is to automatically generate stabilized video that has optimal
smooth motion in the sense of both foreground and background. The
key insight is that non-rigid foreground motion in selfie videos can be
analyzed using a 3D face model, and background motion can be ana-
lyzed using optical flow. We use second derivative of temporal trajectory
of selected pixels as the measure of smoothness. Our algorithm stabi-
lizes selfie videos by minimizing the smoothness measure of the back-
ground, regularized by the motion of the foreground. Experiments show
that our method outperforms state-of-the-art general video stabilization
techniques in selfie videos.

1 Introduction

Selfie video has become one of the major video types thanks to the recent devel-
opment of social media. However, selfie videos taken by amateurs are usually
shaky due to the lack of stabilizing equipment. Recent state-of-the-art works
have been developed for general video stabilization tasks and integrated into
commercial tools such as Adobe Warp Stabilizer [1] and the YouTube video sta-
bilizer [2]. However, selfie videos usually have properties that create difficulties
for existing methods. We show several example frames from typical selfie videos
in Fig. 1, in which these properties are demonstrated:

(a) Large non-rigid occlusion from face and body close to the camera;
(b) Selfie videos usually come with strong motion blur/out-of-focus background;
(c) Foreground motion does not coincide with background motion.

General video stabilization methods fail in selfie videos for several reasons.
First, most of these works depend on tracking 2D feature points. Existing 3D
stabilization approaches require Structure from Motion (SfM) to estimate an
initial camera path and build a sparse 3D scene. 2D methods also need to find
frame motion using features. Therefore these methods are sensitive to inaccurate
tracking of feature points. In Fig. 1(b), we show the example frames with blurred
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Fig. 1. Selfie videos have several properties that cause difficulties for traditional video
stabilization methods: (a) face and body significantly occludes the background; (b) bad
feature detection caused by motion blur/out of focus, insets show areas where feature
points are hard to track accurately; (c) foreground and background motion mismatch;
the foreground motion (red) can be different from background motion (blue) due to
the dynamics of face and body; our method uses (d) a 3D face model to analyze the
motion in the foreground and (e) optical flow to analyze the motion in the background.
The video is stabilized with respect to both foreground and background. (Color figure
online)

background and lack of sharp corners. In these videos, feature point detection is
less reliable and the subsequent feature tracking is error-prone.

Second, it is also difficult to obtain long and error-free feature tracks in selfie
videos with strong shake. The feature tracking becomes brittle due to the signif-
icant occlusion imposed by human face and body. Having noticed feature track-
ing as a general shortcoming in video stabilization, some methods tried to avoid
using features by analyzing the pixel profiles using optical flow [3]. However,
optical flow based algorithms still have failure cases when the occluding object
dominates the foreground, which is likely to happen in selfie videos (Fig. 1(a)).
Our algorithm takes advantage of optical flow to track the background pixels.
Unlike Liu et.al [3] which uses optical flow to synthesize new frames, we only
warp the frame with 2D projective transformations and a grid-based warp field.
This guarantees the rigidity over the entire frame. To avoid tracking points and
generating long trajectories, we only use small segments of these trajectories
so that the foreground occlusion has minimal impact on the stabilization. We
further discuss the advantages of the strategy in Sect. 7.

Third, general video stabilization only stabilizes with respect to part of the
scene. This is not always desired in selfie videos. Both foreground (face and
body) and background are important regions that need to be stabilized. To our
knowledge, ours is the first method that utilizes the face geometry information
in the video stabilization task (Fig. 1(d)). Our algorithm can automatically plan
the optimal motion so that both the foreground and background motion are
smoothed (Fig. 1(d) and (e)). In summary, our contributions include:

Foreground Motion from 3D Face Model: We utilize 3D human face infor-
mation to gain knowledge about foreground motion in selfie videos (Sect. 4).
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Novel Background Motion Tracking: Our method uses optical flow to find
dense correspondences on the background, and therefore does not require good
feature detection and tracking. We only use temporal motion information and
are robust to occlusions in the scene (Sect. 5).

Optimal Foreground/Background Stabilization: By considering fore-
ground motion, our method can stabilize selfie videos with respect to foreground
and background simultaneously (Sect. 6).

Labeled Selfie Video Dataset: We provide a selfie video dataset (Fig. 7) of 33
videos, labeled with properties such as dynamic occlusion and lack of background
features (Fig. 9) that significantly affect the video stabilization task. The dataset
can be used to compare different methods, and will be a useful resource for the
field. We make the dataset, code and benchmark per Fig. 9 publicly available
online at http://viscomp.ucsd.edu/projects/ECCV18VideoStab.

2 Related Work

General video stabilization can be broadly categorized into 2D methods and 3D
methods, according to their proposed camera motion models.

2D Stabilization. General 2D video stabilization techniques compute 2D
motion and generate stabilized video by applying the smoothed motion to orig-
inal video frames. Some approaches use simple camera motion models. Grund-
mann et al. [2] proposed a constrainable L1-optimization framework which solves
the smoothed camera path composed of constant, linear and parabolic motion.
Gleicher and Liu [4] assume the scene is largely planar and use homography to
synthesize new frames. Liu et al. [5] divide the frame space into a grid mesh and
allow spatially-variant motion. Some methods smooth the motion by imposing
non-trivial constraints. Liu et al. [6] smooth 2D feature tracks by enforcing low-
dimensional subspace constraints. Wang et al. [7] smoothes feature tracks while
maintaining the spatial relations among them. Goldstein and Fattal [8] uses
epipolar constraints when warping the video frames into synthesized frames.
There are also explorations of non feature-point based approaches: Liu et al.
[3] solves for a smooth per-frame optical flow field and stabilizes the video by
smoothing pixel profiles instead of smoothing feature tracks.

3D Stabilization. Some methods sparsely reconstruct the 3D scene. The sparse
3D information is used to guide the synthesis of new frames. These methods gen-
erate better results than 2D methods by modeling physically accurate 3D cam-
era motions but are less robust under non-ideal conditions, e.g. large occlusion,
motion blur, and rolling shutter. Liu et al. [1] first uses structure from motion
to find feature points’ 3D positions, reprojects them onto the smoothed cam-
era path and warps the original frames according to reprojected feature points.

http://viscomp.ucsd.edu/projects/ECCV18VideoStab
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Fig. 2. Pipeline of our method. A©: By fitting a 3D face model, we find the head trajec-
tory in the selfie video (Sect. 4); B©: Optical flow is used to track background pixels for
3 neighboring frames; C©: The foreground mask is computed from the head trajectory
and is used to find the background pixels (Sect. 5). The 2D projective transforma-
tion and a grid-based warp field is estimated to remove the undesired motion of both
foreground and background (Sect. 6).

There are also methods that render new frames using 3D information: Buehler
et al. [9] uses image-based rendering to synthesize new views; Smith et al. [10]
utilize the light field camera to stabilize video; Sun [11] uses depth information.
Due to the non-rigid occlusion in selfie videos (Fig. 1(a)), 3D methods that are
based on structure from motion can be error-prone. 3D methods that use depth
information are also not directly applicable to selfie videos, since depth is not
available in most cases.

Face Modeling. Human face modeling has been intensely studied. We will
only summarize works that are closely related to our work. A widely used early
work (Blanz and Vetter [12]) models face shape across people as a parametric
PCA space learned from a database of laser scans. Cao et al. [13] models faces by
assembling Kinect face scans as a tensor with identity and expression dimensions.
Many follow-up works apply these models in image manipulation (Cao et al. [13],
Fried et al. [14]), image/video re-animation (Blanz et al. [15], Thies et al. [16]),
face tracking (Cao et al. [17]), facial performance capture (Cao et al. [18], Shi
and Tomasi [19]), face reconstruction and rigging (Garrido et al. [20], Ichim et al.
[21]). However, these works mainly focus on images/videos captured under ideal
conditions (still or stable camera). Our work explores the possibility of utilizing
3D face models in the analysis of selfie videos captured with camera shake. We
blend the models in Blanz and Vetter [12] and Cao et al. [13], to use as the
reference model for the face fitting process, which will be discussed in Sect. 4.

3 Overview

In this section, we provide an overview of our approach for stabilizing selfie
videos (Fig. 2). We seek to stabilize the selfie video with respect to both fore-
ground and background. We analyze the foreground motion by modeling the
face using a 3D face model, and analyze the background motion by optical flow.
Fitting the 3D face model to selfie videos provides the head trajectory. We trans-
form each frame according to the head positions so that the foreground regions
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are roughly aligned across the entire video. Since the foreground regions are
aligned, the accumulated motion in this region will be smaller than background
regions. Therefore the foreground and background regions can be separated.
Details regarding this process will be discussed in Sect. 4. The background is
defined as the white region in the foreground mask shown in Fig. 2. We ran-
domly select pixels in the background that satisfy certain conditions, and use
the optical flow to track their motion. Because of occlusion, our method only
tracks pixels for 3 neighboring frames. We discuss details of pixel selection and
tracking in Sect. 5.

The goal of video stabilization is to warp the original video frame so that
the undesired frame motions are cancelled. We model the frame motion as a
combination of global motion and local motion. The global motion refers to the
2D projective transformation of a frame. Since the frame content is the result
of multiple factors, e.g., camera projection, camera distortion, rolling shutter
and the 3D structure of the scene, simple 2D projective transformation cannot
represent the camera motion accurately. Therefore, we use local motion to refer
to any residual motion. Motivated by this analysis, we design our stabilization
algorithm as a single joint optimization that simutaneously stabilizes foreground
head motion and the background’s global and local motion. We will describe
details of our joint optimization algorithm in Sect. 6.

4 Foreground Tracking

Fig. 3. The vertices used as contour 3D landmarks are
fixed in the fitting process. The fitted face is rendered and
new contour 2D landmarks are detected. The projected
vertices closest to the detected 2D contour landmarks are
selected as 3D contour landmarks for the next iteration.

Since the head and body
are attached, we believe
that the head motion can
well represent the entire
foreground motion. We
don’t explicitly track the
body in this work, but
implicitly separate the
foreground and background
by accumulating the opti-
cal flow. Details will be
discussed in Sect. 5. Here
we seek to find the
position of the head in
each frame. Since multi-
ple faces could exist in
the selfie video, we only
track the dominant face
in the video. A regular 2D face detector can provide the face bounding box
for each frame, but is not accurate enough for tracking the exact head position.
A 2D facial landmark detector provides more accurate detection of the face, but
is easily affected by head rotation and facial expression. To find the actual head
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position invariant to head rotation and facial expression, we use the 3D posi-
tion of the head and reproject it to the image space as the head position. This
requires modeling the face and gaining knowledge about the shape of the face in
the selfie video.

3D Face Model. We utilize the linear face model proposed by Blanz and Vetter
[12] and the bilinear face model proposed by Cao et al. [13]. Note that although
the bilinear face model is more widely used in recent researches, their model was
built based on a head mesh with relatively sparse vertices compared to Blanz
and Vetter [12]. Our facial landmark based algorithm, which we will discuss later
in this section, needs a dense face mesh in the face fitting algorithm. Therefore,
we extend the linear face model of Blanz and Vetter [12] by transferring the
expressions from Cao et al. [13]. Our extended linear face model is parameterized
as follows:

F = μ + U sΣscs + U eΣece (1)

where μ encodes the vertex position of the mean face, U s are the principal
components of face shape, diagonal matrix Σs contains standard deviations of
principal components and cs is the weight vector that combines principal compo-
nents. In (1), the third term U e represents the expression principal components.
It is generated as follows: we average the shape dimension of the bilinear face
model [13] and use deformation transfer [22] to deform the mean linear face
model with the bilinear face model’s expressions. We extract principal compo-
nents U e of these expression deformed face meshes using regular PCA.

Face Fitting Algorithm. Our face model fitting algorithm is a purely land-
mark based algorithm. For a video with T frames, we detect facial landmarks
Lt in each frame using Bulat and Tzimiropoulos [23]. The unknown parameters
include the 3D rotation Rt ∈ SO(3), the 3D translation T t ∈ R

3, per-frame
facial expression coefficient ce,t and the shape parameter cs. We also assume a
simple perspective camera projection:

P =

⎡
⎣

f 0 w/2
0 f h/2
0 0 1

⎤
⎦ (2)

where we assume same unknown focal length in horizontal and vertical direction,
known fixed optical center at the center of the frame (w and h represents frame
width and height respectively), and zero skew. Denoting the 3D transformation
matrix as Kt = [Rt T t] where Rt ∈ R

3×3 and T t ∈ R
3, the 3D face model is

fitted by solving:

min
P ,Rt,T t,

cs,ce,t

T−1∑
t=0

(∥∥∥Lt − PKtF̂ t

∥∥∥
2

+ λ1 ‖ce,t‖2
)

+ λ2T ‖cs‖2 (3)

where F̂ t represents the landmark vertices controlled by cs and ce,t as in (1), and
λ1 and λ2 are regularization values that prevent the optimization from getting
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in local minima. The optimization can be easily solved as an unconstrained non-
linear least squares problem. We use all the 199 shape principal components and
46 expression principal components in the fitting process. We use λ1 = 5 and
λ2 = 5 in our experiment. The centroids of fitted face meshes are projected using
the solved projection matrix P , resulting in the head trajectory.

Facial landmark update. In Bulat and Tzimiropoulos [23], the contour 2D
landmarks are defined by the face silhouette. The face silhouette depends on the
pose of the head; therefore the corresponding contour landmark vertices need to
be updated during optimization (3). However, this requires computing and ren-
dering the whole mesh for facial landmark detection. To avoid this cost, we only
update the contour landmark vertices between two iterations of optimization:
we first fix the landmark vertices and use them in the face model fitting, then fix
the estimated parameters and update the contour landmark vertices. The update
of landmark vertices is demonstrated in Fig. 3. We first render the current face
mesh, and detect 2D landmarks using the rendered image. We update the land-
mark vertices’ indices by projecting all the visible vertices to the image plane
and find the closest ones to the detected 2D landmarks. These closest vertices
are used as contour landmark vertices in the next iteration. Note that the 2D-3D
correspondence is established by finding vertices closest to landmarks. Therefore,
a denser mesh will result in more accurate correspondence. This explains why
we extend the denser linear face model (Blanz and Vetter [12]) instead of using
the sparse bilinear face model (Cao et al. [13]) directly.

Fig. 4. Comparison of our 3D face fit-
ting result to Shi et al. [19] and Thies et
al. [16]. Our method achieves comparable
results without using complex structure-
from-motion and shading constraints.

Disscussion. General video stabiliza-
tion methods have difficulties when
occlusion occurs in the video. Some
methods either try to exclude the
occlusion region by detecting discon-
tinuity in motions (Liu et al. [3]) or let
users remove features belonging to the
foreground (Bai et al. [24]). The nov-
elty of our method is that it also con-
siders the motion in the foreground.
Due to the dynamics of faces, fea-
ture based analysis is easily affected
by head poses and facial expressions.
We use the 3D face model to track the
foreground face, so that the foreground
can be analyzed even with large non-
rigidity. In Fig. 4 we show that by
implementing the contour landmark
update scheme, our face fitting algo-
rithm also achieves results comparable
to the methods that use 3D facial land-



576 J. Yu and R. Ramamoorthi

marks estimated using non-rigid structure-from-motion (Shi et al. [19]) or 2D
facial landmarks with additional light and shading constraints (Thies et al. [16]).
Note that our method uses only 2D landmarks and thus is simpler than state-
of-the-art methods.

5 Background Tracking

While we can track the foreground motion using a 3D face model, we also need
to analyze the background motion so that both these regions can be considered
in the stabilization process. We use the optical flow proposed by Kroeger et al.
[25] to track a group of background pixels in each frame. The optical flow can
be inaccurate in specific regions due to motion blur/out-of-focus and occlusion.
However, minor inaccuracies in small regions can be ignored since our goal is
to analyze the global camera motion. In addition, to minimize the impact of
occlusion in the scene, we only track each pixel for 3 neighboring frames. We
will discuss how this temporal motion information is used in our stabilization
process in Sect. 6.

Not all pixels can be used to track the background motion. Obviously, pixels
falling in the foreground region should not be selected. Face fitting described in
Sect. 4 provides the head positions in each frame. We first translate all the frames
so that the head positions in each frame are aligned to the same point, which
leads to a head-aligned video. We perform optical flow between each frame of
the head-aligned video. The accumulated optical flow forms a map that encodes
the accumulated motion magnitude of each pixel. Since the video is aligned
with respect to head position, the accumulated magnitude of optical flow will be
smaller in the face and body region, but larger in the background region.

Fig. 5. A©: Accumulated optical flow. A large value indi-
cates the background area. B©: Example moving standard
deviation of optical flow. Large values indicate the edges
of objects in the scene.

We show an exam-
ple of a motion map in
Fig. 5A. After comput-
ing the motion map, we
use K-means to divide
the pixels into two clus-
ters. The cluster with
smaller values is consid-
ered as foreground. The
randomly selected pixels
in this cluster will not be
used in the stabilization.

Moreover, pixels near
the occluding boundary
should not be selected. Although our method does not require long feature tracks,
we still need to track pixels using optical flow. The downside of tracking with
optical flow is that tracking loss caused by occlusion is not easily detectable. To
tackle this problem, we want to remove the pixels that are near the occluding
boundary.
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The objects in the scene can be distinguished by the direction of their
motions. We use the standard deviation of the optical flow σF in a 21 × 21
neighborhood to measure the local variation in the optical flow. An example
of standard deviation of the optical flow is shown in Fig. 5B. The foreground
boundary has a larger variation in terms of the optical flow direction. In the
stabilization, we only use the pixels with σF smaller than a threshold value. We
use 0.3 as the threshold in all of our tests.

6 Stabilization

The goal of video stabilization is to warp the original video frame so that the
undesired frame motions are cancelled. We model the frame motion as a com-
bination of global motion and local motion. The global motion refers to the 2D
projective transformation of a frame. Since the frame content is the result of
multiple factors, e.g. camera projection, camera distortion, rolling shutter and
the 3D structure of the scene, a simple 2D projective transformation cannot
represent the camera motion accurately. Therefore, we use local motion to refer
to any residual motion.

Motivated by this analysis, we design our algorithm to stabilize the global
motion using the whole frame 2D projective transformation and stabilize the
local motion using the per-frame grid warping.

Fig. 6. Our method tracks background
pixels for 3 neighboring frames.

Smoothness Measure. In selfie
videos, the human appears as a large
occlusion near the camera, making the
trajectory of a pixel fragile. As a con-
sequence, obtaining long feature tracks
is difficult. Instead of tracking a pixel
over multiple frames, we only track a
pixel for 3 frames that are necessary
for estimating the second derivative at

time t. To demonstrate our idea, we use a single pixel in the scene as an exam-
ple. Assume a pixel p is tracked over a time period. The trajectory it forms
is denoted by p(t). To evaluate the smoothness of this trajectory, we use the
integral of squared second derivative or acceleration over the time period. This
metric is commonly used in cubic spline fitting algorithms for optimal smooth-
ness. By using this metric, we allow the frames to move to some extent but not
try to completely eliminate the low frequency shake. This also helps in generat-
ing a larger output frame size when the camera motion is large, which is very
common in selfie videos. Details of this effect will be discussed in Sect. 7. For
a set of selected background pixels (which pixels we choose for this purpose is
discussed in Sect. 5), the smoothness of the background motion can be written
as:

Es(t) =
Nt∑
i=1

‖p̂t,i(t + 1) − 2p̂t,i(t) + p̂t,i(t − 1)‖2 (4)
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where pt,i is the ith pixel tracked from t − 1 to t + 1, and p̂ is the new trajectory
formed by transforming the original trajectory p. To guarantee the robustness,
we track Nt pixels that are randomly selected in the frame at time t − 1. We
illustrate the tracking of background pixels in Fig. 6.

Frame Transformation. We seek to find a per-frame 2D projective transfor-
mation along with a per-frame grid warp field to transform pt,i to p̂t,i so that
the objective (4) is minimized.

For the grid warping, we use the same bilinear interpolation representation
as Liu et al. [1]. Each point is represented by a combination of four vertices of
its enclosing grid cell:

pt,i = wT
t,iVt (5)

where Vt is a vector of the four vertices of the original grid cell that p(t) is in;
and wt is the weight which sums to 1. Denote the output grid as V̂ and the
2D projective transformation as H. The warped scene point p̂ can be calculated
using the same weights:

p̂t,i = wT
t,iHtV̂t (6)

Regularization. In selfie videos, the foreground that contains face and body
should also be stabilized. The motion of the foreground is not always consistent
with the motion of the background. To account for the foreground motion, we
also consider the head trajectory:

Eh(t) = Nt

∥∥∥ĥ(t + 1) − ĥ(t)
∥∥∥
2

(7)

where h(t) is the head trajectory and ĥ(t) is the transformed head trajectory
at time t. The head trajectory was obtained via fitting a 3D face model to the
video as described in Sect. 4.

Moreover, to avoid undesired deformation caused by grid warping, we use
the Laplacian of the grid to measure the rigidity of the warping:

EV (t) = Δ(V̂t) (8)

Optimization. Our final objective function is a combination of the smoothness
measure and the regularization term:

min
Ht,̂Vt

T−2∑
t=1

Es(t) + λaEh(t) + λbEV (t) (9)

Due to the high degree of freedom of the unknowns, the objective function has a
complex landscape. Therefore, we first fix the grid V̂t and solve for 2D perspective
transformation Ht, then use the result as an initialization and refine by running
the full optimization (9).
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Fig. 7. Example video stills from our dataset. The labels represent the example indices
in Fig. 9.

Fig. 8. Visual comparison of input video, our result, Grundmann et al. [2] result and
Liu et al. [1] result. The video stills are scaled by the same factor. Our method generates
results with larger field of view and does not introduce visible distortion. We recom-
mend readers to watch the accompanying video for more visual comparison. Labels
represent example indices in Fig. 9.

We use Matlab’s nonlinear least-squares solver to solve this optimization
problem. For each frame at time t, the error terms Es, Eh and EV are only
affected by 3 frames at t− 1, t and t+1. This leads to a sparse jacobian matrix.
Therefore this problem can be efficiently solved.

7 Results

In this section, we show example frames of selfie video stabilization, along with
the visual comparison of the input video, our result, Liu et al. [1] and Grundmann
et al. [2]. We also show that our method achieves better quantitative results
than the comparison methods. Finally we discuss the advantages of our method
over general video stabilization methods. Our results are generated with fixed
parameters λa = 1 and λb = 5. On average, our Matlab code takes 15 min in all:
3 min for head fitting, 1 min for optical flow, 8 min for optimization and 3 min for
warping and rendering the video on a desktop computer with an Intel i7-5930K
CPU@ 3.5 GHz. We did not focus on speed in this work and we believe that our
optimization can be implemented on the GPU in future.
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Test Set. We collected 33 selfie video clips from the Internet, which is the first
such dataset of selfie videos. A subset of our example clips are shown in Fig. 7.
We label each video with properties that affect video stabilization: dynamic
occlusion, multiple faces, large foreground motion, lack of background features,
dynamic background and motion/defocus blur (Fig. 9). We will make our test
set available publicly for comparison of different methods, and believe it will be
a useful resource for the community.

Visual Comparison. In Fig. 8, the video stills are scaled by the same fac-
tor so that their sizes can be compared. Our results have a larger field of view
compared to Liu et al. [1] and Grundmann et al. [2], which is often desired in sta-
bilizing selfie videos. This is because the movement of the camera is large in these
examples. The methods proposed by Liu et al. [1] and Grundmann et al. [2] over-
stabilize the background, resulting in a small overlap region among frames. To
obtain a rectangular video, most of the regions have to be cropped. Our method
considers the foreground and background motion together and allows the frame
to move in a low frequency sense. Therefore we avoid over-stabilization with
respect to either foreground or background. Also note that our result preserves
the original shape of the face and body, while the Liu et al. [1] result contains
large distortions on the face. Since the dynamics are hard to show with images,
we recommend readers to watch the accompanying video for the visual compar-
ison of the results.

Our method is not sensitive to λb, but by changing the head regularization
value λa in (9), we can control the algorithm to mainly stabilize the foreground
or the background. We also included an example stabilized with different λa

values in the accompanying video.

Quantitative Comparision. To evaluate the level of smoothness of the videos,
we compute the average squared magnitude of second derivative of tracks of all
pixels in each frame. The smoothness measure is defined as:

S =
1

|Ω|
T−2∑
t=1

∑
i

‖ωt,i(t + 1) − 2ωt,i(t) + ωt,i(t − 1)‖2 (10)

where we track all the pixels ωt = {ωt,1, ωt,2...} in the frame at time t, and Ω is
the set of all the pixels {ω1,ω2...ωT−1}. Since we sum the second derivatives of
all the pixel tracks, a smaller smoothness measure indicates that the frames are
changing in a more stabilized way. In (10), we use the optical flow to track the
pixels. To eliminate the effect of different video sizes, we normalize the optical
flow with the frame size on horizontal and vertical directions respectively. We
show smoothness comparison for these examples in Fig. 9. Note that a lower bar
indicates a better result. For better comparison, we sorted the examples by their
original smoothness value. Our final results achieve better smoothness compared
to the results of Liu et al. [1] and Grundmann et al. [2] in all of the examples.
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Fig. 9. Smoothness comparison of input video, our result, Liu et al. result [1] and
Grundmann et al. result [2]. The horizontal axis represents the examples, and the
height of the bar represents the smoothness value. Colored arrows are added where the
bars overlap. The labeled properties are visualized as colored dots below each example.
(Color figure online)

Advantages. Our method has some advantages over other general video stabi-
lization methods in the selfie video case. Traditional 2D and 3D methods usually
rely on feature tracks [1,2,6,10], making them vulnerable to insufficient feature
counts in selfie videos. Since our method uses optical flow to track the motion, we
achieve significantly better result in videos with few background features (exam-
ples 3, 5, 10, 11, 12, 21, 24, 26 and 29 in Fig. 9). Note that the feature point
based general video stabilization methods fail in some of the low feature count
cases (examples 5, 21 and 29 in Fig. 9), resulting in an even higher smoothness
value than the input video. Our method is also robust to videos with motion
blur and defocus blur, which are very common properties in selfie videos.

It is hard to obtain long feature tracks in selfie videos with large foreground
motion. Note that 3D methods like Liu et al. [1] cannot perform accurate struc-
ture from motion when there is dynamic occlusion. Therefore Liu et al. [1] in
general does not perform well in large foreground motion cases (examples 2, 4, 6,
8, 9, 11, 13, 14, 15, 16 and 27 in Fig. 9). Using only fragments of pixel trajectories
over 3 frames, our method is robust to large occlusions near the camera. This
strategy also helps handle dynamic background (examples 8, 14, 15, 18, 20, 27,
28, 30 and 31 in which multiple non-dominant faces or moving objects exist).

Finally, our method provides a novel application of 3D face modeling: track
the foreground motion in selfie videos. Current 2D video stabilization methods
focus on detecting non-rigid regions and do not consider the motion in these
regions. In selfie videos, the foreground occupies a large portion of the frames
and cannot be ignored. Our method automatically plans the motion so that
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Fig. 10. Example video stills from our test set, and smoothness comparison on general
videos, showing our result, Liu et al. [1] result and Grundmann et al. [2] result. Numbers
on video stills indicate the example indices on the bar graph. Colored arrows are added
where the bars overlap. (Color figure online)

both foreground and background motion are smoothed. The foreground motion
also helps regularize the video stabilization process. In all of the examples, our
method avoids over stabilizing the background and produces results with signif-
icantly larger field of view.

Generalization. Our method also applies to stabilizing general videos. We can
simply ignore the Eh term in (9) and perform the optimization for the entire
background region. We also collect 6 general videos shown in Fig. 10 and compare
the smoothness of our result against Liu et al. [1] and Grundmann et al. [2]. Note
that we only use 3 neighbouring frames to track the frame motion and only local
motion information is available. Therefore, our method faces a harder problem in
general video stabilization. However, Fig. 10 shows that our method still achieves
comparable results in general video cases.

Failure Cases. Our frame motion model does not apply to videos with complex
motions, e.g. strong rolling shutter effect and fisheye effect. We also include a
selfie video taken with a fisheye camera in the accompanying video, in which our
method does not perform well. Our method does not explicitly correct motion
blur. Therefore our results on videos with strong motion blur (mostly because
of low illumination) will have unsatisfactory appearance. Our result of example
4 in the selfie video dataset belongs to this category. Note that Fig. 9 shows
that we still generate better results for example 4 compared to Liu et al. [1] and
Grundmann et al. [2].

8 Conclusion, Limitations and Future Work

We proposed a novel video stabilization technique for selfie videos. Our method
analyzes the motion of foreground (face and body) using a 3D face model and the
motion of background by temporally tracking the pixels using optical flow. We
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achieve visually and quantatively better results than the state-of-the-art general
video stabilization methods. Our method also exhibits robustness under different
situations (e.g., large foreground occlusion, blur due to motion or out-of-focus
and foreground/background motion mismatch).

Our method requires optical flow to track pixels in the video, and there-
fore suffers from the overhead of computing optical flow for neighboring frames.
Another limitation of our method is that we require that facial landmarks can be
detected in most of the frames. In our experiments, we linearly interpolate the
head position for frames in which no face was detected. If the faces are unde-
tectable in many consecutive frames, simply interpolating head positions will
yield inaccurate estimation of the foreground motion. These limitations can be
resolved by applying a more efficient optical flow technique and a more robust
facial landmark detector. Our frame motion model does not apply to videos with
complex motion. Our method also does not correct motion blur. Therefore for
night-time videos or videos taken under dark lighting conditions, our method
does not produce satisfactory results.

Since our method utilizes the 3D face model in selfie videos, one future work
would be using 3D information to estimate 3D camera motion, so that the 3D
video stabilization can be applied to selfie videos with large dynamic occlusions.
The 3D face model also enables other future works, including manipulating the
shape and expression of the face in selfie videos or high quality 3D reconstruction
of face and body from selfie videos.
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