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Abstract. We propose theoretical and empirical improvements for two-
stage hashing methods. We first provide a theoretical analysis on the
quality of the binary codes and show that, under mild assumptions, a
residual learning scheme can construct binary codes that fit any neigh-
borhood structure with arbitrary accuracy. Secondly, we show that with
high-capacity hash functions such as CNNs, binary code inference can
be greatly simplified for many standard neighborhood definitions, yield-
ing smaller optimization problems and more robust codes. Incorporating
our findings, we propose a novel two-stage hashing method that sig-
nificantly outperforms previous hashing studies on widely used image
retrieval benchmarks.

1 Introduction

A main challenge for “learning to hash” methods lies in the discrete nature
of the problem. Most approaches are formulated as non-linear mixed integer
programming problems which are computationally intractable. Common opti-
mization remedies include discarding the binary constraints and solving for con-
tinuous embeddings [1–5]. At test time the embeddings are typically thresh-
olded to obtain the desired binary codes. However, even the relaxed problem is
highly non-convex requiring nontrivial optimization procedures (e.g., [6]), and
the thresholded embeddings are prone to large quantization errors, necessitating
additional measures (e.g., [7]).

One prominent alternative to the relaxation approach is two-stage hashing,
which decomposes the optimization problem into two stages: binary code infer-
ence (i) and hash function learning (ii). For a training set, binary codes are
inferred in the inference stage, which are then used as target vectors in the hash
function learning stage. Such methods closely abide to the discrete nature of
the problem as the binary codes are directly incorporated into the optimization
procedure. In two-stage hashing, most of the attention is drawn to the more
challenging binary code inference step. Typically, this task is itself decomposed
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into a stage-wise problem where binary codes are learned in an iterative fashion.
While theoretical guarantees for the underlying iterative scheme are usually pro-
vided, the overall quality of the binary codes is often overlooked. It is desirable
to also determine the quality of the constructed binary codes.

In this paper, our first contribution is to provide an analysis on the quality of
learned binary codes in two-step hashing. We focus on the frequently considered
matrix fitting formulation (e.g., [6,8–11]), in which a “neighborhood structure”
is defined through an affinity matrix and the task is to generate binary codes so
as to preserve the affinity values. We first demonstrate that ordinary Hamming
distances are unable to fully preserve the neighborhood. Then, with a weighted
Hamming metric, we prove that a residual learning scheme can construct binary
codes that can preserve any neighborhood with arbitrary accuracy under mild
assumptions. Our analysis reveals that distance scaling, as well as fixing the
dimensionality of the Hamming space, which are often employed in many hashing
studies [6,12–14], are both unnecessary.

On the other hand, one common inconvenience in two-stage hashing meth-
ods is that, steps (i) and (ii) are often interleaved, so as to enable bit correction
during training [11,15,16]. Bit correction has shown to improve retrieval per-
formance, especially when the hash mapping constitutes simple functions such
as linear hyperplanes and decision stumps [9]. In contrast, we show that such
an interleaved process is unnecessary with high capacity hash functions such as
Convolutional Neural Networks (CNNs).

A further benefit of removing interleaving is that the affinity matrix can be
constructed directly according to the definition of the neighborhood structure,
instead of the pairwise similarities between training instances. For example, when
preserving semantic similarity, the neighborhood is generally defined through
class label agreement. Defining the affinity with respect to labels rather than
instances yields a much smaller optimization problem for the inference task (i),
and provides robustness for the subsequent hash function learning (ii). In con-
trast, instance-based inference schemes result in larger optimization problems,
often necessitating subsampling to reduce the scale.

With these insights in mind, we implement our novel two-stage hashing
method with standard CNN architectures, and conduct experiments on mul-
tiple image retrieval datasets. The affinity matrix in our formulation may or
may not be derived from class labels, and can constitute binary or multi-level
affinities. In fact, we consider a variety of experiments that include multi-class
(CIFAR-10 [17], ImageNet100 [18]), multi-label (NUSWIDE [19]) and unlabeled
(22K LabelMe [20]) datasets. We achieve new state-of-the-art performance for all
of these datasets. In summary, our contributions are:

1. We provide a technical analysis on the quality of the inferred binary codes
demonstrating that under mild assumptions we can fit any neighborhood with
arbitrary accuracy. Our analysis is relevant to the formulations used in many
two-stage hashing methods (e.g., [8,9,11,21,22]).

2. We demonstrate that with high-capacity hash functions such as CNNs, the
bit correction task is expendable. As a result, binary code inference can be
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performed on items that directly define the neighborhood, yielding more
robust target vectors and improving the retrieval performance. We achieve
state-of-the-art performance in four standard image retrieval benchmarks.

2 Related Work

We only review hashing studies most relevant to our problem. For a general
survey, please refer to [23].

The two-stage strategy for hashing was pioneered by Lin et al. [21] in which
the authors reduced the binary code inference task into a series of binary
quadratic programming (BQP) problems. The target codes are optimized in
an iterative fashion and traditional machine learning classifiers such as Sup-
port Vector Machines (SVMs) and linear hyperplanes that fit the target vectors
are employed as the hash functions. In [9], the authors proposed a graph-cut
algorithm to solve the BQP problem and employed boosted decision trees as
the hash functions. The graph-cut algorithm has shown to yield a solution well
bounded with respect to the optimal value [24]. The authors also demonstrated
that, with shallow models an interleaved process of binary code inference and
hash function learning allowed bit correction and improved the retrieval perfor-
mance. Differently, Xia et al. [8] proposed using a coordinate descent algorithm
with Newton’s method to solve the BQP problem and utilized CNNs as the hash
mapping. Do et al. [11] solved the the BQP problem using semidefinite relaxation
and Lagrangian approaches. They also investigate the quality of the relaxed
solution and prove that it is within a factor of the global minimum. Zhuang
et al. [22] demonstrated that the same BQP approach can be extended to solve
a triplet-based loss function. Other work reminiscent of these two-stage methods
include hashing techniques that employ alternating optimization to minimize the
original optimization problem [10,15,16,25].

While error-bounds and convergences properties of the underlying iterative
scheme is usually provided, none of the aforementioned studies provide a tech-
nical guarantee on the overall quality of the constructed binary codes. In this
study we provide such an analysis. Our technical analysis has connections to low-
rank matrix learning [26–29] in which we construct binary codes in a gradient
descent or matrix pursuit methodology. Differently, we constrain ourselves with
binary rank-one matrices, which are required for Hamming distance computa-
tions. Also, while not all two-stage hashing studies follow an interleaved process
(e.g., [21,30,31]), to the best of our knowledge, all construct the affinity matrix
using training instances. This warrants an in-depth look to the necessity of such
a process when high-capacity hash functions are employed.

Our hashing formulation follows the matrix fitting formulation which is
almost exclusively used in two-stage methods. This formulation was originally
proposed in [6] and has been widely adopted in subsequent hashing studies (e.g.,
[8,9,11,21,32]). Whereas the major contribution in this paper lies in establish-
ing convergence properties of the binary code inference task, our formulation
also has subtle and key differences to [6] and other two-stage methods. Specifi-
cally, we allow weighted hamming distances with optimally learned weights given
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the inferred binary codes. We perform inference directly on items that define the
neighborhood, enabling more robust target vector construction as will be shown.
In retrieval experiments, we compare against recent hashing studies, including
[4,14,16,33–39], and achieve state-of-the-art performances.

3 Formulation

In this section, we first discuss the two stages of our hashing formulation: binary
code inference and hash mapping learning. An analysis on affinity matrix con-
struction comes next. All proofs are provided in the supplementary material.

3.1 Binary Code Inference

In this section, we explain our inference step (i). We are given a metric space
(X , d) where X = {x1, · · · ,xn} denotes a set of items and d : X × X → R≥0

is a metric. Note that x can correspond to instances, labels, multi-labels or
any item that is involved in defining the neighborhood. Given the assumption
that the neighborhood is defined through metric d, we learn the hash mapping
Φ : X → H

b by optimizing the neighborhood preservation fit :

min
Φ

∑

i,j

[γd(xi,xj) − dh(Φ(xi), Φ(xj))]2, (1)

where dh is the Hamming distance and γ is a suitably selected scaling parameter.
In order to scale distances to the range of dh, we set γ = b/dmax where dmax =
maxx,y∈X d(x,y) is known.1 Solving Eq. 1 entails discrete loss minimization,
which in general is a non-linear mixed-integer programming problem. Instead,
two-stage methods decompose the solution into two steps, the first involving
a binary integer program to find a set of binary codes, or auxilliary variables
{ui ∈ H

b}n
i=1 that minimize Eq. 1. This program can be formulated as:

min
u

∑

i,j

[γd(xi,xj) − dh(ui,uj)]2 = min
u

1
4

∑

i,j

[u�
i uj − s(xi,xi)]2, (2)

where s(xi,xj) = b−2γd(xi,xj),∀i, j ∈ X . While the LHS of Eq. 2 is a distance
equivalence problem, the RHS is an affinity matching task. Such affinity based
preservation objectives have also been considered previously [1,6,14,33].

In our formulation, we consider weighted Hamming distances by weighting
each bit in u. The weighted Hamming distance has been used in past studies
to provide more granular similarities compared to its unweighted counterpart
(e.g., [40–44]). While this hashing scheme still enjoys low memory footprint and
fast distance computations, weighting the individual bits enables us to construct
binary codes that better preserve affinity values, as will be shown later.

1 Our later analysis in this section only requires dmax to be bounded.
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We reformulate Eq. 2 by defining weight vector α = [α1, · · · , αb]�:

1
4

∑

i,j

[(α � ui)�uj − s(xi,xi)]2 ∝ 1
2
‖U − R‖2F = f(U), (3)

where � denotes the Hadamard product, Uij = (α � ui)�uj ,Rij =
s(xi,xj),∀i, j ∈ X and ‖ · ‖F denotes the Frobenius norm. We note that the
affinity matrix R is real and symmetric as per its construction from metric d.

Let V = [u1, · · · ,un]� ∈ H
n×b denote the binary code matrix, then U can

be written as the weighted sum of b rank-one matrices
∑b

k=1 αkvkv�
k where

vk ∈ {−1, 1}n is the k-th column in V. Given this fact, our binary inference
problem can be reformulated as:

min f(U), s.t. U =
b∑

k=1

αkvkv�
k , v ∈ {−1,+1}n. (4)

The additive property of U is attractive, since it suggests that the problem could
be solved by a stepwise algorithm that adds the vk’s one by one. In particular,
we will apply the projected gradient descent algorithm to solve Eq. 4. Starting
with an initial value, U0 = 0, an update step can be formulated as:

Ut ← Ut−1 + αtvtv�
t , (5)

where
vt = arg max

v∈{−1,+1}n

〈vv�,−∇f(Ut−1)〉 (6)

finds the projection of the negative gradient direction −∇f(Ut−1) in the subspace
spanned by rank-one binary matrices, and αt is a step size. This projection is
important for maintaining the additive property in Eq. 4.

Since 〈vv�,∇f〉 = v�∇fv, Eq. 6 is a BQP problem which in general is NP-
hard. Here, we take a spectral relaxation approach which is also used in past
methods (e.g., [6,21,33]). A closed-form solution to Eq. 6 exists if the binary vec-
tor v is relaxed to continuous values. Specifically, if Q = −∇f(U), the following
relaxation yields the Rayleigh Quotient [45]:

max
v�v=n

v�Qv = nλmax(Q), (7)

where λmax denotes the largest eigenvalue, and the optimal solution, v∗, is the
corresponding eigenvector. The binarized value of v∗, sgn(v∗), is an approximate
solution for Eq. 6. This solution can optionally be used as an initial point for
BQP solvers in further maximizing Eq. 6, (e.g., [46–48]). Note that the main
technical results to be given are independent of the particular BQP solver.

The negative gradient −∇f(Ut−1) = R − ∑t−1
k=1 vkv�

k , also a symmetric
matrix, can be considered as the residual at iteration t − 1. At each iteration,
we find the most correlated rank-one matrix with this residual and move our
solution in that direction. If the step size αt is set to 1 for all t, then U can be
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decomposed as the product of the binary code matrices VV�, yielding ordinary
Hamming distances. However, with constant step sizes, the below property states
that there exist certain affinity matrices R such that no U exists that fits R.

Property 1. Let Qt be the residual −∇f(Ut) at iteration t. There exists a R
such that ∀t, ‖Qt‖F > 0.

Such a result motivates us to relax the constraint on the step size parameter
αt. If α is relaxed to any real value, then what we have essentially is weighted
Hamming distances and we demonstrate that one can monotonically decrease
the residual R in this case. We now provide our main theorem:

Theorem 2. If αt ∈ R, then the gradient descent algorithm Eqs. 5–6 satisfies

‖Qt‖F ≤ ηt−1‖Qt−1‖F , ∀t (8)

where η ∈ [0, 1].

Theorem 2 states that the norm of the residual is only monotonically non-
increasing. However, it may not strictly decrease, since the solution vt of Eq. 6
can actually be orthogonal to the gradient, i.e., v�

t Qt−1vt might be zero. If we
ensure non-orthogonal directions are selected at each iteration, then the residual
strictly decreases, as the following corollary states.

Corollary 3. If v�
t Qt−1vt 
= 0, ∀t then the residual norm ‖Qt‖F strictly

decreases.

Although the directions vtv�
t are greedily selected with step sizes αt, one can

refine step sizes of all past directions at each iteration. This generally leads to
much faster convergence. More formally, we can refine the step size parameters
by solving the following regression problem:

α∗ = arg min
α1,··· ,αt

1
2
‖

t∑

k=1

αkvkv�
k − R‖2F . (9)

Fortunately, Eq. 9 is an ordinary least squares problem admitting a closed-form
solution. Let v̂k = vec(vkv�

k ) and r̂ = vec(R) where vec(·) denotes the vector-
ization operator. Given V̂t = [v̂1, · · · , v̂t], the minimizer of Eq. 9 is

α∗
t = (V̂�

t V̂t)−1V̂�
t r̂, (10)

where α∗
t = [α∗

1, · · · , α∗
t ]

�. The solution requires O(t3)+O(t2n2)+O(tn2) oper-
ations with n = |X |. If n >

√
t, the time complexity is dominated by the O(t2n2)

term. Note that in practice, typical values for t, the number of bits, are small
(<100) and can be considered a constant factor.

We now provide a property indicating that this refinement of the step-sizes
does not break the monotonicity as defined in Theorem 2 and Corollary 3.
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Algorithm 1. Binary code inference
input : X = {x1, · · · ,xn}, d : X × X → R≥0. Boolean variable regress.

(Optional) Procedure Improve(Q,v0) to improve the solution v�Qv
s.t. v = {−1, 1}n where v0 is an initial solution. U = 0.

output: Code matrix V = [u1, · · · ,un]�, weight vector α = [α1, · · · , αT ]�

1 γ = 1
dmax

, Rij = 1 − 2γd(xi,xj) (if regress), Rij = s(xi,xj) × b (if ¬regress)
2 for t ← 1, ..., T do
3 vt ← eigenvector corresponding to the largest eigenvalue of −∇f(Ut−1)
4 vt ← sgn(vt), αt ← 1
5 vt ← Improve(−∇f(Ut−1),vt) (optional)
6 if regress then // αt ∈ R

7 Set [α1, · · · , αt]
� using Eq. 10

8 end

9 Ut ← ∑
t αtvtv

�
t , V·,t ← vt // Append vt to V

10 end

Property 4. Let Qt be the residual matrix at iteration t and αt set according to
Theorem 2. Let Q̂t be the residual after refining the step-sizes αt = [α1, · · · , αt]�

using Eq. 10. Then ‖Q̂t‖F ≤ ‖Qt‖F .

After learning U =
∑�

k=1 αkvvt = A � VV� where Ak,· = [α1, · · · , αt],∀k
we obtain our binary code matrix V = [u1, · · · ,un]� that contains the target
codes for each element {x1, · · · ,xn} ∈ X . This ends our inference step (i). We
summarize our inference scheme in Alg. Binary code inference.

Remarks. We consider two different binary inference schemes: constant where
the binary codes are constructed with constant step sizes yielding ordinary Ham-
ming distances; and, regress where each bit is weighted yielding the weighted
Hamming distance. For regress, since (α � ui)�uj = b(1 − 2d(xi,xj)/dmax) in
Eq. 3, we can embed the constant b into the weight vector variable α. As a result,
in contrast to hashing methods where the Hamming space dimensionality b must
be specified (e.g., to set margin and scaling parameters [6,10,14]), our method
only requires dmax to be bounded. On the other hand, regular Hamming distance,
or constant, requires scaling with b beforehand. The approximate solution of
Eq. 7 can be improved by using off-the-shelf BQP solvers. In Alg. Binary code
inference, we refer to such solvers as the subroutine Improve(·). In this paper, we
consider using a simple heuristic [46], which merely requires a positive objective
value for Eq. 6.

We now proceed with step (ii): hash mapping learning.

3.2 Hash Mapping Learning

Recall that we inferred target codes u ∈ H
b for each item x ∈ X , where x

may correspond to data instances, classes, multi-labels etc., depending on the
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neighborhood definition. For example, when the dataset is unsupervised and the
neighborhood is defined merely through data instances, then X may correspond
to the feature space with d(xi,xj) being the Euclidean distance. For multi-class
datasets, X and d(xi,xj) may represent the set of classes and the distance values
between pairs of classes, respectively. For multi-label datasets, X may correspond
to the set of possible label combinations. Our binary inference scheme constructs
target codes to items that directly define the neighborhood. In the experiments
section, we cover various scenarios.

If X does not represent the feature space, then after the binary inference step
(i), the target codes get assigned to data instances in a one-to-many fashion,
depending on the relationship between the target code and data instance. For
sake of clarity, we assume X is the feature space in this section.

We employ a collection of hash functions to learn the mapping, where a
function f : X → {−1, 1} accounts for the generation of a bit in the binary code.
Many types of hash functions are considered in the literature. For simplicity, we
consider the thresholded scoring function:

f(x) � sgn(ψ(x)), (11)

where ψ can be either a shallow model such as a linear function, or a deep
neural network. In experiments, we consider both types of embeddings. Φ(x) =
[f1(x), · · · , fb(x)]� then becomes a vector-valued function to be learned.

Recall that we inferred target codes u ∈ H
b for each element x ∈ X . Having

the target codes at our disposal, we now would like to find Φ such that the
Hamming distances between Φ(x) and the corresponding target codes u are
minimized. Hence, the objective can be formulated as:

n∑

i=1

dh(Φ(xi),ui). (12)

The Hamming distance is defined as dh(Φ(xi),ui) =
∑

t[[ft(xi) 
= uit]] where
both dh and the functions ft are non-differentiable. Fortunately, we can relax
ft by dropping the sgn function in Eq. 11 and derive an upper bound on the
Hamming loss. Note that dh(Φ(xi),ui) =

∑
t[[ft(xi) 
= uit]] ≤ ∑

t l(−uitψt(xi))
with a suitably selected convex margin-based function l. Thus, by substituting
this surrogate function into Eq. 12, we can directly minimize this upper bound
using stochastic gradient descent. We use the hinge loss as the upper bound l.

As similar to other two-stage hashing methods, at the heart of our formu-
lation are the target vectors which are inferred as to fit the affinity matrix R.
Next, we take a closer look on how to construct this affinity matrix.

3.3 Affinity Matrix Construction

The affinity matrix can be defined through pairwise similarities of items
that directly define the neighborhood, which may not correspond to training
instances. Despite this flexibility of the formulation, previous related hashing
studies generally consider using training instances.



352 F. Cakir et al.

Affinity - classes Affinity - instances

(a) (b)

Iterations

R
es

id
ua

l N
or

m

1 20 40 60
0

0.1

0.2

0.3

Code length

M
ea

n 
Av

er
ag

e 
Pr

ec
is

io
n

8 12 24 32 48 64
0.6

0.8

1

Code length

In
fe

re
nc

e 
Ti

m
e 

(s
)

8 12 24 32 48 64
0

50

100

150

200

Epoch index

N
on

-m
at

ch
ed

/T
ot

al
 b

its

1 50 100

0.1

0.2

0.3

VGGf-all
VGGf-fc7
GIST

(c) (d) (e) (f)

Fig. 1. In a series of experiments, we compare two sets of binary codes constructed
with two different affinity matrices: class (a) and instance based (b). (c)–(e) contrasts
the binary codes with respect to residual norm, mAP and inference time. Results for
binary codes inferred from the class and instance affinity matrices are denoted with
( ) and ( ), respectively. We also learn hash functions with varying complexities
to fit the inferred binary codes and plot the fraction of non-matched bits to the total
number bits (f).

For certain neighborhoods, constructing the affinity matrix with training
instances might yield suboptimal binary codes. To illustrate this case, consider
Fig. 1 where we compare two sets of binary codes inferred from two different
affinity matrices in a series of experiments. The neighborhood definition in these
experiments is a standard one, typically found in nearly all hashing work. Specif-
ically, we assume 10 classes and define the class affinity matrix as shown in
Fig. 1(a). We also consider a hypothetical set of 1000 instances, each assigned to
one of these 10 classes, and construct the affinity matrix as shown in Fig. 1(b)
which we simply refer as the instance affinity matrix. Similarity of the instances
are based on their class id’s and deduced from the class affinity matrix. We
infer binary codes under varying lengths as to reconstruct the class and instance
affinity matrices. As explained in Sect. 3.2, instances are assigned the binary
code of their respective classes for the class based inference. The experiments
are repeated 5 times and average results are reported.

We first highlight the residual matrix Qt norm in Fig. 1(c). Note that the
residual norm of the class based inference converges to zero with fewer itera-
tions: 40 bit codes are able to reconstruct the class affinity matrix with minimal
discrepancy. On the other hand, lengthier codes are required to fully reconstruct
the instance affinity matrix. We also provide the retrieval performance for the
two sets of binary codes. Mean Average Precision (mAP) is the evaluation cri-
terion. For this experiment, 100 instances are sampled from the instance set as
queries, while the rest constitute the retrieval set. As demonstrated in Fig. 1(d),
their is a dramatic difference in mAP values especially with compact codes.
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The difference can be as large as 0.40. This type of sub-optimality for the binary
codes inferred through the instance affinity matrix have also been observed pre-
viously (e.g., [22]). Lastly, Fig. 1(e) gives the training time for the two inference
schemes. While the inference time depends on the particular BQP solver, the
number of decision variables nevertheless scales quadratically with the number
of items in X , as seen by the dramatic difference in the training time between
the two inference schemes, especially with lengthier codes. Depending on the
instance matrix size, the difference can easily scale up requiring subsampling to
reduce the scale of the optimization task.

Given the evident disadvantages, why is the affinity matrix constructed from
instances? The primary reason is because in most two-stage hashing methods
the inference and hash function learning steps are interleaved for on-the-fly bit
correction purposes. This requires the affinity matrix to correspond to pairwise
instance similarities as the inferred bits will immediately be used for training the
hash functions. However, given recent advances in deep learning, high-capacity
predictors are becoming available, nullifying the need for bit correction. Conse-
quently, one can opt to solve a smaller and more robust optimization problem
defined on items that directly define the neighborhood.

To illustrate this point we learn hash functions of varying complexities to
fit the set of binary codes,2 and plot the fraction of non-matched bits to total
number bits during hash function learning. We use the training set of CIFAR-
10 and train the hash functions to fit the inferred 32-bit binary codes (total:
32 × 50,000 bits). We consider single layer neural networks on GIST [49] and fc7
features of a VGG-F network [50] pretrained on ImageNet [19], in addition to
fine-tuning all the VGG-F layers. Figure 1(f) gives the results. Notice that as the
capacity of the hash function increases the ratio of non-matched bits decrease
significantly. While this ratio is above 0.25 with a single layer neural net on
GIST, the single layer neural net trained on fc7 features yields just above 10%
unmatched bits. When we fine-tune all layers of a VGG-F network this percentage
reduces well below 10%. We can induce that with more complex architectures
the ratio will diminish even more so.

We incorporate these insights into our formulation and conduct retrieval
experiments against competing methods in the next section, where we achieve
new state-of-the-art performances.

4 Experiments

We conduct experiments on widely used image retrieval benchmarks: CIFAR-10
[17], NUSWIDE [18], 22K LabelMe [20] and ImageNet100 [19].

CIFAR-10 is a dataset for image classification and retrieval, containing 60K
images from 10 different categories. We follow the setup of [2,14,22,38]. This
setup corresponds to two distinct partitions of the dataset. In the first case

2
These binary codes are obtained from the class based inference scheme, though similar behavior
is exhibited with codes obtained with instance based inference.
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(cifar-1 ), we sample 500 images per category, resulting in 5,000 training exam-
ples to learn the hash mapping. The test set contains 100 images per category
(1000 in total). The remaining images are then used to populate the hash table.
In the second case (cifar-2 ), we sample 1000 images per category to construct
the test set (10,000 in total). The remaining items are both used to learn the
hash mapping and populate the hash table. Two images are considered neighbors
if they belong to the same class.

NUSWIDE is a dataset containing 269K images. Each image can be associated
with multiple labels, corresponding with 81 ground truth concepts. Following
the setup in [2,14,22,38], we only consider images annotated with the 21 most
frequent labels. In total, this corresponds to 195,834 images. The experimental
setup also has two distinct partitionings: nus-1 and nus-2. For both cases, a
test set is constructed by randomly sampling 100 images per label (2,100 images
in total). To learn the hash mapping, 500 images per label are randomly sampled
in nus-1 (10,500 in total). The remaining images are then used to populate the
hash table. In the second case, nus-2, all the images excluding the test set are
used in learning the hash mapping and populating the hash table. Two images
are considered neighbors if they share a single label. We also specify a richer
neighborhood by allowing multi-level affinities. In this scenario, two images have
an affinity value equal to the number of common labels they share.

22K LabelMe consists of 22K images, each represented with a 512-dimensionality
GIST descriptor. Following [3,12], we randomly partition the dataset into two:
a training and test set consisting of 20K and 2K instances, respectively. A 5K
subset of the training set is used in learning the hash mapping. As this dataset
is unsupervised, we use the l2 norm in determining the neighborhood. Similar
to NUSWIDE, we allow multi-level affinities for this dataset. We consider four
distance percentiles deduced from the training set and assign multi-level affinity
values between the instances.

ImageNet100 is a subset of ImageNet [19] containing 130K images from 100
classes. We follow [4] and sample 100 images per class for training. All images
in the selected classes from the ILSVRC 2012 validation set are used as the test
set. Two images are considered neighbors if they belong to the same class.

Experiments without using multi-level affinities in defining the neighborhood
are evaluated using a variant of Mean Average Precision (mAP), depending on
the protocol we follow. We collectively group these as binary affinity exper-
iments. Multi-level affinity experiments are evaluated using Normalized Dis-
counted Cumulative Gain (NDCG), a metric standard in information retrieval
for measuring ranking quality with multi-level similarities. In both experiments,
Hamming distances are used to retrieve and rank data instances.

We term our method HBMP (Hashing with Binary Matrix Pursuit), and
compare it against state-of-the-art hashing methods. These methods include:
Spectral Hashing (SH) [33], Iterative Quantization (ITQ) [34], Supervised Hash-
ing with Kernels (SHK) [6], Fast Hashing with Decision Trees (FastHash) [9],
Structured Hashing (StructHash) [37], Supervised Discrete Hashing (SDH)
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[16], Efficient Training of Very Deep Neural Networks (VDSH) [36], Deep Super-
vised Hashing with Pairwise Labels (DPSH) [38], Deep Supervised Hashing
with Triplet Labels (DTSH) [14] and Mutual Information Hashing (MIHash)
[39,51]. These competing methods have been shown to outperform earlier and
other works such as [1,2,8,12,13,41,52].

For CIFAR-10 and NUSWIDE experiments, we fine tune the VGG-F architec-
ture. For ImageNet100 experiments, we fine-tune the AlexNet architecture. Both
deep learning models are pretrained using the ImageNet dataset. For non-deep
methods, we use the output of the penultimate layer of both architectures. For
the 22K LabelMe benchmark, we learn shallow models on top of the GIST descrip-
tor. For deep learning based hashing methods, this corresponds to using a single
fully connected neural network layer.

4.1 Results

We provide results for experiments with binary similarities with mAP as the
evaluation criterion, and then for multi-level similarities with NDCG. In CIFAR-
10, set X , in which the binary inference is performed upon, represents the 10
classes. For NUSWIDE, as the neighborhood is defined using the multi-labels, it is
then intuitive for set X to represent label combinations. In our case, we consider
unique label combinations in the training set resulting in X = 4850 items for
binary inference. For the 22K LabelMe dataset, the items directly correspond to
training instances. We provide results for the regress binary inference scheme,
denoted simply as HBMP. A comparison between constant and regress is given
in the supplementary material.

Table 1. Binary affinity experiments on CIFAR-10 and NUSWIDE datasets with cifar-1
and nus-1 partitionings. The underlying deep learning architecture is VGG-F. HBMP
outperforms competing methods on CIFAR-10, and shows improvements, especially
with lengthier codes on NUSWIDE.

VGG-F CIFAR-10 (mAP) NUSWIDE (mAP@5K)

Method 12 Bits 24 Bits 32 Bits 48 Bits 12 Bits 24 Bits 32 Bits 48 Bits

SH [33] 0.183 0.164 0.161 0.161 0.621 0.616 0.615 0.612

ITQ [34] 0.237 0.246 0.255 0.261 0.719 0.739 0.747 0.756

SHK [6] 0.488 0.539 0.548 0.563 0.768 0.804 0.815 0.824

SDH [16] 0.478 0.557 0.584 0.592 0.780 0.804 0.816 0.824

FastHash [9] 0.553 0.607 0.619 0.636 0.779 0.807 0.816 0.825

StructHash [37] 0.664 0.693 0.691 0.700 0.748 0.772 0.790 0.801

VDSH [36] 0.538 0.541 0.545 0.548 0.769 0.796 0.803 0.807

DPSH [38] 0.713 0.727 0.744 0.757 0.758 0.793 0.818 0.830

DTSH [14] 0.710 0.750 0.765 0.774 0.773 0.813 0.820 0.838

MIHash [39] 0.738 0.775 0.791 0.816 0.773 0.820 0.831 0.843

HBMP 0.799 0.804 0.830 0.831 0.757 0.805 0.822 0.840
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Table 2. Binary affinity experiments on CIFAR-10 and NUSWIDE datasets with cifar-2
and nus-2 partitionings (with VGG-F architecture). HBMP achieves new state-of-the-
art performances, significantly improving over competing methods.

VGG-F CIFAR-10 (mAP) NUSWIDE (mAP@50K)

Method 16 Bits 24 Bits 32 Bits 48 Bits 16 Bits 24 Bits 32 Bits 48 Bits

DRSH [52] 0.608 0.611 0.617 0.618 0.609 0.618 0.621 0.631

DRSCH [53] 0.615 0.622 0.629 0.631 0.715 0.722 0.736 0.741

DPSH [38] 0.903 0.885 0.915 0.911 0.715 0.722 0.736 0.741

DTSH [14] 0.915 0.923 0.925 0.926 0.756 0.776 0.785 0.799

MIHash [39] 0.927 0.938 0.942 0.943 0.798 0.814 0.819 0.820

HBMP 0.942 0.944 0.945 0.945 0.804 0.829 0.841 0.855

Binary Affinity Experiments. Table 1 gives results for the cifar-1 and nus-1
experimental settings in which mAP and mAP@5K values are reported for the
CIFAR-10 and NUSWIDE datasets, respectively. Deep-learning based hashing
methods such as DPSH, DTSH and MIHash outperform most non-deep hashing
solutions. This is not surprising as feature representations are simultaneously
learned along the hash mapping in these methods. Certain two-stage methods,
e.g., FastHash, remain competitive and top deep learning methods including
DTSH and MIHash for various hash code lengths, especially for NUSWIDE. Our
two-stage method, HBMP, outperforms all competing methods in majority of the
cases, including MIHash, DTSH and DPSH with very large improvement mar-
gins. Specifically for CIFAR-10, the best competing method is MIHash, a recent
study that learns the hash mapping using a mutual information formulation. The
improvement over MIHash is over 6% for certain hash code lengths, e.g., for 12
bits 0.799 vs. 0.738 mAP. Our method significantly improves over SHK as well,
which also proposes a matrix fitting formulation but learns its hash mapping
in an interleaved manner. This validates defining the binary code inference over
items that directly define the neighborhood, i.e. classes for CIFAR-10.

For the NUSWIDE dataset, the binary inference is done over the set of label
combinations in the training data. HBMP demonstrates either comparable results
or outperforms the state-of-the-art hashing methods. A relevant recent two-stage
hashing method is [22] in which the same settings (cifar-1 and nus-1 ) are used
but with fine-tuning a VGG − 16 architecture. Their CIFAR-10 and NUSWIDE
results have at most 0.80 mAP and 0.75 mAP@5K values, respectively, for all
hash code lengths. HBMP, on the other hand, achieves these performance values
with the inferior VGG-F architecture.

To further emphasize the merits of HBMP, we consider the experimental
settings cifar-2 and nus-2 and compare against recent deep-learning hashing
methods. In this setting, we again fine-tune the VGG-F architecture pretrained
on ImageNet. Table 2 gives the results. Notice that our method significantly
outperforms all techniques, and yields new state-of-the-art results for CIFAR-10
and NUSWIDE.

Retrieval results for ImageNet100 are given in Table 3. In these experiments,
we only compare against MIHash, the overall best competing method in past
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experiments and HashNet [4], another very recent deep learning based hashing
study. As demonstrated, HBMP establishes the new state-of-the-art in image
retrieval for this benchmark. HBMP outperforms both methods significantly,
e.g., with 64-bits, we demonstrate 4–6% improvement. This further validates the
quality of the binary codes produced with HBMP.

Table 3. mAP@1K values on ImageNet100 using AlexNet. HBMP outperforms the two
state-of-the-art formulations using mutual information [39] and continuation meth-
ods [4].

AlexNet ImageNet100 (mAP@1K)

Method 16 Bits 32 Bits 48 Bits 64 Bits

HashNet [4] 0.506 0.630 0.663 0.683

MIHash [39] 0.569 0.661 0.685 0.694

HBMP 0.574 0.692 0.712 0.742

Multilevel Affinity Experiments. In these experiments, we allow multi-level
similarities between items of set X and use NDCG as the evaluation criterion.
For NUSWIDE, we consider the number of shared labels as affinity values. For
22K LabelMe dataset, we consider using distance percentiles {2%, 5%, 10%, 20%}
deduced from the training set to assign inversely proportional affinity values
between the training instances. This emphasizes multi-level rankings among
neighbors in the original feature space. In 22K LabelMe, we use a single fully
connected layer as the hash mapping for the deep-learning based methods.

Table 4 gives results. For NUSWIDE, HBMP outperforms all state-of-the-art
methods including MIHash. In 22K LabelMe, HBMP either achieves state-of-the-
art performance, or is a close second. An interesting observation is that, when the
feature learning aspect is removed due to the use of precomputed GIST features,
non-deep methods such as FastHash and StructHash outperform deep-learning
hashing methods DPSH and DTSH. While FastHash and StruchHash enjoy non-
linear hash functions such as boosted decision trees, this also indicates that the
prowess of DPSH and DTSH might come primarily through feature learning. On
the other hand, both HBMP and MIHash show top performances with a single
fully connected layer as the hash mapping, indicating that they produce binary
codes that more accurately reflect the neighborhood. Regarding 22K LabelMe, for
HBMP, set X corresponds to training instances, as similarly in other methods.
This suggests that the performance improvement of HBMP is not merely due to
the fact that the binary inference is performed upon items that directly define
the neighborhood, but also due to our formulation that learns a Hamming metric
with optimally selected bit weights.
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Table 4. Multi-level affinity experiments on NUSWIDE and 22K LabelMe using VGG-F
and GIST, respectively. The partitioning used for NUSWIDE is nus-1. The evaluation
criterion is Normalized Discounted Cumulative Gain (NDCG). HBMP improves over
the state-of-the-art in majority of the cases.

NUSWIDE (VGG-F,NDCG) 22K LabelMe (GIST,NDCG)

Method 16 Bits 32 Bits 48 Bits 64 Bits 16 Bits 24 Bits 32 Bits 48 Bits

FastHash [9] 0.885 0.896 0.899 0.902 0.672 0.716 0.740 0.757

StructHash [37] 0.889 0.893 0.894 0.898 0.704 0.768 0.802 0.824

DPSH [38] 0.895 0.905 0.909 0.909 0.677 0.740 0.755 0.765

DTSH [14] 0.896 0.905 0.911 0.913 0.620 0.685 0.694 0.702

MIHash [39] 0.886 0.903 0.909 0.912 0.713 0.822 0.855 0.873

HBMP 0.914 0.924 0.927 0.930 0.823 0.829 0.849 0.866

5 Conclusion

We have proposed improvements to a commonly used formulation in two-stage
hashing methods. We first provided a theoretical result on the quality of the
binary codes showing that, under mild assumptions, we can construct binary
codes that fit the neighborhood with arbitrary accuracy. Secondly, we analyzed
the sub-optimality of binary codes constructed as to fit an affinity matrix that
is not defined on items directly related to the neighborhood. Incorporating our
findings, we proposed a novel two-stage hashing method that significantly out-
performs previous hashing studies on multiple benchmarks.
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