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Abstract. This work proposes a general-purpose, fully-convolutional
network architecture for efficiently processing large-scale 3D data. One
striking characteristic of our approach is its ability to process unorga-
nized 3D representations such as point clouds as input, then transforming
them internally to ordered structures to be processed via 3D convolu-
tions. In contrast to conventional approaches that maintain either unor-
ganized or organized representations, from input to output, our approach
has the advantage of operating on memory efficient input data represen-
tations while at the same time exploiting the natural structure of con-
volutional operations to avoid the redundant computing and storing of
spatial information in the network. The network eliminates the need to
pre- or post process the raw sensor data. This, together with the fully-
convolutional nature of the network, makes it an end-to-end method able
to process point clouds of huge spaces or even entire rooms with up to
200k points at once. Another advantage is that our network can pro-
duce either an ordered output or map predictions directly onto the input
cloud, thus making it suitable as a general-purpose point cloud descriptor
applicable to many 3D tasks. We demonstrate our network’s ability to
effectively learn both low-level features as well as complex compositional
relationships by evaluating it on benchmark datasets for semantic voxel
segmentation, semantic part segmentation and 3D scene captioning.

Keywords: Point clouds · 3D deep learning · Scene understanding
Fully-convolutional · Semantic segmentation · 3D captioning

1 Introduction

Processing 3D data as obtained from 3D scanners or depth cameras is funda-
mental to a wealth of applications in the field of 3D computer vision, scene
understanding, augmented/mixed reality, robotics and autonomous driving.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01225-0 37) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11208, pp. 625–640, 2018.
https://doi.org/10.1007/978-3-030-01225-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01225-0_37&domain=pdf
https://doi.org/10.1007/978-3-030-01225-0_37
https://doi.org/10.1007/978-3-030-01225-0_37


626 D. Rethage et al.

The extraction of reliable semantic information from a 3D scene is useful, for
example, to appropriately add virtual content to the 3D space around us or
describe it to a visually-impaired person. Analogously, in robotics, processing
of 3D data acquired from a depth camera allows the robot to perform sophisti-
cated tasks, beyond path-planning and collision avoidance, that require intelli-
gent interaction in real world environments (Fig. 1).

Fig. 1. Example result of our FCPN on semantic voxel labeling and captioning on
an Tango 3D reconstruction/point cloud: (a) 3D reconstruction (not used), (b) Input
point cloud (c) Output semantic voxel prediction. A possible caption for the camera
pose in (b) is “There is a place to sit in front of you”

A recent research trend has focused on designing effective learning archi-
tectures for processing common 3D data representations such as point clouds,
meshes and voxel maps, to be employed in tasks such as voxel-based seman-
tic scene segmentation [1], part-based segmentation of 3D objects [2] and 3D
correspondence matching [3]. A primary objective of these models is robustness
against typical issues present when working with real world data such as, noise,
holes, occlusion and partial scans, as well as viewpoint changes and 3D transfor-
mations (rotation and translation). Another challenge more related to semantic
inference relates to dealing with the large number of classes that characterize
real world scenarios and their typically large intra-class variance.

In pursuit of a versatile 3D architecture, applicable in small- and large-scale
tasks, it is not only necessary to extract meaningful features from 3D data at
several scales, but also desirable to operate on a large spatial region at once. For
this, fully-convolutional networks (FCN) [4] have recently grown to prominence
due to their drastic reduction in parameters and flexibility to variable input sizes.
However, learning these hierarchical statistical distributions starting at the low-
est level requires a huge amount of data. To achieve this, some methods train on
synthetic data, but suffer from the domain gap when applied to the real-world
[5]. A big step toward closing this gap is ScanNet, a large-scale dataset of indoor
scans [1]. Methods that achieve state-of-the-art performance on these challeng-
ing tasks quickly reach the memory limits of current GPUs due to the additional
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dimension present in 3D data [6,7]. While the aforementioned FCN architecture
reduces the number of parameters, it requires the input to be in an ordered
(dense) form. To bypass the need to convert the raw, unordered data into an
ordered representation, PointNet [2] proposes an architecture that directly oper-
ates on sets of unordered points. Since PointNet only learns a global descriptor
of the point cloud, Qi et. al later introduced a hierarchical point-based network
with PointNet++ [8]. While achieving impressive results in several tasks, Point-
Net++ cannot take advantage of the memory and performance benefits that 3D
convolutions offer due to its fully point-based nature. This requires PointNet++
to redundantly compute and store the context of every point even when they
spatially overlap.

We present a general-purpose, fully-convolutional network architecture for
processing 3D data: Fully-Convolutional Point Network (FCPN). Our network
is hybrid, i.e. designed to take as input unorganized 3D representations such as
point clouds while processing them internally in an organized fashion through 3D
convolutions. This is different from other approaches, which require both input
and internal data representation to be either unorganized point sets [2,8,9] or
organized data [1,5]. The advantage of our hybrid approach is to take the benefits
of both representations. Unlike [1,5], our network operates on memory efficient
input representations that scale well with the scene/object size and transforms it
to organized internal representations that can be processed via convolutions. A
benefit of our method is that it can scale to large volumes while processing point
clouds in a single pass. It can also be trained on small regions, e.g. 2.4×2.4×2.4 m
and later applied to larger point clouds during inference. A visualization of the
output at three different scales of our network trained on semantic voxel labeling
is given in Fig. 2. While the proposed method is primarily intended for large-
scale, real-world scene understanding applications, demonstrated by the semantic
voxel labeling and 3D scene captioning tasks, the method is also evaluated on
semantic part segmentation to demonstrate its versatility as a generic feature
descriptor capable of operating on a range of spatial scales.

(a) 1.5m, 8k points (b) 2.4m, 16k points (c) 10m, 200k points

Fig. 2. Visualization of the semantic segmentation on (a) a depth image, (b) a
2.4 m× 2.4 m× 2.4 m partial reconstruction (c) an entire reconstruction of a hotel suite.
Please note that each of these outputs are predicted in a single shot from the same
network trained with 2.4 m× 2.4 m× 2.4 m volumes
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Our main contributions are (1) a network based on a hybrid unorganized
input/organized internal representation; and, (2) the first fully-convolutional
network operating on raw point sets. We demonstrate its scalability by running
it on full ScanNet scenes regions of up to 80 m2 in a single pass. In addition,
we show the versatility of our learned feature descriptor by evaluating it on
both large-scale semantic voxel labeling as well as on 3D part segmentation.
In addition, as a third contribution, we explore the suitability of our approach
to a novel task which we dub 3D captioning, that addresses the extraction of
meaningful text descriptions out of partial 3D reconstructions of indoor spaces.
We demonstrate how our approach is well suited to deal with this task leveraging
its ability to embed contextual information, producing a spatially ordered output
descriptor from the unordered input, necessary for captioning. For this task, we
also publish a novel dataset with human-annotated captions.

2 Related Work

Deep learning has already had a substantial impact on 3D computer vision.
Those 3D deep learning approaches can be categorized as either (a) volumetric
or voxel-based models that operate on an ordered input (see Sect. 2.1) or (b)
point-based models that work entirely with unordered data (see Sect. 2.2). Some
approaches do not deal directly with 3D data, but instead operate in 2D or 2.5D
(RGB-D), for example, multi-view CNNs [10–12]. Typically, RGB(-D) based
methods put more emphasis on color information and less on geometry. This
makes it less robust under varying lighting conditions. Instead, our proposed
approach is fully geometric and we therefore do not further review RGB-D based
methods here.

2.1 Voxel-Based Networks

Most volumetric or voxel-based 3D deep learning methods have proven their
value by achieving state of the art accuracy [1,5,13–15] on a variety of tasks.
These methods employ convolutional architectures to efficiently process data.
This however requires the input data to be organized – stored in a dense grid
of predefined order. Each uniformly-sized voxel in this grid is then labeled with
a semantic class. Ordered representations of 3D data have the advantage of fea-
turing constant time (O(1)) lookup of neighbors. Such a representation usually
explicitly models empty space making it memory-intensive. This is particularly
inefficient since 3D data is often very sparse. Further, voxelization imposes an
explicit resolution on the data. To transform sparse 3D data to a dense rep-
resentation requires preprocessing: either using a simple occupancy grid or by
encoding it, for example, in a truncated signed-distance field (TSDF) as done
in KinectFusion [5,16]. This means the model does not see the data itself, but a
down-sampled encoding of it.
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VoxNet was a pioneering effort using 3D convolutional networks for object
recognition [13]. Similarly, Wu et. al learn deep volumetric representations of
shapes for shape recognition and completion [17]. Another popular example that
applied to medical imaging is 3D U-Net [14]. It processes at a relatively high
input resolution of 132× 132× 116, but only outputs the center of the volume.
With current memory availability, voxelization of larger spaces generally requires
labeling at a lower sampling density implying a loss of resolution. Alternatively,
a higher density can be achieved if a smaller context is used to inform the pre-
diction of each voxel. For example, ScanNet [1] performs semantic voxel labeling
of each approximately 5 cm voxel column in a scene using the occupancy charac-
teristics of the voxel’s neighborhood. SSCNet achieves a larger spatial extent of
2.26 m3 for jointly semantically labeling and completing depth images by use of
dilated convolutions. However, also in this scenario, the size as well as resolution
of the output is reduced [5].

To address this limitation,OctNet propose to useOctTrees, known to efficiently
partition 3D space in octants, in a deep learning context by introducing convolu-
tions directly on the OctTree data structure [7]. Klokov and Lempitsky demon-
strate another solution using kd-trees [6]. However, these methods still impose a
minimumspatial discretization.Our network is flexible and efficient enough tomit-
igate this memory limitation without discretizing the input in any way.

2.2 Point-Based Networks

A pioneering work that operates on unordered points directly is PointNet [2].
Qi et al. showed the advantages of working with point sets directly, learning
more accurate distributions in continuous space, thereby bypassing the need
to impose a sampling resolution on the input. PointNet achieves state-of-the-
art performance on classification, part segmentation and scene segmentation
tasks while operating at a single-scale. They further claim robustness to vari-
able point density and outliers. However, since PointNet does not capture local
features the authors later introduced PointNet++ [8] a multi-scale point-based
network that uses PointNet as a local feature learner for semantic segmentation,
among other tasks. In the semantic segmentation task, point contexts are first
abstracted and later propagated through 3NN interpolation in the latent space.
For the larger-scale scene segmentation task, it is relevant that PointNet++
redundantly processes and stores the context of points throughout the network.
This prevents PointNet++ from being able to process a large space in a sin-
gle pass. Instead in the semantic scene segmentation task, it processes a sliding
region of 1.5× 1.5× 3 m represented by 8192 points.

Our work is – as the first of its kind – hybrid and therefore positioned between
these volumetric and point-based methods. As such, allowing powerful multi-
scale feature encoding by using 3D convolutions while still processing point sets
directly.
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3 Fully-Convolutional Point Network

Our network operates on unorganized input and employs PointNet [2] as a low-
level feature descriptor. Contrary to PointNet++ [8], a uniform sampling strat-
egy is applied. This step captures the precise local geometry in each local region
and transforms the unordered input internally to an ordered representation for
further processing. This transformation is followed by 3D convolutions to then
learn compositional relationships at multiple scales. Our network abstracts the
space at three scales S1, S2 and S3. Skip connections with 1×1×1 and 3×3×3
convolutions at each scale inexpensively double the total number of feature scales
the network captures. At the highest abstraction scale, the features are addition-
ally average pooled together weighted by their distance to each voxel. Once fea-
tures are produced at each scale of abstraction, feature volumes of the same size
are concatenated and progressively upsampled by 3D deconvolutions to achieve
the desired output sampling density. Figure 3 gives an overview of the proposed
architecture. Depending on the scenario, additional convolutions, latent nearest-
neighbor interpolation or fully-connected layers can be applied to produce an
ordered, end-to-end point mapping or single-value output, respectively. In the
following sections, the different components of our network are described in more
detail.

Fig. 3. Fully-convolutional point network architecture

3.1 Architecture

The Fully-Convolutional Point Network consists of four main modules: a series of
abstraction layers, feature learners at different scales, a weighted-average pool-
ing layer, and a merging stage where responses are hierarchically merged back
together.
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Abstraction Layers. Three abstraction layers are used to achieve a hierarchi-
cal partitioning, both spatially and conceptually. The first level captures basic
geometric features like edges and corners, the second level responds to complex
structure and the highest level to structure in context of other structures.

The first level employs a simplified PointNet [8], proven to efficiently capture
the geometry in a local region. It consists of a radius search & grouping, 1×1×1
convolutions followed by a max-pooling layer. Applying PointNet in a uniformly
spaced 3D grid produces a 3D feature volume representing the lowest level phys-
ical features. This feature volume feeds into the next abstraction layer. Higher
level abstraction layers are implemented as 3D convolutions with a kernel size
and stride of 2. They are designed to abstract the space in a non-overlapping
fashion with 8 features (octants) of the preceding abstraction layer being rep-
resented by a single cell in the subsequent layer, just like an OctTree. This
non-overlapping spatial-partitioning significantly reduces the memory required
to store the space at each abstraction level.

Feature Learners. With three levels of abstraction, we now employ 1 × 1 × 1
and 3 × 3 × 3 convolutions to extract meaningful features at more scales (see
Fig. 4). For each abstraction level, skip connections propagate features at the
level’s inherent spatial scale as well as 3× it to be merged later in the network.
This allows the network to better recognize structures at a wider range of scales
and to overcome the strictly non-overlapping partitioning of the abstraction
layers.

Fig. 4. Visualization of the different spatial scales used to encode indoor spaces within
our model on an example apartment scan. For simplification we only show their 2D
top-down view. Further, please note that 15 cm features (green) are spherical while the
others are cubic (Color figure online)

Weighted Average Pooling. The weighted average pooling layer cost-
effectively incorporates long-range contextual information. For every cell in the
highest abstraction level, the responses of all other cells in the space are aver-
aged together weighted by their euclidean distance to a 1 m sphere around the
cell. Thus, cells positioned closest to the surface of this sphere are weighted
most heavily. This puts emphasis on long-range contextual information, instead



632 D. Rethage et al.

of information about directly adjacent cells which is already captured by the
respective 3 × 3 × 3 skip connection. This improves the discriminative capabil-
ity of the network by allowing neighboring semantics to influence predictions.
For example, distinguishing chairs and toilets by considering the presence of a
desk or rather a sink nearby. The parameterless nature of this layer is not only
extremely cost-effective, but provides a more informative signal. The average
spatial pooling effectively removes the exact configuration of the structures in
the vicinity, while retaining their semantic identities. This is a desirable char-
acteristic because the identity of nearby objects or structures help discriminate
boundary cases more so than the configuration they are in. In the example of the
chair/toilet, it is informative to know the presence of a sink nearby much more
than the fact that the sink is to the right of the toilet. We also avoid an inherent
challenge: larger-scale spatial contexts (>1 m) encourage a model to learn entire
configurations of spaces, which does not lead to strong generalizability. Finally,
the average weighted pooling layer exhibits the flexibility required to scale the
network up to larger spaces during inference.

Merging. In the merging stage, skip connections corresponding to each abstrac-
tion level are first concatenated and then upsampled to 2× their spatial resolu-
tion by 3D deconvolutions. This allows the features at each abstraction level to
be progressively merged into each other. 1 × 1 × 1 convolutions add expressive
power to the model between deconvolutions.

3.2 Output Representations

Several variants of the network are suitable for different scenarios: For producing
organized output, the network is fitted with an additional deconvolution layer to
produce the desired output point density. Latent nearest-neighbor interpolation
is used in applications where semantics are mapped, for end-to-end processing,
to each point in the input cloud. Fully-connected layers are appropriate when
summarizing the entire input such as in the case of scene captioning.

3.3 Uniform vs. Furthest Point Sampling

Furthest point sampling is very effective for describing the characteristics of
structure (occupied space) because it makes no prior assumptions as to the
spatial distribution of the data. However, for describing entire spaces (occupied
+ unoccupied), a uniform sampling is the only way to ensure we consider every
part of it.

3.4 Full-Volume Prediction

Fully-Convolutional Point Network labels the full spatial volume it is given as
input. It achieves this by upsampling feature maps to the original sampling
density as well as symmetrically padding feature volumes before performing
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3× 3× 3 convolutions. This is validated by the fact that regions directly outside
of the input volume are most likely to exhibit the same occupancy characteristics
as the closest cell within it, since occupancy characteristics present at the edges
of the volume are likely to extend beyond it.

3.5 Scalability

The network is flexible in that it can be trained on smaller training samples,
then be scaled up during inference to process spaces multiple times larger than
it was trained on in a single shot. The network successfully predicts a 80 m2

space consisting of 200 k points at once. An even larger spatial extent can be
processed at sparser point density. This further extends the versatility of the
network for other use cases such as autonomous driving.

4 3D Captioning

We introduce a new scene understanding task we call 3D Captioning: generating
meaningful textual descriptions of spaces. We envision this as being useful for
assistive technology, in particular for the visually impaired when navigating and
interacting in unfamiliar environments. To test the model’s proficiency on this
task, we create a dataset of human-annotated captions based on ScanNet [1],
we select the top 25 sentences best describing the diversity of spaces found
in ScanNet. They are designed to answer 3 types of questions: “What is the
functional value of the space I’m in?”, “How can I move?”, and “How can I
interact with the space?”. Every 100th frame of a scene is annotated with 0 or
more applicable captions. The dataset was then validated to remove outliers. To
accomplish this, a Scene Caption Annotation Tool was built and used to annotate
roughly half of ScanNet. We release this dataset together with the source code.
The statistics of the captioning dataset are given in the supplementary material.

5 Evaluation

We evaluate our method on (a) small-scale 3D part segmentation as well as
(b) large-scale semantic segmentation tasks (see Sect. 5.1). We evaluate seman-
tic segmentation on ScanNet, a 3D dataset containing 1513 RGB-D scans of
indoor environments with corresponding surface reconstructions and semantic
segmentations [1]. This allows us to compare our results against ScanNet’s voxel-
based prediction [1] and PointNet++’s point cloud-based semantic segmentation
[8]. We achieve comparable performance, while – due to our fully-convolutional
architecture – being able to process considerably larger spaces at once. Our sec-
ond evaluation (b) in Sect. 5.2 on a benchmark dataset for model-based part
segmentation shows our networks capability to generalize to other tasks and
smaller scales. To further show the usefulness of a spatially ordered descriptor in
higher-level scene understanding tasks, we train our network to predict captions
for unseen scenes (see Sect. 4) – results for the 3D captioning task are presented
here 5.3.
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5.1 Semantic Voxel Labeling

In the semantic voxel labeling task, the network is trained to predict the seman-
tics of the occupied space in the input from a set of 20 semantic classes. We
present a variant of the network for Semantic Voxel Labeling along with the
experimental setup.

Data Preparation. Training samples are generated following the same proce-
dure in ScanNet. We extract volumes exhibiting at least 2% occupancy and 70%
valid annotations from 1201 scenes according to the published ScanNet train/set
split. Training samples are 2.4 m3 and feature a uniform point spacing of 5 cm3.
This produces a training set of 75 k volumes. During training, samples are resam-
pled to a fixed cardinality of 16 k points. Augmentation is performed on the fly:
random rotation augmentation along the up-down axis, jitter augmentation in
the range ±2 cm and point dropout between 0–80%. Only X, Y, Z coordinates
of points are present in the inputs. Ground-truths consist of 20 object classes
and 1 class to represent unoccupied space. Each scene in the 312 scene test set
is processed by predicting 2.4 m3 cutouts of the scene. Each semantic class is
weighted by the inverse log of its per-point frequency in the dataset.

Network. The three spatial scales S1, S2, S3 of the Semantic Voxel Labeling
network are 15 cm, 30 cm, 60 cm, respectively. As a result, the network extracts
features at 15 cm, 30 cm, 45 cm, 60 cm, 90 cm and 180 cm scales and pools fea-
tures together at the 60 cm spatial scale. Three 1 × 1 × 1 layers follow each
abstraction, feature learning and upsampling layer. An additional deconvolution
layer achieves a final output density of 5 cm3. Dropout (50%) is applied before
this layer. We also employ a final 3×3×3 convolution in the last layer to enforce
spatial continuity in adjacent predictions, avoiding single point misclassification.
The network is trained with an ADAM optimizer starting at a learning rate of
0.01, decaying by half every epoch, for 5 epochs.

Results. Table 1 gives quantitative results of our semantic segmentation on a
voxel-basis for 20 classes. Our method achieves a weighted accuracy of 82.6%
and an unweighted accuracy of 54.2%; in comparison ScanNet only labels 73%
(weighted) or 50.8% (unweighted) of the voxels correctly. The best performing
of three PointNet++ variants (MSG+DP) reports 84.5% (weighted) or 60.2%
(unweighted). Our method outperforms ScanNet by a large margin particularly
in the classes: desk, toilets, chairs and bookshelves. Please note, that our method
has the advantage of being able to process all scenes, from small bathrooms up to
whole apartments, in a single shot in comparison to PointNet++ who combine
the predictions of a sliding volume with a majority voting. Some qualitative
results with corresponding ground truth annotations are shown in Fig. 5.
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Fig. 5. Qualitative results of the semantic voxel labeling on an example scene of Scan-
Nets test sequences. (a) Input Point Cloud, (b) Semantic Voxel Prediction by our FCPN
and (c) Ground Truth Semantic Annotation

5.2 Part Segmentation

We also evaluate our method on a smaller-scale point cloud processing task,
model-based semantic part segmentation. To evaluate this, Yi et al. [19] provide
a benchmark part segmentation dataset based on ShapeNet. It consists of 50 part
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Table 1. Semantic voxel label prediction accuracy on ScanNet test scenes. Please note,
ScanComplete only trains on 6 of the 20 classes present in the ScanNet test set

Class % of Test Scenes ScanNet[1] ScanComplete[18] PointNet++[8] FCPN (Ours)

Floor 35.7% 90.3% 90.2% 97.8% 96.3%

Wall 38.8% 70.1% 88.8% 89.5% 87.7%

Chair 3.8% 69.3% 60.3% 86.0% 81.6%

Sofa 2.5% 75.7% 72.5% 68.3% 76.0%

Table 3.3% 68.4% n/a 59.6% 67.6%

Door 2.2% 48.9% n/a 27.5% 16.6%

Cabinet 2.4% 49.8% n/a 39.8% 52.1%

Bed 2.0% 62.4% 52.8% 80.7% 65.9%

Desk 1.7% 36.8% n/a 66.7% 58.5%

Toilet 0.2% 69.9% n/a 84.8% 86.7%

Sink 0.2% 39.4% n/a 62.8% 53.5%

Window 0.4% 20.1% 36.1% 23.7% 12.5%

Picture 0.2% 3.4% n/a 0.0% 1.8%

Bookshelf 1.6% 64.6% n/a 84.3% 81.0%

Curtain 0.7% 7.0% n/a 48.7% 6.1%

Shower Curtain 0.04% 46.8% n/a 85.0% 48.0%

Counter 0.6% 32.1% n/a 37.6% 31.6%

Refrigerator 0.3% 66.4% n/a 54.7% 50.5%

Bathtub 0.2% 74.3% n/a 86.1% 79.1%

Other Furniture 2.9% 19.5% n/a 30.7% 30.2%

Weighted Average 73.0% n/a 84.5% 82.6%

Unweighted Average 50.8% n/a 60.2% 54.2%

categories across 16 types of objects. For example, the car category features part
classes: hood, roof, wheel and body. (see Table 2).

Table 2. Results of our FCPN on ShapeNet’s part segmentation dataset compared to
other state-of-the-art methods. Please note, that we outperform all other methods in
12 out of 16 classes

mean aero bag cap car chair ear
phone

guitar knife lamp lap-
top

motor mug pistol rocket skate
board

table

Yi [20] 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3

SSCNN [21] 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1

PN [2] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PN++ [8] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

Ours 84.0 84.0 82.8 86.4 88.3 83.3 73.6 93.4 87.4 77.4 97.7 81.4 95.8 87.7 68.4 83.6 73.4

Data Preparation. For this task, we train directly on the provided data with-
out any preprocessing. During training, the input cloud is first rescaled to maxi-
mally fit in the unit sphere (2 m diameter), then augmented with point dropout
and jitter as in the previous task as well as randomly shifted (±5 cm) and scaled
(±10%) on the fly.
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Network. The input spatial extent of the network is 2.8 m to give every point
in the cloud full valid context. The three spatial scales S1, S2, S3 are 10 cm,
20 cm, 40 cm, respectively. Three 1 × 1 × 1 layers also follow each abstraction,
feature learning and upsampling layer. After upsampling features back to the
original sampling resolution, three-nearest-neighbor interpolation is performed
in the latent space. Then, like the methods we compare against, the one-hot
encoded object class is concatenated to each point’s feature vector and followed
by three final 1 × 1 × 1 layers with 50% dropout between them.

Results. The method outperforms the state-of-the-art on this benchmark
dataset in 12 out of 16 object categories. Visual examples are given in Fig. 6.

Fig. 6. Qualitative results of the part segmentation test set

5.3 Captioning

To demonstrate the usefulness of a spatially ordered output, we evaluate a base-
line method for the 3D captioning task based on the FCPN network. To train
the captioning model, we take the semantic voxel labeling network and replace
the final upsampling layer and subsequent convolutional layers with three fully-
connected layers. We freeze the weights of the semantic voxel labeling network
and train only the fully-connected layers on this task. Once again, captions are
weighted by the inverse log of their frequency in the training set. We consider
the top-3 most confident captions produced by the network. Examples are shown
in Fig. 7. Differently from standard image-based captioning, the provided results
hint at how the 3D captioning output together with the proposed network can
usefully summarize the relevant scene geometry with respect to a specific view-
point to aid navigation and interaction tasks. Additional results are provided in
the supplementary material.

5.4 Memory and Runtime

To complement our evaluation, we estimate the memory footprint and inference
speed of our method as a function of the input cloud size (both spatially and
in terms of point count), by processing clouds of increasing point counts and
surface area on a Titan Xp GPU. The results in Table 3 validate our claim that
the proposed method can efficiently process large-scale point clouds, with clouds
5× as large with 10× the amount of points requiring only 40% more memory.
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Fig. 7. Example top-3 sentences on 3 frames of the captioning test set. The point cloud
in the first row is the input of our captioning model. The RGB image is just illustrated
for visualization purposes and not used within our method

Table 3. Memory consumption evaluation

Point count Surface area Forward pass Memory

150 k 80 m2 9.1 s 9033 MB

36 k 36 m2 2.9 s 8515 MB

15 k 16 m2 0.57 s 6481 MB

6 Conclusions

In this paper we presented the first fully-convolutional neural network that oper-
ates on unordered point sets. We showed that, being fully convolutional, we are
able to process by far larger spaces than the current state of the art in a single
shot. We further show that it can be used as a general-purpose feature descriptor
by evaluating it on challenging benchmarks at different scales, namely semantic
scene and part-based object segmentation. This shows its proficiency in different
tasks and application areas. Further, since it learns a spatially ordered descriptor,
it opens the door to higher level scene understanding tasks such as captioning.
As for future work, we are interested in exploring a wider range of semantic
classes and using our network to train a more expressive language model.
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